A GENERAL METHOD FOR CONSTRUCTING REGULAR SUMMATION MATRIX

YIN DONGSHENG

Abstract

This note gives a general method for constructing regular summation matrix, specially, from which one can obtain the results of [2] naturally.

Denote $N=\{0,1,2, \ldots\}$.
$A=\left(a_{n k}\right), n, k \in N$, is a lower infinite triangular matrix, i.e., $a_{n k}=0$ if $k>n$. For sequence $\left\{S_{n}\right\}$, define $\left\{S_{n}^{A}\right\}: S_{n}^{A}:=\sum_{k=0}^{n} a_{n k} S_{k}, n \in N$, we will say that $\left\{S_{n}\right\}$ is summable with sum s by the method defined by A, if $\lim _{n \rightarrow \infty} S_{n}^{A}=s$. If the summation method defined by A is regular, viz., $S_{n} \rightarrow s$ implies $S_{n}^{A} \rightarrow s$, then, for simplicity, we call A regular summation matrix.

Theorem. If three functions $F(n, i), Q(n, i), \lambda(k)$ satisfy
(1) $F(n, n+1)=0$;
(2) $Q(n, i) \neq 0$ and $Q(n, i) \rightarrow \infty(n \rightarrow \infty)$;
(3) $F(n, i) / Q(n, i)$ and $D(n, k):=Q(n, k+1) \lambda(k)-F(n, k+1) \lambda(k+1)$ are bounded functions of n;
(4) $\lambda(0)=1$, define

$$
\begin{gathered}
\prod_{i=1}^{0} F(n, i):=\prod_{i=1}^{0} Q(n, i):=1, \text { and denote } \\
C_{n k}:=\left[\prod_{i=1}^{k} \frac{F(n, i)}{Q(n, i)}\right]\left[\lambda(k)-\frac{F(n, k+1)}{Q(n, k+1)} \lambda(k+1)\right],
\end{gathered}
$$

where, n, i, k all $\in N$, then, $\left(C_{n k}\right)$ is a regular summation matrix.
Proof.

$$
\begin{aligned}
\sum_{k=0}^{n} C_{n k} & =\sum_{k=0}^{n}\left[\lambda(k) \prod_{i=1}^{k} \frac{F(n, i)}{Q(n, i)}-\lambda(k+1) \prod_{i=1}^{k+1} \frac{F(n, i)}{Q(n, i)}\right] \\
& =\lambda(0) \prod_{i=1}^{0} \frac{F(n, i)}{Q(n, i)}-\lambda(n+1) \prod_{i=1}^{n+1} \frac{F(n, i)}{Q(n, i)}
\end{aligned}
$$

Received July 20, 1998.
1991 Mathematics Subject Classification. 40A05, 40C99, 40D05
Key words and phrases. Regular summation matrix, Toeplitz theorem.

$$
\begin{aligned}
& =1,\left(\text { according to }(1),(4) \text { and the definition of } \prod_{1}^{0}\right) \\
\lim _{n \rightarrow \infty} C_{n k} & =\lim _{n \rightarrow \infty}\left[\prod_{i=1}^{k} \frac{F(n, i)}{Q(n, i)}\right] \frac{Q(n, k+1) \lambda(k)-F(n, k+1) \lambda(k+1)}{Q(n, k+1)} \\
& =\lim _{n \rightarrow \infty} \frac{1}{Q(n, k+1)}\left[D(n, k) \prod_{i=1}^{k} \frac{F(n, i)}{Q(n, i)}\right] \\
& =0,(\text { according to }(2) \text { and }(3))
\end{aligned}
$$

Namely, $\left(C_{n k}\right)$ satisfies the conditions of the well-known Toeplitz theorem ${ }^{[1]}$, So, $\left(C_{n k}\right)$ is a regular summation matrix. If one want to construct a concrete regular summation matrix, he(she) can first choose two functions $F(n, i)$ and $\mathrm{Q}(\mathrm{n}, \mathrm{i})$ which satisfy the conditions of above theorem, then determines $\lambda(k)$ of above theorem by using the second part of (3).

Example 1. Take $F(n, i)=r-r q^{n-i+1}, Q(n, i)=\mu(n, i)-q^{n+c}$, where, r, q, c, are real numbers, and $r \neq 0, q>1, \mu(n, i)$ is a bounded function of n (for all $i \in N$) with $\mu(n, i) \neq q^{n+c}$. Obviously, $F(n, i), Q(n, i)$ meet the requirements of above theorem.

$$
\begin{aligned}
D(n, k) & =Q(n, k+1) \lambda(k)-F(n, k+1) \lambda(k+1) \\
& =\lambda(k)\left[\mu(n, k+1)-q^{n+c}\right]-\lambda(k+1)\left(r-r q^{n-k}\right) \\
& =[\lambda(k) \mu(n, k+1)-r \lambda(k+1)]+q^{n}\left[r \lambda(k+1) q^{-k}-\lambda(k) q^{c}\right]
\end{aligned}
$$

is a bounded function of $n \Rightarrow r \lambda(k+1) q^{-k}-\lambda(k) q^{c}=0 \Rightarrow \lambda(k+1)=\frac{1}{r} \lambda(k) q^{k+c}$, $\lambda(0)=1 \Rightarrow \lambda(k)=\frac{1}{r^{k}} q^{\binom{k}{2}+k c}$ by induction for k.
$\lambda(k)$ is determined uniquely by $F(n, i)$ and $Q(n, i)$ here.
Above three functions $F(n, i), Q(n, i)$ and $\lambda(k)$ give a regular summation matix $\left(C_{n k}\right)$. When $r=1, c=0$ and $\mu(n, i)=\mu_{i}\left(\mu_{i}\right.$ is real number independent of n such that $\mu_{k+1}<q^{k}$), this example becomes theorem 2 of [2].

Example 2. Take $F(n, i)=r(n-i+1), Q(n, i)=n+\mu(n, i)$, where, $r \neq 0, \mu(n, i)$ is a bounded function of n with $n+\mu(n, i) \neq 0$. Similarly to example 1 , we can obtain uniquely $\lambda(k)=\frac{1}{r^{k}}$.

When $r=1$ and $\mu(n, i)=\lambda_{i}$ (λ_{i} is real number independent of n such that $\lambda_{k+1}>$ $-k$), this example becomes theorem 1 of [2].

Remark. Interested reader can consider the relations between $(F(n, i), Q(n, i))$ and $\lambda(k)$ as well as matrix $\left(C_{n k}\right)$ and triple $(F(n, i), Q(n, i), \lambda(k))$ systematically.

References

[1] R. V. Gramkrelidze (ed.), Analysis 1. Berlin Heidelberg: Springer-Verlag, 1989. 10-12.
[2] W. C. Chu and L. C. Hsu, A note on a general class of arithmetic means, Tamkang Journal of Mathematics 26 (1995), 155-157.

Institute of Mathematics, Dalian University of Technology, 116024, Liaoning Province, China.

