AN OSCILLATION THEOREM FOR A NEUTRAL DIFFERENCE EQUATION WITH POSITIVE AND NEGATIVE COEFFICIENTS

WAN-TONG LI* AND SUI SUN CHENG

Abstract. An oscillation criterion is derived which supplements the oscillation theorems dervied in [1].

In [1], comparison and oscillation theorems are derived for a class of neutral type difference equations with positive and negative coefficients

$$
\begin{equation*}
\Delta\left(x_{n}-r_{n} x_{n-\xi}\right)+p_{n} x_{n-\tau}-q_{n} x_{n-\sigma}=0, \quad n=0,1,2, \ldots, \tag{1}
\end{equation*}
$$

where ξ is a positive integer, τ and σ are positive integers such that $\tau>\sigma,\left\{r_{n}\right\}_{n=0}^{\infty}$ is a real sequence, and $\left\{p_{n}\right\}_{n=0}^{\infty}$ as well as $\left\{q_{n}\right\}_{=0}^{\infty}$ are nonnegative sequences.

In this note, we will assume in addition, and also throughtout the sequel, that $\left\{r_{n}\right\}$ and $\left\{p_{n}-q_{n-\tau+\sigma}\right\}$ are eventually nonnegative and the latter sequence has a positive subsequence, and derive another oscillation theorem which supplements those in [1]. For the sake of brevity, preparatory definitions and material in [1] will not be repeated here. Lemma 1 in [1] will be assumed: In a ddition to the assumptions on (1), assume further that

$$
\begin{equation*}
r_{n}+\sum_{i=n-\tau+\sigma}^{n-1} q_{i} \leq 1 \tag{2}
\end{equation*}
$$

holds for all large n, then for any eventually positive solution $\left\{x_{n}\right\}$ of (1), the sequence $\left\{z_{n}\right\}$ defined by

$$
\begin{equation*}
z_{n}=x_{n}-r_{n} x_{n-\xi}-\sum_{i=n-\tau+\sigma}^{n-1} q_{i} x_{i-\sigma}, \quad n \geq 0 \tag{3}
\end{equation*}
$$

will satisfy $z_{n}>0$ and $\Delta z_{n} \leq 0$ for large n. Here and in the sequel, we adopt the convention that empty sums are equal to zero. We will also make use of the following [1, Corollary 1] in the later two corollaries: in addition to the assumptions imposed on (1), assume further that $r_{n}>0$ for all large n. Then every solution of (1) oscillates if, and only if, every solution of the following functional inequality

$$
\Delta\left(x_{n}-r_{n} x_{n-\xi}\right)+p_{n} x_{n-\tau}-q_{n} x_{n-\sigma} \leq 0, \quad n=0,1,2, \ldots
$$

[^0]oscillates.
Lemma 1. Suppose
\[

$$
\begin{equation*}
r_{n}+\sum_{i=n-\tau+\sigma}^{n-1} q_{i} \geq 1 \tag{4}
\end{equation*}
$$

\]

for all large n. Suppose further that

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left[p_{n}-q_{n-\tau+\sigma}\right] \exp \left\{\frac{1}{\mu} \sum_{j=0}^{n} j\left(p_{j}-q_{j-\tau+\sigma}\right)\right\}=\infty \tag{5}
\end{equation*}
$$

where $\mu=\max \{\xi, \tau\}>0$. Then for any eventually positive solution $\left\{x_{n}\right\}$ of (1), the sequence $\left\{z_{n}\right\}$ defined by (3) satisfies $z_{n}<0$ and $\Delta z_{n} \leq 0$ for all large n.

