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BEST COAPPROXIMATION IN METRIC LINEAR SPA_CES

T. D. NARANG AND S. P. SINGH

Abstract. In order to obtain some characterizations of real Hilbert spaces among real Banach
spaces, a new kind of approximation, called best coapproximation, was introduced in normed
linear spaces by C. Franchetti and M. Furi (3] in 1972. Subsequently, the study was pursued in
normed linear spaces and Hilbert spaces by H. Berens, L. Hetzelt, T. D. Narang, P. L. Papini,
Gectha S. Rao and her students, Ivan Singer and a few others (see, e.g., [l], (4], (7], (9], (13 to 15],
and (17 to 20]). In this paper, we discuss best coapproximation in metric linear spaces thereby
generalizing some of the results proved in [3], [7], [13], and (18]. The problems considered are
those of existence of elements of best coapproximation and their characterization, characteriza­
tions of coproximinal, co-semi-Chebyshev and co-Chebyshev subspaces, and some properties of
the best coapproximation map in metric linears spaces

1. Introduction

The main object of the theory of best approximation is to seek a solution to the
problem: Given a subset G of a metric space (X, d) and an element x E X, find an
element g0 E G such that

d(x, g0)'.S d(x, g) for all g E G (1)

The set of all such g0 E G (if any), called the set of best approximation of x by elememts
of G, is denoted by Pa(x). Clearly

Pa(x) = [n9EaB(x, d(x, g))] n G,

where B (x, d(x, g)) denotes the closed ball in X with centre x and radius d(x, g).
As a counterpart to best approximation, another kind of approximation, called best

coapproximation, was introduced by Franchetti and Furi [3], who considered those ele­
ments g0 E G satisfying

d(g0,g)~d(x,g) for all g E G

The set of all such g0 E G (if any) is denoted by Ra (x). Clearly

Rc(x) = [n9EaB(g, d(x, g))J n G.

(2)
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An element g0 E G satisfying (1) is called a best approximation to x in G, and
satisfying (2) is called a best coapproximation to x in G. The set G is said to be prox­
iminal (respectively, coproximinal) if Pc(x) (respectively, Rc(x)) is non empty for each
x in X. It is said to be semi-Chebyshev (respectively, co-semi-Chebyshev) if Pc(x)
(respectively, Re (x)) contains at most one element for each x in X and it is said to
be Chebyshev (respectively, co-Chebyshev) if Pc(x) (respectively, Rc(x)) contains ex­
actly one element for each x in X. If D(Pi忒 = {x E X : Pc(x) f- 0} (respectively,
D(R幻 = {x E X : Rc(x) f-¢}), the mapping Pc : D(Pc) -t G (respectively, the
mapping Re : D(Re) -t G), defined by x -t 氏(x) (respectively, x -t Rc(x)) is called
the best approximation map or metric projection (respectively, best coapproximation
map or metric coprojection). In general, D(Pi忒 (respectively, D(R囯）f- X and the
mapping氐 (respectively, R囯 is multivalued on D(Pc)IG (respectively, D(Rc)IG), but
the restriction of the mapping Pc. (respectively, R囯 to G is single-valued. We have
D(Pi扇 (respectively, [) (R囯）= X if G is proximinal (respectively, coproximinal) and is
single-valued on X if G is Chebyshev (respectively, co-Chebyshev).
As in the case of best approximation, the theory of best coapproximation has been

developed to a large extent in normed linear spaces and in Hilbert spaces by H. Berens
and U. Westphal [1], C. Franchetti and M. Furi [3], L. Hetzelt [4), T. D. Narang [7), [9),
P. L. Papini and I. Singer [13), Geetha S. Rao and her students [4], [15), [17), [18), U
Westphal [20) and a few others. Geetha S. Rao was the first to develop the theory of
best coapproximation after the appearance of the paper of Papini and Singer [13]. In a
series of papers she and her students have proved many results on best coappro:icimation
in normed linear spaces. The situation in the case of metric linear spaces is somewhat
different. Where邸 many successful attempts have been made to develop the theory of
best approximation in metric linear spaces (although the theory is comparatively less
developed than that in normed linear spaces due to the non-convexity of spheres, lack
of duality theory in metric linear spaces, etc.), the theory of best coapproximation in
such spaces is yet to make a beginning. The present paper is a step in this direction.
We discuss in this paper some results on existence of elements of best coapproximation
and their characterization, characterizations of coproximinal, co-semi-Chebyshev and co­
Chebyshev subspaces and some properties of the best coapproximation map in metric
linear spaces.

