QUATERNION HOMOLOGY OF BANACH SPACE

Y. GH. GOUDA AND H. N. ALAA

Abstract

In this article we are concerned with the quaternion Banach spaces and their homology. We obtain the relation between the quaternion and the dihedral homology for a unital involutive Banach algebra.

Introduction

It is well known that is there are two types of homological algebra theory; the homology theory of discrete algebras, initiated and developed by Hochschild 1945-1947 [7], [8], [9] and the homology theory of operator algebras studied by Jonson, Kadison and Ringrose [4], [5], [6]. In 1983 Connes and Tsygan [2], [14] have introduced a new type, the cyclic (co)homology of a unital algebra. The analog Banach cyclic (co)homology has been studied by Helemskii [10], Christensen and Sinclair [1] and Wodziski [15]. In 1987 Loday [13], and Krassawkas, Lapin and Solovev [12] introduced and studied the reflexive and dihedral (co)homology of involutive unital algebras. The author studied the analog reflexive and dihedral (co)homology of C^{*}-algebras [11]. The dihedral homology of algebras and its relation with quaternion homology has been studied by Loday [13]. In this article we are concerned with the quternion Banach spaces and their homology. Firstly we recall the definition and some properties of generalized quternion group.

1. Generalized Quaternion Group Q_{m}

Let $\mathbb{H I}$ be algebra of quaternions $\mathbb{R} \oplus \mathbb{R}_{i} \oplus \mathbb{R}_{j} \oplus \mathbb{R}_{k}$. For every natural number $m \geq 2$, the generalized quaternion group Q_{m} is defined as a subgroup of the multiplicative group \mathbb{H}^{*}, generated by the elements $x=e^{\pi i / m}$ and $y=j$. It is clear that the element x has order $2 m$ and the relations $y^{2}=x^{m}$ and $y x y^{-1}=x^{-1}$ are fulfilled. Hence $x^{m} y^{-1}=y x y^{-1} y x y^{-1} \cdots y x y^{-1}=x^{-m}$ and we deduce that

$$
y \cdot y^{2} \cdot y^{-1}=y^{-2}, \quad \text { i.e. } \quad x^{2 m}=y^{4}=1
$$

Thus, the cyclic subgroup C generated by the element x, is a normal subgroup and has index two in Q_{m}. It follows that the group Q_{m} itself has order $4 m$. Let us list the most important properties of the generalized quaternion group Q_{m} :

[^0](i) The group Q_{m} is given by a co-representation
$$
Q_{m}=\left\{x, y ; x^{m}=y^{2}, y x y^{-1}=x^{-1}\right\} .
$$
(ii) In the extension
$$
0 \rightarrow C \rightarrow Q_{m} \rightarrow \mathbb{Z} / 2 \rightarrow 0
$$
the generator of $\mathbb{Z} / 2$ acts on C as the multiplication by -1 .
(iii) Every element in the set Q_{m} / C has order 4.
(iv) An extension
$$
0 \rightarrow C \rightarrow Q_{m} \rightarrow \mathbb{Z} / 2 \rightarrow 0
$$
is not splittable.
Proposition 1.1. Let \mathbb{R} be a commutative ring with unit. Then there exist 4-periodic resolution of the trivial Q_{m}-module \mathbb{R} :
$$
\cdots \longrightarrow R\left[Q_{m}\right] \xrightarrow{N} R\left[Q_{m}\right] \xrightarrow{w} R\left[Q_{m}\right]^{2} \xrightarrow{v} R\left[Q_{m}\right]^{2} \xrightarrow{u} R\left[Q_{m}\right] \xrightarrow{\varepsilon} R \longrightarrow 0
$$
where ε is the natural augmentation,
\[

$$
\begin{aligned}
u & =(1-x, 1-y), v=\left[\begin{array}{ll}
T & 1+x y \\
-(1+y) & x-1
\end{array}\right], w=\left[\begin{array}{l}
1-x \\
y x-1
\end{array}\right], T=1+x+x^{2}+\cdots+x^{m-1} \\
N & =\sum_{g \in Q_{m}} g=\left(1+y^{2}+y^{3}+y\right) T
\end{aligned}
$$
\]