Proof. Suppose $\left\{x_{n}\right\}$ is an eventually positive solution of (1). In view of (1),

$$
\Delta z_{n}=-\left(p_{n}-q_{n-\tau+\sigma}\right) x_{n-\tau}
$$

for all large n. Since $\left\{p_{n}-q_{n-\tau+\sigma}\right\}$ is eventually nonnegative and has a positive subsequence, we see further that $\left\{z_{n}\right\}$ is either eventually nonpositive or eventually negative. Suppose to the contrary that $\left\{z_{n}\right\}$ is eventually positive, then there is some integer T such that $x_{n}>, z_{n}>0$ and $\Delta z_{n} \leq 0$ for $n \geq T-\max \{\xi, \tau, \sigma\}$. Let $\mu=\max \{\xi, \tau\}$ and $\kappa=\min \{\xi, \sigma\}$. Then in view of (3), for $T \leq n \leq T+\mu$,

$$
x_{n} \geq M\left\{r_{n}+\sum_{i=n-\tau+\sigma}^{n-1} q_{i}\right\} \geq M,
$$

where

$$
M=\min \left\{x_{T-\mu}, x_{T-\mu+1}, \ldots, x_{T}\right\}>0
$$

and by induction,

$$
x_{n} \geq M, T+(k-1) \mu \leq n \leq T+k \mu,
$$

for each $k=1,2, \ldots$. In other words, $x_{n} \geq M$ for $n \geq T-\mu$.
Next, in view of (3), for $n \geq t+\mu$,

$$
\begin{aligned}
x_{n} & =z_{n}+r_{n} x_{n-\xi}+\sum_{i=n-\tau+\sigma}^{n-1} q_{i} x_{i-\sigma} \\
& \geq z_{n}+\left(r_{n}+\sum_{i=n-r+\sigma}^{n-1} q_{i}\right) \min _{n-\mu \leq t \leq n-\kappa} x_{t} \\
& \geq z_{n}+\min _{n-\mu \leq t \leq n-\kappa} x_{t} \geq z_{n}+\min _{n-\mu \leq t \leq n} x_{t} .
\end{aligned}
$$

Let $[x]$ be the greatest integral part of the number x and let $N(n)=[n / \mu]$. Then by applying the same arguments, we see further that

$$
\begin{aligned}
x_{n} \geq & z_{n}+\min _{n-\mu \leq t \leq n} x_{t} \\
\geq & z_{n}+\min _{n-\mu \leq t_{1} \leq n}\left\{z_{t}+\min _{t-\mu \leq t_{1} \leq t} x_{s}\right\} \\
\geq & z_{n}+\min _{n-\mu \leq t_{1} \leq n} z_{t_{1}}+\min _{n-\mu \leq t_{1} \leq n}\left\{\min _{t_{1}-\mu \leq t_{2} \leq t_{1}} z_{t_{2}}\right\}+\cdots \\
& +\min _{n-\mu \leq t_{1} \leq n}\left\{\cdots \left\{\begin{array}{l}
\left.\left.\min _{t_{N(n-T)-2}-\mu \leq t_{N(n-T)-1} \leq t_{N(n-T)-2}} z_{t_{N(n-T)-1}}\right\}\right\} \\
\\
\end{array}+\min _{n-\mu \leq t_{1} \leq n}\left\{\cdots \left\{\begin{array}{l}
\\
\min _{N(n-T)-1} \leq t_{N(n-T)} \leq t_{N(n-T)-1} \\
\left.\left.x_{t_{N(n-T)}}\right\}\right\} .
\end{array}\right.\right.\right.\right.
\end{aligned}
$$

Hence when $t_{N(n-T)} \geq T$, from the monotonicity of the sequence $\left\{z_{n}\right\}$, we see that

$$
x_{n} \geq N(n-T) z_{n}+M, \quad n \geq T+\mu
$$

But then

$$
\begin{aligned}
0 & =\Delta z_{n}+\left(p_{n}-q_{n-\tau+\sigma}\right) x_{n-\tau} \\
& \geq \Delta z_{n}+\left(p_{n}-q_{n-\tau+\sigma}\right)\left(N(n-\tau-T) z_{n-\tau}+M\right) \\
& \geq \Delta z_{n}+\left(1-\exp \left(-\left(p_{n}-q_{n-\tau+\sigma}\right) N(n-\tau-T)\right)\right) z_{n-\tau}+\left(p_{n}-q_{n-\tau+\sigma}\right) M
\end{aligned}
$$