2. Existence and Characterizations of Elements of Best Coapproximation

In this section, we discuss some results on the existence and characterization of el­
ements of best coapproximation in metric linear spaces. We . start with listing a few
elementary observations.

ObservatioJ! 2.1. IfG is a subset of a metric space (X, d), then G C Rc(x) whenever
the diameter of G is smaller than dist (x, G).
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Observation 2.2. If G·1s a convex subset of a strongly locally convex metric linear
space(a metric linear space in which all spheres are convex-see (6] (X, d) then Rc(x) is
a convex set.

Observation 2.3. If G is a linear subspace of a metric linear space (X, d) and
Re1 (0) = {x E X : 0 E痴 (x)}, then

(i) R計 (0) is a closed set containing 0,
(ii) go E Ra(x) {::} 0 E Ra(x - g0) i.e., x 一 9o E Ra1 (0), and
(iii) for g E G, we have z E R計 (0) {::} g E Rc(g + z), i.e., g + z E R計 (g).

0:
The following theorem gives a necessary and sufficient condition under which Rc(x) f-

Theorem 1. IfG is a linear subspace of a metric linear space (X, d), then Rc(x) f, 0
for some x E X\G if and only if R計 (0) is not a singleton

Proof. By Observation 2.3 (i), 0 E R計 (0). Suppose, go E Rc(x) for some x E X\G
Then by Observation 2.3 (ii), 0 f, x - g0 E R計 (O) and so R計 (0) is not a singleton

Conversely, suppose Ra (0) is not a singleton. Then there exists an x t, 0 E Ra1 (0)
and so OE Rc(x) i.e., Rc(x) f, 0 for some x E X\G.
It may be remarked that a similar result holds-for Pc(x).

It was shown by Johnson [5] that if (X, d) is a metric space and x。is a fixed point of
X then the set

X-;/ =. {f : X~IR sup
, ::PYz,yEX

lf(x) - f(y)I
d(x,y) < oo, f區）= O},

with the usual operations of addition, and multiplication by real scalars, normed by

llfllx = sup
xf=y,,,yEx

lf(x) - f(y)I
d(x,y) /EX『

is a Banach space (even a conJugate Banach space). Using this idea of Johnson, we prove:

Theorem 2. If G is a linear subspace of a metric linear space (X, d), x E XIG and
9o E G then 9o E Ra(x) if for every g E G there exists an /9 E X『with the following
properties:

(i) IJ9(x) - f9(y)I~d(x,y) for all x,y EX,
(ii) f9(x - go) = 0, and
(iii) J9(go - g) = d(go,g).
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Proof. Suppose for every g E G there exists an f9 E X『satisfying (i), (ii), and (iii)
Consider

d(x,g) 2: IJY(x) - f9(g)I, by (i),
= I f9 (x - go + go 一 g)I
= lf9區- g)I, by (ii)
= d(go,g), by (iii)

i.e., d(g0, g)~d(x, g) for all g E G and so go E 痴 (x).

Problem 2.1. If go E 砌 (x) then can we find an JY E 滘 satisfying (i), (ii), and
(iii)?

Remark 2.1. A result similar to Theorem 2 and its converse were given by G
Pantelidis (12] for Pa(x) in metric linear spaces and for Rc(x) by Papini and Singer [13]
in normed linear spaces.

An element x of a metric linear space (X, d) is said to be orthogonal to another
element y E X (see [6]), and we write x上y, if d(x, 0)~d(x, ay) for every scalar a. x is
said to be orthogonal to a subset G of X (已G) if X上y for all y E G. This definition of
orthogonality is similar to that given by G. Birkhoff [2]. It is known (see [6]) that if G is
a linear subspace of a rµetric linear space (X, d), x E XIG and go E G then go E Pc(x)
if and only if x - g。上G:\ It was proved in [3] that if G is a linear subspace of a normed
linear space X and go E G then go E 縂 (x) if and only if G乓- go. In metric linear
spaces, the following is easy to prove:

If G is a linear subspace of a metric linear space (X,d) and go E G, then go E Ra(x)
if G上 (x - go) or if G - go上 (x - go).

