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ON THE ABSOLUTE SUMMABILITY FACTORS OF TYPE (4,B)

HIKMET SEYHAN

Abstract. In this paper we establish a relation between the ¢ — |N, p,;8|x and 3 — IN, ¢n;68]x
summability methods, which generalizes a result of Mishra [2].

1. Introduction

Let () be a sequence of positive real numbers and let Y a,, be a given infinite series
with the sequence of partial sums (5n)- Let (p,) be a sequence of positive real numbers
such that

n
Po=) p,—00 as n— oo, (Pi=py=0i>1. (1)
v=0

The sequence-to-sequence transformation

1>
ln = 1__—,; Zpusv (2)

v=0

defines the sequence (¢,) of the (N, p,) means of the sequence (s,), generated by the
sequence of coefficients (p,).
The series )" ay, is said to be summable IV, alk, k > 1, if (see [1])

[ee)

Z(Pn/pn)k—lltn - tn-—llk < 0 (3)

n=1

and it is said to be summable ¢ — IN,Pn; 8|k, k> 1and 6 > 0, if (see [3])

(o0
Ot =t 1]* < co. (4)
1

n=

If we take § = 0 and ¢,, = %’ then ¢ — |N, p,; d|x summability is the same as [N, Dk
summability.
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If 3" anA, is summable by a method B whenever > a, is summable by a method A,

then we say that the factor A, is of type (A, B) and write

An € (A, B). (5)

2. The Following Theorem Is Known

Theorem A.([2]) Let the sequences (p,) and (g.) be such that p, > 0, g, > 0,
Pn_>00, Qn—)OO and

Pn/pn = O(Qn/tn)- (6)
Then in order that ) )
An € (IN, gnlk, [N, pn, k), k21 (7)
it is sufficient that
An = O(qnPr/pn@n) (8)
and
PrQn-18An + (gnPrn — PrQn)An = O(qnPn), 9)

where A, = A — Ang1-

3. The Object of This Paper is to Generalize Above Theorem in the Following
Form "

Theorem. Let k > 1 and 0 < 6 < 1/k. Let (¢,) and (¥,) be sequences of positive
numbers such that

¢n = O(¢n). (10)

Let the sequences (pn) and (q) be such that p, >0, ¢, > 0, P, — 00, Q, — 0o and (6)
s satisfied. If

S e - 01 wi’“*’“‘lpﬁ‘l} (11)
naviy Eabn-1 Py ’ |
then in order that
An € (¥ =N, ¢n; 8]k, 0 — [N, pn; 8lk), (12)

it is sufficient that the conditions (8) and (9) hold.

It may be remarked that, in this thorem, if we take § = 0, ¢,, = -57" for o —|N, pn; 8|

and o =0, 2, = %‘— for ¢ — |N, qn; |k, then we get Theorem A. In this case condition
(11) reduces to

— _ Pn 1

Z PnPn—l - O(Fv)

n=v+1

- which always holds.
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4. Proof of the Theorem

Let

(0]

Iy Qn ZQUSv = = Z(Qn — Qu-1)a,. (13)

v=0 ™ y=0

Write T,, — T, — § == by (write T 4 0) 8o that 1., = bo + b1 + ba + - + b,. Thus
we suppose that in seies form the (N, q,) transform of 2. Gy is Y b,. In a similar way
suppose that in series form the (N,p,) transform of 3" a, ), is > ¢n. Now we have for
n>1

n QnQn IZQU 1y (14)

which gives

Qn——2

dn—1

an*( )b il |

)bn-—l- (15)

Replacing a, by a,\, and interchangmg p, P with ¢, Q we have for n > 1

Cn P Pn i ZP’U lav (16)

Substituting (15) in (16), we get

'v—l)‘v((Qv/Qv)bv - (QU—Z/QU—I)bv—l)

Cpn =
n-—1

Zb /Qv v— le PUQU—I/\U+1) +(ann/QnPn))\nbn
P Pn Brear

Zb [0 (PuQu-1A% + (00Py = PvQu)Ao) + (92 Qi /g Pa) Anby (17)

v=1

By Pn e

Now using (8) and (9) in (17) we have

B =l

Pnpn =1 ZbP +() 'n
=0(Ch1) + ()(an)

By Holder’s inequality we get
n-1 n—1
{Z |by| P} < Z{’b Ikpk/p 1}{va}kﬁl
=1

n—1

ER Zlb FPE i



62 HIKMET SEYHAN

so that

(5k+k 1 C 5k+k 1

< Z(pék-i—k 1 Pkpn_ Z Ib IlcPk/pk 1

eg dk+k k
N Z by [F P /1 2
v v v Prlan—l
v=1 . n=v+1 ;

= O{)_ ik+k-1ip, ¥}
=1

- O{i ¥ 5718, *} (by (10) and by (11))

v=1
< 0.

Now, in view of (4) we have

Z(pék-#k IICn,2|k O{Z¢6k+k llbn[k}

= O{3 1,4} (by (10)
n=1

< 00,

by the assumption that 3.ty is summable Y —|N,gn; 8 |k- This completes the proof of
Theorem.
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