Proof. We use Fox's derivatives [1]. Let

$$
G=\left\{g_{1}, \ldots, g_{k} / r_{1}, \ldots, r_{\ell}\right\}
$$

be a group generated by the elements g_{1}, \ldots, g_{k} with relations r_{1}, \ldots, r_{ℓ}. The free differential $\partial r_{i} / \partial g_{j}$ of the group ring $\mathbb{Z}[G]$ is defined by:

$$
\frac{\partial(a b)}{\partial g}=\frac{\partial a}{\partial g}+a \frac{\partial b}{\partial g}, \quad \frac{\partial g}{\partial g}=1, \quad \frac{\partial h}{\partial g}=0
$$

where h is any generator of G not equal to g. Then according to Fox [1], the sequence

$$
\mathbb{Z}[G]^{\ell} \xrightarrow{v} \mathbb{Z}[G]^{k} \xrightarrow{u} \mathbb{Z}[g]^{k} \xrightarrow{\varepsilon} \mathbb{Z}, \longrightarrow 0
$$

where $\varepsilon(g)=1, u=\left(1-g_{1}, \ldots, 1-g_{k}\right), v=\left(\frac{\partial r_{i}}{\partial g_{j}}\right), 1 \leq i \leq k, \leq j \leq \ell$ is the first part of the free resolution of the trivial G-module \mathbb{Z}.

By using the Fox's derivatives of the generalized quaternion group Q_{m}, when $k=2$, $\ell=2, g_{1}=x, g_{2}=y, r_{1}=x^{m} y^{-2}, r_{2}=x y x y^{-1}$ and $u=(1-x, 1-y)$,

$$
v=\left[\begin{array}{lc}
\frac{\partial\left(x^{m} y^{-2}\right)}{\partial x} \\
\frac{\partial\left(x^{m} y^{-2}\right)}{\partial y} & \frac{\partial\left(x y x y^{-1}\right)}{\partial x} \\
\frac{\partial\left(x y x y^{-1}\right)}{\partial y}
\end{array}\right]=\left[\begin{array}{l}
1+x+\cdots+x^{m-1} 1+x y \\
-(1+y) \\
x-1
\end{array}\right]
$$

We get the following exact sequence

$$
\begin{equation*}
R\left[Q_{m}\right]^{2} \xrightarrow{v} R\left[Q_{m}\right]^{2} \xrightarrow{u} R\left[Q_{m}\right] \xrightarrow{\varepsilon} R \longrightarrow 0 . \tag{1.1}
\end{equation*}
$$

Considering in (1.1), the factor $\mathcal{H o m}_{R\left[Q_{m}\right]}\left(-, R\left[Q_{m}\right]\right)$ and modifying the Q_{m}-module structure by means of the isomorphism $f: Q_{m} \rightarrow Q_{m}, f(x)=x^{-1}, f(y)=(b y)^{-1}$ we get the exact sequence:

$$
\begin{aligned}
& \operatorname{Hom}_{R\left[Q_{m}\right]}\left(R\left[Q_{m}\right]^{2}, R\left[Q_{m}\right]\right) \stackrel{v^{*}}{\leftarrow} \operatorname{Hom}_{R\left[Q_{m}\right]}\left(R\left[Q_{m}\right]^{2}, R\left[Q_{m}\right]\right) \stackrel{u^{*}}{\leftarrow} \\
& \longleftarrow \mathcal{H o m}_{R\left[Q_{m}\right]}\left(R\left[Q_{m}\right], R\left[Q_{m}\right]\right) \stackrel{\varepsilon}{\leftarrow} \mathcal{H o m}_{R\left[Q_{m}\right]}\left(R, R\left[Q_{m}\right]\right) \longleftarrow 0 .
\end{aligned}
$$

It is easy to verify that:

$$
\begin{aligned}
u^{*} & =(1-x, 1-y)=\left[\begin{array}{l}
1-x \\
y x-1
\end{array}\right]=w \\
v^{*} & =\left[\begin{array}{ll}
T & 1+x y \\
-(1+y) & x-1
\end{array}\right]^{*}=\left[\begin{array}{ll}
T & 1+x y \\
-(1+y) & x-1
\end{array}\right]=v \quad \text { and we get }
\end{aligned}
$$

the following exact sequence:

$$
\begin{equation*}
0 \longrightarrow R \xrightarrow{\varepsilon^{*}} R\left[Q_{m}\right] \xrightarrow{w} R\left[Q_{m}\right]^{2} \xrightarrow{v} R\left[Q_{m}\right]^{2} . \tag{1.2}
\end{equation*}
$$

Since the composition $\varepsilon^{*} \circ \varepsilon$ is a homomorphism N, from (1.1) and (1.2) we get the required 4 -periodic resolution.