for n, say, greater than or equal to $T+\mu$, where we have used the fact that $e^{x} \geq 1+x$ in deriving the last inequality. If we multiply the above inequality by the "integrating factor" (cf. [5, Theorem 1])

$$
\exp \left(\sum_{i=T+\tau}^{n}\left(p_{i}-q_{i-\tau+\sigma}\right) N(i-\tau-T)\right)
$$

we obtain

$$
\begin{aligned}
& \Delta\left\{z_{n} \exp \left(\sum_{i=T+\tau}^{n-1}\left(p_{i}-q_{i-\tau+\sigma}\right) N(i-\tau-t)\right)\right\} \\
& +M\left(p_{n}-q_{n-\tau-\sigma}\right) \exp \left(\sum_{i=T+\tau}^{n}\left(p_{i}-q_{i-\tau+\sigma}\right) N(i-\tau-T)\right) \leq 0
\end{aligned}
$$

for $n \geq T+\tau$. Summing the above functional inequality from $T+\tau$ to n, we obtain

$$
\begin{aligned}
z_{T+\tau} \geq & z_{n+1} \exp \left(\sum_{i=T+\tau}^{n}\left(p_{i}-q_{i-\tau+\sigma}\right) N(i-\tau-T)\right) \\
& +M \sum_{j=T+\tau}^{n}\left(p_{j}-q_{j-\tau+\sigma}\right) \exp \left(\sum_{i=T+\tau}^{j}\left(p_{i}-q_{i-\tau+\sigma}\right) N(i-\tau-T)\right) \geq 0
\end{aligned}
$$

By letting n tend to infinity, we see that

$$
\sum_{j=T+\tau}^{\infty}\left(p_{j}-q_{i-\tau+\sigma}\right) \exp \left(\sum_{i=T+\tau}^{j}\left(p_{i}-q_{i-\tau+\sigma}\right) N(i-\tau-T)\right)<\infty .
$$

we see finally that

$$
\sum_{j=T+\tau}^{\infty}\left[p_{j}-q_{j-\tau+\sigma}\right] \exp \left\{\frac{1}{\mu} \sum_{i=T+\tau}^{j} i\left(p_{i}-q_{i-\tau+\sigma}\right)\right\}<\infty .
$$

This is contrary to (5). The proof is complete.

Theorem 1. Suppose

$$
\begin{equation*}
r_{n}+\sum_{i=n-\tau+\sigma}^{n-1} q_{i}=1 \tag{6}
\end{equation*}
$$

for all large n. Suppose further that (5) holds. Then every solution of (1) oscillates.
Indeed, recall that under the condition that (2) holds for all large n, for every eventually positive solution $\left\{x_{n}\right\}$ of (1), the sequence $\left\{z_{n}\right\}$ defined by (3) is eventually positive. But this is contrary to the conclusion of Lemma 1 here. Thus (1) cannot have any eventually positive, nor any eventually negative, solutions.

As an example, consider the equation

$$
\Delta\left(x_{n}-(1-\alpha) x_{n-1}\right)+\left(\alpha+\frac{1}{n^{\beta}}\right) x_{n-2}-\alpha x_{n-1}=0
$$

where $\mu=\max \{\xi, \tau\}=2,0<\alpha<1$, and $3 / 2<\beta<2$. Take $r_{n}=1-\alpha, p_{n}=\alpha+1 / n^{\beta}$ and $q_{n}=\alpha$, then (6) is satisfied for all large n. Furthermore, since

$$
\sum_{j=1}^{k} \frac{1}{j^{\beta-1}} \geq \int_{2}^{k+1} \frac{d x}{x^{\beta-1}}=\frac{1}{(2-\beta)(k+1)^{\beta-2}}-\frac{1}{(2-\beta) 2^{\beta-2}}
$$