Problem 2.2. Is the converse also true, i.e., if 9o E 恥 (x), then can we prove that
G上 (x - go) or G - 9o上 (x - go)?
Using orthogonality in metric linear space, we have:

Theorem 3. A linear subspace G of a metric linear space (X, d) has the property
Rc(x) = 0 for every x E X\G if there exists no z E X\{O} such that G旦

Proof. Suppose there exists some z E X\ {0} such that G上z, i.e., g上z for every
g E G. Then

d(g, az)~d(g, 0)

for all g E G and for all scalars a. This gives

d(O, g)~d(z, g)

for all g E G, i.e., 0 E R~(z). Thus, Rc(z) i- 0 for z E XIG a contrad1ct10n.

Remark 2.2. In normed linear spaces, Theorem 3 and its converse were proved in
[7]. It is not known whether the converse of Theorem 3 holds in metric linear spaces.



BEST COAPPROXIMATION IN METRIC LINEAR SPACES 245

The following theorem on existence also connects elements of best approximation and
clements of best coapproximat10n:

Theorem 4. If G is a linear subspace of a metric linear space (X, d) and x E X\G
then

(i) A = {go E G : g。E ngEGP困} c Rc(x), where (g0,x) = {o:x+ (1-a)go: a: scalar}
is the linear manifold spanned by g。and x,

(ii) for an element g0 E G, we have go E Re位） if G C P(~ ~90 /0) = { z E X : 0 E
P位-go) (z)}.

Proof.

(i)

go E A=> go E G and go E P(go,x渾）for all g E G
今 9o E G and d(go, 9)~d(ax + (1 - a, 9o, g) for all g E G and all scalars a

=> go E G and d(go,9)~d(x,g) for all g E G

i.e., 9o E Re (x).
(ii)

G C P(~~90/0) => 0 E P(x-go)(g) for all g E G
今 d(g,O)::; d(a(x-g0),g) for all g E G

Let g'E G. Take g = g'- 9o and a = 1. We get d(g'- 9o, 0) ::; d(x - 9o, g'- go),
i.e., d(g0, g') ::; d(x, g'). Therefore, 9o E Ra(x).

Remark 2.3. Theorem 4 (i) clearly implies that A= {go E G : 0 E n9EcP(x-go) (g­
go)} C Rc(x).

It was proved by Papini and Singer [13] that in normed linear spaces Rc(x) = A in
(i) and the converse part of (ii) also holds. For locally convex spaces with a family of
seminorms the equality of the sets Rc(x) and A was proved by Geetha S. Rao and S.
Elumalai [16].

3. Characterizations of Coproximinal, Co-Semi-Chebyshev and Co-Cheby­
shev Subspaces

In this section, we shall characterize coproximinal, co-semi-Chebyshev, and co-Cheby­
shev subspaces of metric linear spaces.
It was proved in [8] that a linear subspace G of a metric linear space (X, d) is proxim­

inal if and only if X = G + Pci1(0), where Pci1(0) = {x EX: 0 E Pc(x)}. Analogously,
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we have the following characterization of coproximinal linear subspaces of metric linear
spaces.

Theorem 5. For a linear subspace G of a metric linear space (X, d), the following
statements are equivalent:

(a) G is coproximinal.
(b) X = G + R計 (0).

Proof. (a) =} (b). Let x E X. Since G is coproximinal, there exists g0 E G such that
g0 E Ra(x) and so by Observation 2.3 (ii), x 一 go ER計 (0). Since x = go + (x - go) E
G + R01 (0), we get X C G + R計 (0) c X and so X = G + R計 (0)
(b) =} (a). Let x E X = G + R計 (0). Then X = 90 + Y, 9o E G, y E Ra1 (0) and so

0 E Ra(y) = R忒X 一 g0). Therefore, by Observation 2.3 (ii), go E Ra(y) implying that
c·1s coprox1minal.
It was proved in [8] that a linear subspace G of a metric linear space (X, d) is prox­

iminal if and only if G is closed and for the canonical mapping Wa; X -i f, we have
We[琛 (O)J = f. Analogously, we have the following characterization of coproximinal
linear subspaces of metric linear spaces:

Theorem 6. For a linear subspace G of a metric linear space (X, d), the following
statements are equivalent:

(a) G is coproximmal.
(b) G is closed and for the canonical mapping Wa: X -if, we have Wc[R01(0)] = f,
i.e., We maps Ra1(0) onto f.

Proof. (a) 今 (b). Firstly, we show that G is closed. Let p E G\G and g0 E Rc(p). Then
there exists a sequence (gn〉in G such that (gn〉-+ p and d(g0, g) :S d(p, g) for all g E G
and so d(go, 9n) :S d(p, 9n for all n. This in the limiting case implies that (gn) -+ go and
sop= go E G. Hence G is closed. Now suppose x +GE f and g0 E Rc(x). Then by
Observation 2.3 (ii), x - go E R計 (O) and Wc(x - g0) = (x - g0) + G = x + G.