2. Quaternion Banach Spaces

Let $E=\otimes_{n \geq 0} E_{n}$ be a graded Banach space over the field of complex numbers \mathbb{C}. Consider the families of continuous linear maps on E :

$$
\begin{array}{r}
d_{n}^{1}: E_{n} \rightarrow E_{n-1}, \quad s_{n}^{j}: E_{n} \rightarrow E_{n+1^{\prime}} \\
\tau_{n}, \omega_{n}: E_{n} \rightarrow E_{n}, \quad 0 \leq i \leq n, 0 \leq j \leq n
\end{array}
$$

which satisfy the following conditions

$$
\begin{aligned}
d_{n}^{i} d_{n+1}^{j} & =d_{n}^{j-1} d_{n+1}^{i}, \quad i<j, \\
s_{n+1}^{i} s_{n}^{j} & =s_{n+1}^{j+1} s_{n}^{i}, \quad i \leq j, \\
d_{n}^{i} s_{n-1}^{j} & =\left\{\begin{array}{l}
s_{n-2}^{j-1} s_{n-1}^{j}, \quad i<j, \\
I d\left(E_{n-1}\right), i=j, \quad j+1, \\
s_{n-2}^{j} d_{n-1}^{i-1}, \quad i>j,
\end{array}\right. \\
d_{n}^{i} \tau_{n} & =\tau_{n-1} d_{n}^{i-1}, \quad s_{n}^{i} \tau_{n}=\tau_{n+1} s_{n}^{i+1}, \quad 1 \leq i \leq n, \\
d_{n}^{j} \omega_{n} & =\omega_{n-1} d_{n}^{n-j}, \quad s_{n}^{j} \omega_{n}=\omega_{n+1} s_{n}^{n-j}, \quad 0 \leq j \leq n, \\
\tau_{n}^{n} & =\omega_{n}^{2}, \omega_{n} \tau_{n} \omega_{n}^{-1}=\tau_{n}^{-1} .
\end{aligned}
$$

A graded Banach space $E=\oplus_{n \geq 0} E_{n}$ considered together with these families of continuous linear maps is called a quaternion Banach space. An arbitrary unital Banach algerbra A gernerates the quaternion Banach space.

Indeed, put

$$
E_{n}=A \hat{\otimes} A \hat{\otimes} A \cdots \hat{\otimes} A(n+1 \text { times }),
$$

where $\hat{\otimes}$ is the continuous tensor product in the sense of Grothendiec. Define operators:

$$
d_{n}^{i}: E_{n} \rightarrow E_{n-1}, \quad s_{n}^{j}: E_{n} \rightarrow E_{n+1}
$$

by means of the formulas

$$
\begin{aligned}
d_{n}^{i}\left(a_{0} \otimes, \ldots \otimes a_{n}\right) & =a_{0} \otimes \cdots a_{i} a_{i+1} \otimes \cdots \otimes a_{n}, \quad 0 \leq i<n \\
d_{n}^{n}\left(a_{0} \otimes, \ldots \otimes a_{n}\right) & =a_{n} a_{0} \otimes \cdots \otimes a_{n-1} \\
s_{n}^{j}\left(a_{0} \otimes, \ldots \otimes a_{n}\right) & =a_{0} \otimes \cdots \otimes a_{j} \otimes e \otimes a_{j+1} \otimes \cdots \otimes a_{n}, 0 \leq j<n \\
s_{n}^{n}\left(a_{0} \otimes, \ldots \otimes a_{n}\right) & =e \otimes a_{0} \otimes \cdots \otimes a_{n}
\end{aligned}
$$