and

$$
\exp \left(\sum_{j=1}^{k} \frac{1}{j^{\beta-1}}\right) \geq \exp \left(\frac{-1}{(2-\beta) 2^{\beta-2}}\right) \exp \left(\frac{1}{(2-\beta)(n+1)^{\beta-2}}\right)
$$

as well as

$$
\int_{1}^{\infty} \frac{1}{x^{\beta}} \exp \left(\frac{1}{(2-\beta) x^{\beta-2}}\right) d x=\infty
$$

by means of the integral test, we see that

$$
\begin{aligned}
& \sum_{k=1}^{\infty}\left[p_{k}-q_{k-\tau+\sigma}\right] \exp \left\{\frac{1}{\mu} \sum_{j=1}^{k} j\left(p_{j}-q_{j-\tau+\sigma}\right)\right\} \\
= & \sum_{k=1}^{\infty} \frac{1}{k^{\beta}} \exp \left(\frac{1}{2} \sum_{j=1}^{k} \frac{1}{j^{\beta-1}}\right)=\infty .
\end{aligned}
$$

This shows that condition (5) is satisfied. All the assumptions in Theorem 1 are satisfied and hence all solutions oscillate. But he results in $[1,4]$ are not applicable when $3 / 2<$ $\beta<2$. This is because for such a β,

$$
\begin{aligned}
& \sum_{n=2}^{\infty} n\left(p_{n}-q_{n-\tau+\sigma}\right) \sum_{k=n}^{\infty}\left(p_{k}-q_{k-\tau+\sigma}\right)=\sum_{n=2}^{\infty} \frac{1}{n^{\beta-1}} \sum_{k=n}^{\infty} \frac{1}{k^{\beta}} \\
\leq & \sum_{n=2}^{\infty} \frac{1}{n^{\beta-1}} \int_{n-1}^{\infty} \frac{d t}{t^{\beta}}=\sum_{n=2}^{\infty} \frac{1}{(\beta-1)(n(n-1))^{\beta}-1}<\infty .
\end{aligned}
$$

In case (4) is not satisfied for all large n, we may try to apply the following two results.

Corollary 1. Suppose (2) holds for all large n. Suppose further that (5) holds and that

$$
\begin{equation*}
r_{n-\tau}\left(p_{n}-q_{n-\tau+\sigma}\right) \geq\left(p_{n-\xi}-q_{n-\xi-\tau+\sigma}\right) \tag{7}
\end{equation*}
$$

for all large n. Then equation (1) is oscillatory.
Proof. Suppose to the contrary that $\left\{x_{n}\right\}$ is an eventually positive solution of (1). Then by means of Lemma 1 in [1], the sequence $\left\{z_{n}\right\}$ defined by (3) will satisfy $z_{n}>0$ for all large n. In view of (1), we have

$$
\begin{aligned}
\Delta z_{n} & =-\left(p_{n}-q_{n-\tau+\sigma}\right) x_{n-\tau} \\
& =-\left(p_{n}-q_{n-\tau+\sigma}\right)\left\{z_{n-\tau}+r_{n-\tau} x_{n-\xi-\tau}+\sum_{i=n-\tau+\sigma}^{n-1} q_{i-\tau} x_{i-\tau-\sigma}\right\}
\end{aligned}
$$

so that

$$
\Delta z_{n}+\left(p_{n}-q_{n-\tau+\sigma}\right) z_{n-\tau}+r_{n-\tau}\left(p_{n}-q_{n-\tau+\sigma}\right) x_{n-\xi-\tau} \leq 0
$$

In view of (1) again, we also have

$$
\Delta z_{n-\xi}+\left(p_{n-\xi}-q_{n-\xi-\tau+\sigma}\right) x_{n-\tau-\xi}=0
$$

