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HOLDER CONTINUOUS FUNCTIONS AND
THEIR ABEL AND LOGARITHMIC MEANS

SUSHIL SHARMA AND S. K. VARMA

Abstract. Mohapatra and Chandra (8] have obtained the degree of approximation for f €
Ho(0 < B < o < 1) using infinite matrix A = (an ). Mohapatra and Chandra (7] used Euler,
Boral and Taylor means. In the present paper we have obtained the analogous results using Abel
(Ax) and Logarithmic (L)-means.

1. Introduction

Let Cy, be the Banach space of all 27 periodic functions defined on [—, 7] under the
sup norm. For 0 < a < 1 and some positive constant k.

Ho ={f € Con : |f(z) — f(y)| < klz —y|*}. (1.1)
The space H, is a Banach space with the norm || - ||, defined by
IFlle = I£llc + sxus{A“f(w,y)} (1.2)
where
Iflle="sup |f(z)]
—n<z<T
and
A f(z,y) = LA 4y (13)
|z -yl

we shall use the convention that A° f(z,y) = 0. The elements of the space H, are called
Holder continuous functions. If D is the collection of all differentiable functions defined
on [—m,m] then it is easy to see that

Con dHz D Hy DD for 0<€£8Laxl.

For each f € H,, 0 < a <1, let the Fourier series be given by

(o]
a "
flz) ~ 70 + Z(a,, cosvz + by sinvz) (1.4)
v=1
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where a, and b, are Fourier coefficients.
Given A > —1, we say that the series > Uy, is Ay-summable to a finite sum S if the

series
A1 Z
) i nSn

n=0

is convergent for all r in (0,1) and tends to S as 7 — 1 in (0,1), where

A\ n+A
= d = m-
e, ( n ) an S, Z U,

m=0

If A = 0, Ay-method reduces to well known Abel method of summability (Hardy [3]).
Borwein [1] introduced Logarithmic (L)-method of summabililty. He defined a series

S Un, to be summable by L-method of summability to the sum S if, for r in the interval
(0,1)

T
n

lim
r—1-0 |Iog(1 -r) Z=:
We have following inclusion relation
(L) D (A,X) D AD(C,9) for every 6 > —1.

We shall use the following notations throughout this paper

202(t) = f @+ﬂ+f@—ﬂ—2ﬂ) (1.5)
)t
Bl il = A+1 >\ 51nn+, (1.6)
=i nz_:[.) sm—
L(rt) = %tan-l(l_i—“:nc%g—t). (1.7)

2. Statement of Results

Khan [5] obtained the necessary and sufficient condition for A, -summability of
Fourier series (1.4) and Hsiang [4] obtained the necessary and sufficient condition for
L-summability of Fourier series (1.4).

Prossdorf [10] proved the following theorem A with a view to obtain the degree of
convergence of the Fejér means of the Fourier series of f € H,.

Theorem A. Let f€e Hy, 0 < a<1and0< B8 < a, then

O(nij—a), O< s el 17

loalf :2) - flls=| | (2.1)
: O{nP~'(1 +logn)'=*},a = 1.
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Mohapatra and Chandra [7] replaced the Fejér means of the series (1.4) by well known
Norlund and (N, p,) means. Mohapatra and Chandra [8] replaced Nérlund and (N, pn)
by a more general infinite matrix T' = (a, ) with some conditions on (a, ). Mohapatra
(9] proved results on degree of approximation of Holder continuous functions. Das, Ojha
and Ray [2] used Borel means to obtain the degree of approximation. Mchapatra and
Chandra [7] used Euler, Boral and Taylor means to obtain the degree of approximation
for f € H,. They proved the following theorem:

Theorem B. Let 0 < 8 < aa < 1. Then, for f € H,,
IB"(f : z) = fllg = O{r~ /> (log )P/} (2.2)
where B"(f : z) is the Boral mean 'of the series (1.4).

In the present paper we have used A)-mean and L-mean. In fact we shall prove the
following theorems:

Theorem 1. Let 0 < 8 < a < 1. Then, for f € H,
I45(f) = fllg = O[(1 = r)*~*] (2:3)
where A% (f) is the Ax-mean of the series (1.4).

