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FORCED OSCILLATIONS OF NONLINEAR HYPERBOLIC
EQUATIONS WITH FUNCTIONAL ARGUMENTS

WEI NIAN LI AND BAO TONG CUI

Abstract. In this paper, sufficient conditions for the forced oscillations of hyperbolic equations

with functional arguments of the form

8 (1) = a(t)Au(a, t) +Za,(t)Au(z o Zq,(m £)f; (u(z, o5 (1)) + f(z, 1),

i=1 i=1

6t2

(z,t) € @ x [0, 00),

are obtained, where € is a bounded domain in R™ with piecewise smooth boundary 8Q and A

is the Laplacian in Euclidean n-space R™.

1. Introduction

Partial differential equations with functional arguments have been studied extensively
for the past few years. However, only a few papers [1-6] have been published on the
oscillation theory of hyperbolic equations with functional arguments. In this paper, ‘we
studey the forced oscillations of hyperbolic equations with functional arguments of the
form

2

2 sula,t) = a(t) Au(a, 1) 3 a(t)Au(z, pi(t) qu 2,8)f;(u(z, 05 () + £ (, ), (1)
=1

(z,t) € Q x [0,00) = G, where Q is a bounded domain in R™ with piecewise smooth
boundary 892 and A is the Laplacian in Euclidean n-space R™.
Suppose that the following conditions (C) hold:

(C) wya; € Cf]0;00)310, 00)); § = 1,20 ., 1

(Cq) piyo; € C([0,00); R), limyye0 pi(t) = limy005(t) = 00, ¢ = 1,2,...,m; j =
SO, .

(C3) g5 € C(2 x [0,00);[0,00)) and g¢;(t) = minzeaqj(a:,t), 4 = 1,2,...,‘k, feC(Qx
[0, 00); R);
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(Cs4) fj € C(R,R), f; are positive and convex in (0,00) and f;(—u) = —fj(u) for u > 0,
d=12...k

Our aim is to establish sufficient conditions under which every (classical) solution

u(z,t) of (1) satisfying a certain boundary condition is oscillatory on © x [0, 00) in the

sense that u(z,t) has a zero on Q) x [0,00) for every t > 0. We consider two kinds of
boundary conditions

%u(x,t) +pu(z,t) =0, (2,4) € 82 x [0, 00), 2)

where N is the unit exterior normal vector to 9 and p(z,t) is a nonnegative continuous
function on 80 x [0, 00), and

u(z,t) =0, (z,) € 82 x [0, o0). (3)

In the following section 2 and section 3 the sufficient conditions are obtained for the
oscillation of solutions of the problem (1), (2) and the problem (1), (3) in domain G.
Note that the conditions for the oscillations for filu) = u, j = 1,2,...,k, have been
obtained in the work of [5].

2. Oscillation of Problem (1), (2)

Theorem 2.1. Suppose that (C) hold and that
(Cs) fi(u) are increasing in (0, 00), j = [P -
(Ce) there ezists g nonnegative oscillatory function n € C*(R;[0,00)) such that 0 (t) 2=

Jo f(z,t)dz and lim; ;o n(t) = 0.
Then every solution u(z,t) of the problem (1), (2) is oscillatory in G if the differential
ineuqality

k
v+ Y GO o) <0, t> 0, (4)
2=

has no eventually positive solutions.

Proof. Suppose to the contrary that there is a nonoscillatory solution u(z, t) of the
problem (1), (2) which has no zero in 2% [tg, 00) for some to > 0. Without loss generality,
W€ may assume that u(z,t) > 0 in O x [t0,00). From (Cz) there exists a ¢, > to such
that u(z, p;()) > 0, i = 1,2,..: ,9m and u(z,0;(t)) >0, j = 12 n B, im O [t1,00).

Integrating (1) with respect to z over the domain Q, we have

d? =
@(/Q u(z,t)dz) = a(t)/QAu(a:,t)dx + gl:ai(t) /Q Ay(a:,pi(t))dx

k
—; /Q %(2,8) f(u(z, 05(t)))dz + /Q f(z,t)dz. (5)
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Green’s formula yields

ou

/ Au(z,t)dr = —=d§ = —/ pudS <0, t>t; (6)
Q o2 ON o0

0
fQ Az, pi(8))d = /a e s0)ds = - /6 e, p)ule,pi(0)dS <0, ¢ 1,
1=12,...,m. (7)

From conditions (Cs), (C4) and Jensen’s inequality, it follows that

/ 05 (@, )3 (u(,05())dz > ¢5(t) / f3(u(, 05(t)))do
Q Q
zqj(t>/ndz-fj(/ﬂu(z,aj(t))dm%dx)-1>, t>t, =12k  (8)

Combining (6), (7) and (8), we obtain

& : 21
E(/Qu(m,t)f.-za;)g—jgz;qj(t)/Qdxfj(/ﬂu(a;,q,-(fr)da;(/Q o))+ [ flatds, 121

(9)
Set i
V() = ([ w0z -n(0), t2n, (10)
where |Q| = [, dz. Then from (9) we obtain that
: 1
V'O < =L aOh(f ueosdergn, 20 (1)

By (10) and (Cs), we have

(| uw,03(0)da - 1) = £ (vl + 05E) 2 fi(u(o32),
t>t, j=1,2,....k  (12)

Consequently, we get
k
YO+ D g fie;) <0, 24,
Jj=1

which contradicts assumption that (4) has no eventually positive solution.
In case u(z,t) < 0, then the function —u(z,t) is a positive solution of the problem

frru(e,) = a(t)Au(z, 8) + ST, ai(®)Au(o, mi(0) - 3 ale ) f; (u(zs 03(6) — Fla, 0

J=1
(2,t) € 2% [0,00) =G,
g]’-‘v e B = O, on 0f) x [07 OO)
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Now set y(t) = |517_|(f9 —u(z,t)dz —n(t)), t > t1, and use an argument similar to the
one used earlier to arrive at a contradiction. This completes the proof.