(b) ::::} (a). Let x E X. Then x + G E f = Wc [R計 (O)J, i.e., x + G = Wc(y) where
y ER計 (0), i.e., x+G = y+G where OE Rc(x), i.e., x-y = g0 E G and OE Rc(x-g0)
So, by Observation 2.3 (ii), g。E Re (x). Hence G is coproximinal.
The following characterization of Chebyshev subspace of metric linear spaces was

given in [8).
For a closed linear subspace G of a metric linear space (X, d), the following statements

are equivalent:

(i) G is a Chebyshev subspace.
(ii) X = G 喦 Pa1(0), where ED means that the sum decomposition of each X E X is
unique.
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(iii) G is proximinal and [Pci1(0) - Pci1(0) nG = {O}.
(iv) G is proximinal and the restriction map Wal~計 (0) is one to one.

Analogously, we have the following characterization of co-Chebyshev subspaces of
metric linear spaces:

Theroem 7. For a closed linear subspace G of a metric linear space (X, d), the
following statements are equivalent:

(a) G is a co-Chebyshev subspace.
(b) X = G EB R計 （）0 , where 喦 means that the sum decomposztzon of each x E X is
unique.

(c) G is coproximinal and [R計 (0) - R計 (O)] n G = {O}.
(d) G is coproximinal and the restriction map Wa IR計 (0) is one to one.

Proof. (a) 今 (b). Since G is co-Chebyshev, it is coproximinal and so by Theorem 5,
X=G+R計 (0). Now we show that the sum decomposition of each x E X is unique
Suppose x E X and x = 91 + Y1 and x = 92 + Y2 where 91,92 E G, Y1,Y2 E R計 (0).
This gives 91 - 92 = Y2 - Y1·Now, Y1 ER計 (0) =;, 0 E 縂 (yi) =;, 91 E Re (Y1 + 9日by
Observation 2.3 (iii). i.e., 91 E Rc(x). Similarly, g2 E Rc(x). Since G is co-Chebyshev,
91 = 92 and consequently, y1 = Y2. Hence, X = G EB R計 (0).

(b) =;, (c). X =吁 R-1(0) =;, G .G 1s coprox1mmal by Theorem 6. Suppose O # y E
[R計 (0) - Rc1 (O)] n G. Then y = Y1 一 Y2, YI E R詛 (0), Y2 E R計 (0), Y1 # Y2, So
0 E Rc(yi), 0 E Rc(Y2). Now Y1, Y2 E Ra1 (0), Y1 - Y2 E G\ {O} and Y1 = 0 + Y1 =
(y1 + y2) + y2, a contradiction to the uniqueness of the sum decomposition. Hence,
[R計 (0) - R計 (O)] n G = {O}

(c) =;, (d). Suppose WclR計 (O) is not one to one, i.e., there exists Y1, Y2 E R計 (O),
Y1 # Y2 and Wc(yi) = Wc(Y2). Then O # Y1 - Y2 E [R計 (0)-R計 (O)] n G, a contradic­
tion.

(d) =;, (a). Suppose x E X has two distinct best coapproximation in G, say 91 and
92. Then by Observation 2.3 (ii), x 一 91 and x 一 92 ER計 (0), X - 91 -:/= X 一 92 but
W厙 -9日=wG (X - 92) as (X - 91) - (X - 幻 = 92 - g1 E G which is a contradiction.
Remark 3.1. By requiring instead of (b) that each element x EX has at most one

sum decomposition and by omitting in (c) and (d) the condition of coproximinality of
G, we obtain the following characterizations of co-semi-Chebyshev subspaces of metric
linear spaces:

Theorem 8. For a closed linear subspace G of a metric linear space (X, d), the
following statements are equivalent:

(a) G is co-sem這hebyshev subspace.
(b) Each element x E X has atmost one sum decomposition as G + R計 (0).
(c) [Ra1 (0) - Re/ (O)] n G = {O}.
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(d) Wa\R計 (0) is one to one.

4. The Best Coapproximation Map Re

In this section, we shall discuss some properties of the best coapproximation map Ra
and conditions under which the mapping Re is upper semi-continuous or continuous.