Moreover, define the operators $\tau_{n}: E_{n} \rightarrow E_{n}, \omega_{n}: E_{n} \rightarrow E_{n}$, putting

$$
\begin{aligned}
& \tau_{n}\left(a_{0} \otimes, \ldots \otimes a_{n}\right)=(-1)^{n} a_{n} \otimes a_{0} \otimes \ldots \otimes a_{n-1} \\
& \omega_{n}\left(a_{0} \otimes, \ldots \otimes a_{n}\right)=\alpha(-1)^{\frac{n(n+1)}{2}} a_{0}^{*} \otimes a_{n}^{*} \otimes \cdots \otimes a_{1}^{*}
\end{aligned}
$$

where α is a root of the $4 \underline{\text { th }}$ degree of $1, a_{\ell}^{*}$ is the image of elements $a_{\ell} \in A$ under involution $*: A \rightarrow A$. It is easy to verify that the family so defined of Banach spaces and continuous linear maps is a quternion Banach space. In what follows we denote the quaternion Banach space by:

$$
Q(A): Q(A)_{n}=A \hat{\otimes} \cdots \hat{\otimes} A(n+1-\text { times })
$$

3. Continuous Quaternion Homology

Proposition 3.1. Let $E=\oplus_{n \geq 0} E_{n}$ be a quaternion Banach space. Put

$$
t_{n}=(-1)^{n} \tau_{n}, r_{n}=(-1)^{\frac{n(n+1)}{2}} \alpha \omega_{n}
$$

where $\alpha=1,-1, i,-i$. Then there exists a bicomplex ${ }^{\alpha} \mathcal{E}(E)$ with 4 -periodic rows:

where $u=(1-t, 1-r), v=\left[\begin{array}{ll}T & 1-t r \\ -1+r & t-1\end{array}\right], w=\left[\begin{array}{l}1-t \\ -r t-1\end{array}\right], T=1+t+\cdots+t^{n-1}$, $N=\left(1+r+r^{2}+r^{3}\right) T, b=\sum_{i=0}^{n}(-1)^{i} d^{i}, b^{\prime}=\sum_{i=0}^{n-1}(-1)^{i} d^{i}$.

Proof. This assertion follows immediately from the following:

$$
b(1-t)=(1-t) b^{\prime}, \quad b r=r b, \quad b^{\prime} d r=d r b^{\prime}, \quad b^{\prime} T=T b, \quad b^{\prime} N=N b .
$$

Definition 3.2. [3]. Let $E=\oplus_{n \geq 0} E_{n}$ be a quaternion Banach space. Define the quaternion homology of E by the formula:

$$
{ }^{\alpha} \mathcal{H} Q_{n}(E)=\mathcal{H}_{n}\left(\operatorname{Tot}^{\alpha} \mathcal{E}(E)\right)
$$

Let $E=Q_{n}(A)$, then

$$
{ }^{\alpha} \mathcal{H} Q_{n}(E)=\mathcal{H}_{n}\left(\operatorname{Tot}^{\alpha} \mathcal{E}(A)\right) .
$$

Consider now the bicomplex consisting the first four columns of the bicomplex ${ }^{\alpha} \mathcal{E}(E)$, we shall denote it by ${ }^{\alpha} P(E)$, and suppose the following exact sequence

$$
\left.0 \longrightarrow{ }^{\alpha} P(E) \longrightarrow \operatorname{Tot}^{\alpha} \mathcal{E}(E A) \xrightarrow{q} \operatorname{Tot}^{\alpha} \mathcal{E}(A)\right) \longrightarrow 0
$$

Following [13] the homology of the complex ${ }^{\alpha} P(E)$ is a periodic and given by:

$$
{ }^{\alpha} \mathcal{H} P_{n}(E)=\mathcal{H}_{n}\left(\operatorname{Tot}^{\alpha} P(E)\right)
$$

Since the bicomplex ${ }^{\alpha} \mathcal{E}(E)$ has 4 -periodic rows, we get the following exact sequence relating the periodic homology with quternion homology.