Subtracting the latter equation from the former, we obtain

$$
\begin{aligned}
& \Delta\left(z_{n}-z_{\xi}\right)+\left(p_{n}-q_{n-\tau+\sigma}\right) z_{n-\tau} \\
\leq & \left\{\left(p_{n-\xi}-q_{n-\xi-\tau+\sigma}\right)-r_{n-\tau}\left(p_{n}-q_{n-\tau+\sigma}\right)\right\} x_{n-\tau-\xi} \leq 0,
\end{aligned}
$$

which implies that $\left\{z_{n}\right\}$ is an eventually positive solution of the recurrence relation

$$
\Delta\left(z_{n}-z_{n-\xi}\right)+\left(p_{n}-q_{n-\tau+\sigma}\right) z_{n-\tau} \leq 0
$$

By Corollary 1 in [1] mentioned above, we see that the equation

$$
\Delta\left(z_{n}-z_{n-\xi}\right)+\left(p_{n}-q_{n-\tau+\sigma}\right) z_{n-\tau}=0
$$

has an evntually positive solution. This is contrary to Theorem 3 .
Corollary 2. Suppose that the conditons (4) and (5) in Lemma 1 hold, that $\left\{q_{n} /\left(p_{n}-\right.\right.$ $\left.\left.q_{n-\tau+\sigma}\right)\right\}$ is eventually nondecreasing, that

$$
\begin{equation*}
h_{1}\left(p_{n-\xi}-q_{n-\tau-\xi+\sigma}\right) \geq r_{n-\tau}\left(p_{n}-q_{n-\tau+\xi}\right), \quad h_{1}>0 \tag{8}
\end{equation*}
$$

and that

$$
\begin{equation*}
q_{n-\tau}\left(p_{n}-q_{n-\tau+\sigma}\right) \leq h_{2}\left(p_{n-\sigma}-q_{n-\tau}\right) \tag{9}
\end{equation*}
$$

for all large n, where $h_{1}+h_{2}(\tau-\sigma)=1$. Then every solution of (1) oscillates.
Indeed, suppose to the contrary that $\left\{x_{n}\right\}$ is an eventually positive solution of (1), then by Lemma 1 , we see that the sequence $\left\{z_{n}\right\}$ defined by (3) will satisfy $z_{n}<0$ for all large n. Furthermore, in view of (8) and (9), we get

$$
\begin{aligned}
\Delta z_{n}= & -\left(p_{n}-q_{n-\tau+\sigma}\right) x_{n-\tau} \\
= & -\left(p_{n}-q_{n-\tau+\sigma}\right)\left[z_{n-\tau}+r_{n-\tau} x_{n-\xi-\tau}+\sum_{i=n-\tau+\sigma}^{n-1} q_{i-\tau} x_{i-\sigma-\tau}\right] \\
\geq & -\left(p_{n}-q_{n-\tau+\sigma}\right) z_{n-\tau}-h_{1}\left(p_{n-\xi}-q_{n-\tau+\sigma-\xi}\right) x_{n-\xi-\tau} \\
& -\left(p_{n}-q_{n-\tau+\sigma}\right) \sum_{i=n-\tau+\sigma}^{n-1} \frac{q_{i-\tau}}{p_{i-\sigma}-q_{i-\tau}}\left(-\Delta z_{i-\sigma}\right) \\
\geq & \left(p_{n}-q_{n-\tau+\sigma}\right) z_{n-\tau}+h_{1} \Delta z_{n-\xi}+h_{2} \sum_{i=n-\tau+\sigma}^{n-1} \Delta z_{i-\sigma} \\
= & -\left(p_{n}-q_{n-\tau+\sigma}+h_{2}\right) z_{n-\tau}+h_{2} z_{n-\sigma}+h_{1} \Delta z_{n-\xi}
\end{aligned}
$$

so that

$$
\Delta\left(z_{n}-h_{1} z_{n-\xi}\right)+\left(p_{n}-q_{n-\tau+\sigma}+h_{2}\right) z_{n-\tau}-h_{2} z_{n-\sigma} \geq 0
$$

for all large n. This shows that $\left\{-z_{n}\right\}$ is an eventually positive solution of the inequality

$$
\Delta\left(z_{n}-h_{1} z_{n-\xi}\right)+\left(p_{n}-q_{n-\tau+\sigma}+h_{2}\right) z_{n-\tau}-h_{2} z_{n-\sigma} \leq 0
$$