Theorem 9. IfG is a subset of a metric linear space (X, d) and x E X, the set-valued
mapping縂 has the following properties:

(a) D(R忒 ::) G and R西 ）= {x} /or all x E G.
(b) If x E D(l炻 ），then Rc(x) E D(Rc) and R志 (x) = Rc(x), i.e., the mapping Re is
idempotent on D(R忒

(c) {巨 E D(R忒 and玲 (x) f= 0 then d(x, R店 (x)) :S 2d(x, P2;(x)), R&位）ER吖x) and
玲 (x) E 粉 (x).

(d) If OE G then d(R名 (x), 0) :S d(x, 0) for all x E D(l祏）and R店 (x) E Re (x) . So Re
is continuous at the origin and is a bounded mapping, in fact Rc(x) c B(O, d(x, 0))

(e) If G is a linear subspace and Re; is a single-valued on D(Rc) then for x E D(Rc)
and g E G, we have x + g E D (R囯 and

Rc(x + g) = Rc(x) + Re囝=Rc(x) + g

i.e., Ra is quasi-additive.
(f) If G is a linear subspace and Ra1 (0) is a closed linear subspace of X, then Ra is
single-valued and additive on D(Ra).

Proof.

(a) Let 9o E G then go E Rc(go) as d(go,g) ::; d(g0,g) for all g E G and so g0 E
D(Rc). Thus, G C D(Rc). Further, go E Rc(g0) =} {g0} c R忒g0). Now, suppose
Y E Rc(go). Then d(y, g) ::; d(go, g) for all g E G and so in particular, d(y, g0) ::;
d(go,go) = 0 and soy= go. Therefore, Rc(go) C {g0}. Hence, Rc(x) = {x} for all
XE G.

(b) Let x E D(Rc) then Ra(x) CG C D(Rc) by Part (a). Further, Rc(x) E G =今

l炻 [Rc(x)] = Rc(x), i.e., R店 (x) = Rc(x)
(c) x E D(Rc) =} Rc(x) i- 0. Let R~(x) E Rc(x) and PS(x) E Pc(x). Now, R店 (x) E
Rc(x) =} d(R&(x),g)::; d(x,g) for all g E G =} d(R店 (x), Pfj(x)) ::; d(x, Pfj(x)) as
瓌 (x) E G.
Consider,

d(x,R名 (x)) ::; d(x, PS(x)) + d(PS(x), R名 (x))
::; 2d(x, PS(x))
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(d) x E D(Rc) =:> Rc(x) -:/= 0. Let R店 (x) E Ra(x). Then

d(R名 (x),g)~d(x,g)

．

for all g E G implies
d(R名 (x), 0) =s; d(x, 0)

The continuity of Re at origin is now immediate. Also, Rc(x) C B(O, d(x, 0)) and
so Re is a bounded mapping.

(c) Suppose Re is single valued on D(Rc), x E D(R囯 and g E G.

XE D(R扇 今 d(R忒x),g') :S d(x,g1) for all g1 E G
=> d(Rc(x) + g, g1 + g) s; d(x + g, g1 + g) for all g'E G
今 d(Rc(x) + g, g*) s; d(x + g, g*) for all g* E G
今縂 (x) + g E 瓦 (x + g).

Consequently, x + g E D(R囯 and since Re is single valued, Ra(x+g) = R司x)+g =
瓦 (x) + Rc(g), by (a). Thus, Re is quasiadditive.

(f) Let x E D(Rc) and 91,92 ER忒x). Then by Observation 2.3 (ii), x - 91,x - 92 E
Ra1(0). Since R01(0) is a linear subspace, (x - gi) - (x - 92) E R01(0), i.e.,
92 - 91 E R01 (0) n G = {O} and so 92 = 91, i.e., Re is single valued on D(R幻 ．

Now we show that Re is additive on D(R母 . Let x, t E D(R囯 and Re位）＝直
Ra(y) = 92·Then by Observation 2.3 (ii), x — 91,y-92 ER計 (0). Since R計 (0) is a
linear subspace, (x - 91) + (y - 92) E R01 (0). So, 0 = Rc(x + y- 91 - 92). Consider,

Rc(x + y) - (91 + 92) = Rc(x + y) - Rc(g1 + 92)
= Rc(x + y - 91 - 92), by (e)
=0
= Rc(x) - 91 + Rc(x) - 92-

This gives Rc(x + y) = Rc(x) + Rc(y), i.e., Re is additive on D(R扇 ．

Remark 4.1. In normed linear spaces, Property (a) was observed in [3], Properties
(b) and (e) in [13], and Property (f) in [7]. Properties (a), (b) and (e) were proved
in locally convex spaces in [11] and [16]. Properties (a) to (c) are also true for metric
projections in metric linear spaces (see Pantelidis [12]).