Theorem 3.3. There exists the exact sequence

$$
\begin{align*}
& \longrightarrow^{\alpha} \mathcal{H} P_{n}(E) \longrightarrow^{\alpha} \mathcal{H} Q_{n}(E) \longrightarrow^{\alpha} \mathcal{H} Q_{n-4}(E) \longrightarrow \\
& \longrightarrow^{\alpha} \mathcal{H} P_{n-1}(E) \longrightarrow^{\alpha} \mathcal{H} Q_{n-1}(E) \longrightarrow \longrightarrow^{\alpha} \mathcal{H} Q_{n-5}(E) \longrightarrow \tag{2.1}
\end{align*}
$$

Following [12], the relation between ${ }^{\alpha} \mathcal{H} P_{n}(E)$ and the dihedral homology is given by:

$$
\begin{align*}
& \longrightarrow^{\alpha} \mathcal{H} P_{n}(E) \longrightarrow^{\alpha} \mathcal{H} D_{n}(E) \longrightarrow^{\alpha} \mathcal{H} D_{n-4}(E) \longrightarrow \\
& \longrightarrow^{\alpha} \mathcal{H} P_{n-1}(E) \longrightarrow^{\alpha} \mathcal{H} D_{n-1}(E) \longrightarrow \longrightarrow^{\alpha} \mathcal{H} D_{n-5}(E) \longrightarrow \tag{2.2}
\end{align*}
$$

Comparing the relations (3.1) and (3.2) we get the relation between dihedral and quternion homology in the following.

Proposition 3.4. There exist the following natural isomorphism:

$$
\begin{array}{r}
{ }^{1} \mathcal{H} Q_{n}(A) \cong{ }^{1} \mathcal{H} d_{n}(A), \\
{ }^{-1} \mathcal{H} Q_{n}(A) \cong{ }^{-1} \mathcal{H} D_{n}(A),
\end{array}
$$

Similarly, one can define a quaternion cohomology for an unital Banach algebra with an involution and get the results.

References

[1] E. Christensen and A. M. Sinclair, On the vanishing of $H^{n}\left(A, A^{*}\right)$ for certain c^{*}-algebras, Pasific J. of Math. 137(1989), 55-63.
[2] A. Connes, Cohomologie cyclique et functeur EXT ${ }^{n}$, C. R. Acad. Sci. Paris. Ser. A., 296(1983), 953-958.
[3] R. M. Fox, Free differential calculus, Ann. Math., 57 (1953), 547-560.
[4] B. E. Johnson, Cohomology of operator algebras, Memoirs Amer. Math. Soc. (1972).
[5] B. E. Johnson, J. R. Kadison and J. R. Ringrose, Cohomology of operator algebras I. Type I von Neumann algebras, Acta Math. 126 (1971), 227-243.
[6] B. E. Johnson, J. R. Kadison and J. R. Ringrose, Cohomology of operator algebras III. Reduction to normal cohomology, Bull. Soc. Math. France 100(1972), 73-96.
[7] G. Hochschild, On the cohomology groups of an associative algebra, Ann. of Math. 46(1945), 58-67.
[8] -, On the cohomology theory for associative algebra, Ann. of Math. 47(1946), 568-579.
[9] - Cohomology and representaions of associative algebra, Duke Math. J. 14(1947), 921948.
[10] - Banach cyclic (co)homology as Banach derived function, St. Petersburg Math. J. 3(1992), 1149-1164.
[11] Y. Gh. Gouda, The homology with inner symmetry of C^{*}-algebra, Ph. D. thesis, Moscow State University, 1993.
[12] R. L. Kpasauskas, S. V. Lapen and Yu. P. Solovev, Dihedral homology and cohomology, Basic conception and constructions, Math. Sbornik. 133 (1987), 25-48.
[13] J-L. Loday, Homologie dihedrale et quaternionique, Advances in Math. 66 (1987), 119-148.
[14] B. Tsygan, The lie algebra of matrices and Hochschild homology, YMH. 38 (1983), 217-218 (in Russian).
[15] M. Wodzicki, Vanishing of cyclic homology of stable C^{*}-algebras, C. R. Acad. Sci. Paris 307 (1988), 329-334.

Department of Math., Faculty of Science, South Valley Univ., Aswan, Egypt.

[^0]: Received December 15, 1997.
 1991 Mathematics Subject Classification. Primary 55N91; Secondary 55P91, 55Q91.
 Key words and phrases. Dihedral homology, quaternion homology, Banach spaces, homology.