By Corollary 1 in [1] mentioned above, we see that the equation

$$
\Delta\left(z_{n}-h_{1} z_{n-\xi}\right)+\left(p_{n}-q_{n-\tau+\sigma}+h_{2}\right) z_{n-\tau}-h_{2} z_{n-\sigma}=0
$$

has an eventually positive solution. This is contrary to the conclusion of Lemma 1.
As our final example, consider the equation

$$
\Delta\left(x_{n}-\frac{n+2}{2(n+1)} x_{n-1}\right)+\left(\frac{1}{2}+\frac{1}{n^{\beta}}\right) x_{n-2}-\frac{1}{2} x_{n-1}=0
$$

Since $r_{n}=(n+2) /(2 n+2), p_{n}=1 / 2+1 / n^{\beta}, q_{n}=1 / 2, \xi=\sigma=1, \tau=2$, we see that

$$
r_{n}+\sum_{i=n-\tau+\sigma}^{n-1} q_{i}=\frac{n+2}{2(n+1)}+\frac{1}{2} \geq 1
$$

If we take $h_{1}=1 / 2$ and $h_{2}=1 / 2$, then

$$
\begin{aligned}
h_{1}+h_{2}(\tau-\sigma) & =1, \\
h_{1}\left(p_{n-\xi}-q_{n-\tau-\xi-\sigma}\right) & =\frac{1}{2(n-1)^{\beta}}, \\
r_{n-\tau}\left(p_{n}-q_{n-\tau-\sigma}\right) & =\frac{1}{2(n-1) n^{\beta-1}}, \\
q_{n-\tau}\left(p_{n}-q_{n-\tau+\sigma}\right) & =\frac{1}{2 n^{\beta}},
\end{aligned}
$$

and

$$
h_{2}\left(p_{n-\sigma}-q_{n-\tau}\right)=\frac{1}{2(n-1)^{\beta}} .
$$

Thus the assumptions (4), (8) and (9) in Corollary 2 are satisfied for all large n when $1<\beta<2$. Furthermore, as already seen in the previous example, condition (5) is satisfied. Hence all its solutions oscillate. The same conclusion cannot be drawn form those in [1,4] when $3 / 2<\beta<2$.

References

[1] W. T. Li and S. S. Cheng, On a neutral difference equation with positive and negative coefficients, Southeast Asia Bull. Math., to appear.
[2] J. S. Yu and Z. C. Wang, Asymptotic behavior and oscillation in neutral dealy difference equations, Funcialaj Ekvacioj 37 (1994), 241-248.
[3] G. Zhang and S. S. Cheng, Oscillation criteria for a neutral difference equation with delay, Appl. Math. Lett. 8 (1995), 13-17.
[4] M. P. Chen and B. G. Zhang, Oscillation and comparison theorems of difference equations with positive and negative coefficients, Bull. Institute of Math. Acad. Sinica 22 (1994), 295-306.
[5] G. Zhang and S. S. Cheng, Elementary non-existence criteria for a recurrence relation, Chinese J. Math. 24 (1996), 229-235.

Institute of Applied Mathematices, Gansu University of Technology, Lanzhou, Gansu, 730050, P. R. China.

Department of Mathematics, Tsing Hua University, Hsinchu, Taiwan 30043, R.O.C.

[^0]: Received May 28, 1998.
 1991 Mathematics Subject Classification. 39A10.
 Key words and phrases. Neutral difference equation, oscillatory theroem.

 * Supported by the Science Foundation of Gansu University of Technology.