We may recall that a mapping T: X-+ 2Y where X and Y are metric spaces and 2Y
denotes the collection of all subsets of Y, is said to be upper semi-continuous if the set

位 Ex : T(x) n N =I= 0}

is closed for every clsoed N C Y.
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Now, we discuss some conditions under which the mapping Ra is upper semi-conti­
nuous or continuous.

Theorem 10. If G is a closed linear subspace of a metric linear space (X, d) then
Ra is upper semi-continuous on D(R囯 if and only if for each closed subset N of G,
N+R計 (0) is closed.

Proof. Suppose Ra is upper semi-continuous and N is a closed subset of G. Let
x be a limit point of N + R計 (0). Then there exists a sequence (xn〉in N + R01(0)
such that Xn -t x. Suppose Xn = 9n + Yn where 9n E N and Yn E R計 (0). Since
Yn = Xn 一·9n ER計 (0), by Observation 2.3 (ii) 9n E Rc(xn) n N. The upper semi­
continuity of Re implies Ra(x) n N cf 0 and so there exists some g E Ra(x) n N. This
gives x - g ER計 (0), i.e., x E N + R計 (0) and so N + R計 (0) is closed.
Conversely, suppose N + R計 (0) is closed for each closed subset N of G. Suppose

恥 is not upper semi-continuous on D(R母 . Then there exists an x E D (R幻 and a
sequence (xn〉in D(R忒 such that Xn -t x, Ra(x11) n N cf 0 but Ra(x) n N = 0. So,
there exists g0 E Re (x) such that g0 (/. N and so x (/. N + R計 (0), contradicting that
N+R計 (0) is closed. Hence Ra is upper semi-continuous.

Remark 4.2. For normed linear spaces, Theorem 10 was proved in [18]. Some more
results on the upper semicontinuity of the mapping Re given in normed linear spaces in
冏 ，were proved in metric spaces in [10].
Next theorem proves the upper semi-continuity of 縂 when Ra1 (O) is boundedly

compact (i.e., when every bounded sequence in R01 (0) has a subsequence converging to
an element of X). For normed linear spaces this result was stated in [18].

Theorem 11. IfG is a closed linear subspace of a metric linear space (X, d) such that
R計 (0) is boundedly compact, then Ra(x) is compact and Ra is upper semi-continuous
onD(Rc).

Proof. Let (gn) be an arbitrary sequence in Ra(x), i.e.,

d(gn, g)~d(x, g)

for all g E G. Then (x - 9n〉is a bounded sequence in Ra1 (0) and so, it has a subsequence
(x-gn;〉------t x-go ER計 (0) as R計 (0) is also closed by Observation 2.3 (i). Consequently,
(gn〉has a subsequence 〈9n;〉------t g。E Ra(x) and hence Ra(x) is compact.
Now suppose N is a closed subset of G and

B = {x E D(Rc): Rc(x) nN f; 0}

To show B is closed, let x be a limit point of B. Then there exists a sequence (xn〉in B
such that Xn -t x. Now Xn EB=> there exists 9n E Ra(xn) n N, n = I, 2, · · ·So

d(gn,g)~d(xn,9)
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for all g E G. This giyes Xn - 9n E Ra1(0) and is a bounded sequence as (xn〉and
(gn〉are both bounded. Since R計 (O) is boundedly compact, there is a subsequence
(Xn; - 9n;〉~x-go ER計 (0) as R計 (0) is also dosed by Observation 2.3 (i). This gives
9o E縂 (x) n N, ·1.e., x E B. Hence Ra is upper sem1-contmuous.

Remark 4.3. In case Ra is single-valued (this is so if G is co-semi-Chebyshev), The­
orem 10 and 11 give the continuity of Ra on D(R囯 and on X if G is also coproximinal.

Remark 4.4. If Rs,a(x) is the set of all those elements of G which belong to Ra(x)
strongly (we say that'g0 E Ra(x) strongly'if x (j. G and there exists an r(O < r :S 1)
such that d(go, g) + rd(go, x) :S d(x, g) for all g E G), the mapping Rs,a : x~Rs,a(x)
defined on D(Rs,a) = {x E X : Rs,a(x) # 0}, is called'strong best coapproximation
map.'For linear subspace G of normed linear spaces, Theorem 10, 11, and some other
results have been proved for Rs,a in [17].
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