Theorem 2. Let 0 < < o < 1. Then for f € H,

IL7(f) ~ £lls = Ollog(1 — r)#/=}(1 — r)==#rF] (2.4)
where L"(f) is the L-mean of the series (1.4).

3. Preliminary Lemmas
We shall use the following lemmas for the proof of our theorems.
Lemma 1. If f € Hy(0 < a < 1) then
|92 (1) — ¢y (2)] < 4k|z —y|* (3.1)

and

b= (t) — ¢y (2)] < 4K[E|* (32)

where k is a positive constant. The proof of the lemma is obvious from the definition of
¢.(t) and the function space Hy,.

Lemma 2. Khan [6]

—O[(l_%)], whent <1-—r,
0<t<m,
A1) = (1—p)>+1 il (33)
O[], when t > 1—r,
O<i<m,
i 0<pr<1.
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Lemma 3. Hsiang [3] For 0 <r <1,

Oz, B<t L]l ~#

L. .3 rsint
—tan e NS ) (3'4)
t (1—rcost) O[%], {2 E £ s -
4. Proof of The Theorem 1
Let
4
In(z) = AN(f,z) - f(ﬂf)
= (- Z[ n(2) = F(@)Ir"en
n=0
= (1-r7) Zrncg/ oz (1) SlTl(’rL-l— 1/2)tdt.
s o 0 sint/2
Therefore
1 w
(@)~ Tlo) = = [ 16:(6) = 8, rr, 1
T Jo
1 l—r ™
R W RO N
=1, + I, say . (4.1)
So
| O A 1
5L = —/ t*(——)dt, by (3.2) and (3.3) .
m™ Jo 1—r7r
=0(1 —r)°. (4.2)
and
= %/ (1 — r)**1te=2=24¢; by (3.2) and (3.3)
1—7
=01 -nr)*. (4.3)
Similarly if we use (3.1) in place of (3.2), we get
l-7r a
(1- r)
=Olz - yl“- (4.4)

and
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= 0(1)/1 r Lo (1 - iy
= O|z — y|*.
Now for k = 1,2, we observe that
I = [\-Plagble
So by (4.2), (4.3), (4.4) and (4.5), we have
L =0{lz - y/’(1~r)**}
and
= Ofle (1 -)=%)

So
sup |AP I (z,y)| = O{(1 — r)>~P}.
i

This completes the proof of the Theorem 1.

Proof of theorem 2.

ee]

1 " gult) Z r
In(l') m 7 J sin t/2 Sln(n + 1/2)tdt
So
$a(t) — by (t) Z”“ A
I( (y) W / —“S‘m—n 1." smn+1/2 tdt

17l

(4.5)

l—=r o]
|¢m — l
i + 1/2)tdt.
|log(1~'r]7r / /1r smt/2 nz:lr st + 108

=1 + I, say.

1 ==
L = ———0(1 / t*dt, by using (3.2) and (3.4)
LT el O Jy Ty B veine (32) and

=0 (L=w)%)

m
o e 2 (8) — ¢y (£)]
llog(1—7~)|7r/1 . Smt/Q ZT sin(n + 1/2)tdt.
=0 1 ) t*~'dt, by using (3.2) and (3.4) .

|]0g(1 - ’I")l 1—r
(1-r)=
i —a

(4.6)

(4.7)
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Similarly if we use (3.1) in place of (3.2), we get

o) e . g2 T
e P =

_ otz =ylor
= X ogtt -1 (4.9)
=90 Tz -yl
" |log(l=7)[ ir

= O{|z — y|*} (4.10)

I

and
dt

Now for k = 1,2 we observe that

Ik - I;—(ﬁ/a)lllj/a

So by (4.7), (4.8), (4.9) and (4.10), we have

I = O[I'E _ y|ﬁrﬂ/ar(a~/3)/a(1 - T)a—ﬁ

]

log(1—r)
_ |z — yl‘grﬁ(l = T)a—ﬁ
=L log(1 — 1) ] (4.11)
|z — y|?{log(1 — r)}#/*(1 — r)a=F
=0 4.12
= [log(1 — )| ) (4.12)

Since f# < 1 and r <1, (4.11) and (4.12) gives
sup |AP I, (z,y)| = O[{log(1 - r)}B/e-1(1 — )P
ary

This completes the proof of the Theorem 2.
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