Lemma 2.1.0) Suppose that y € C2([ty, 00); R) and that
y(t) > 0,9'(t) >0 and y''(t) <0, t>ty> 0. (13)
Then for any A € (0,1) there exists a number t; > to, such that

y(t) > My'(t) fort > t;. (14)

Theorem 2.2. Let the conditions (C) hold and that
(Cr) there exists a positive constant M such that f’(“) > M foru>0;
(Cs) there exists an oscillatory function n € C2(R; R) such that

n"(t) = /Qf(a:,t)da: and tl—lglo n(t) =

Then every solution u(z,t) of the problem (1), (2) is oscillatory in G if the differential
inequality

k
y"(t) + A\M ZQj(t)y(aj () <0, t>0, (15)

has no eventually positive solutions for some \ € (€ 1)

Proof. Suppose to the contrary that there is a nonoscillatory solution u(z,t) of the
problem (1), (2) which has no zero in Q x [to, 00) for some to > 0. Without loss generality,
we may assume that u(z,t) > 0 in  x [tp,00). Form (Cy) there exists a ¢; > ¢, such
that u(z,pi(t)) > 0,4 =1,2,...,m, and u(z,0;(t)) >0, = 1,2,. vy 0y 10 K338 [y, w0

Integrating (1) with respect to z over the domain Q, we have

2

22 ( / sz, i) = i) / Au(z,t)dx+za,-(t) / ol sl )i

—Z/wm ooy @iz + [ fa e (10

Green’s formula yields

/Au(:z:,t)da:: ?fids_ / pudS <0, t>tg; (17)
Q o ON o9 '

/QA“(“”Pi(t))dm = 3?Vu(w pi(t))dS = —/Cm p(z, pi(t))u(z, pi(t))dS <0,
t>t, i=12,...,m. (18
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From conditions (Cs3), (C4), (C7) and Jensen’s inequality, it follows that
| 9i@ 8550, 03 ) > 0500 | itz o500z
> qu(t)/ u(z,oi(t)de, t>t, j§=1,2,...,k. (19)
Q

Thus we combine (17), (18) and (19) and get

3 k
%é-(/('lu(:c,t)dx) = —Mj; qj(t)/nu(x,aj(t))d:c - /Q Flolide, &34, (20)

Set,
i) = /Q w(z, )de —nt), >4, (21)
from (20) we obtain
k
y'(t) < —quj(t)[)u(x,aj(t))dx <0, > (22)

We claim that there is a number ¢, > #; such that y(t) > 0,t > ty. In fact, if y(t) <0
then [, u(z,t)dz < 5(t), which is impossible in view the fact that u(z,t) > 0 and the
function 7 is oscillatory. From (22) we have y"(t) < 0, ¢t > t3. Using the fact that
y(¢) > 0 and y"”(t) < 0 we have y'(t) > 0, ¢ > t,. Now, since y is an increasing function
and lim;, o 7(t) = 0, it follows from (21) that there is a number t3 > 5, by Lemma 2.1,
such that

/ u(:E?UJ(t))dz > ’\y(aj(t))) t>1t3, j= L,2,..4;k
Q
Consequently, we get
k
y"() +AM Y q;(t)y(o; (1) <0, &> ts, (23)
=1

which contrdaicts the assumption that (15) has no eventuully positive solution.
In case u(z,t) < 0, then the function —u(z, 1) is a positive solution of the problem

geru(@,1) = a(t)Au(z, 1) + ST, ai(t) Au(, pi(t)) - é a(z,1) f;(u(z,05(t)) — f(z,¢)

(z,t) € 2 x [0,00) = G,
B% + pu =0, on 69 x [0, co).

Now set y(t) = fQ(—-u(z,t)dw —n(t), t > to, and use arguments similar to the one
used earlier to arrive at a contradiction. This completes the proof.

Theorem 2.3. .Suppose that conditions (C), (Cr) and (Cg) hold and that



98 WEI NIAN LI AND BAO TONG CUI

(Cg) gt) = maxlsjgk{aj(t)} <t, o'(t) >0, t >ty for some to > 0.
If there exista a A € (0,1) such that

t—o00

¢ k
. 1
IlmsupM/(t) E gi(8)oj(s)ds > 12 (24)
o J=1

then every solution u(z,t) of the problem (1), (2) is oscillatory in G.

Proof. On the contrary let u(z,t) be a nonoscillatory solution of (1), (2), which
we assume to be positive on 2 x (0,00). Similarly to the proof of Theorem 2.2, we
can prove that the function y defined by (21) satisfies the inequalities (13) and (15) for
above A € (0,1). By Lemma 2.1 we can choose a number sufficiently large such that
y(t) > Aty'(t) for t > t1, and

y(0;()) 2 Aa;(t)y'(0;(t)) for t > t1, j=1,2,...,k.

Now, by (23) we can to get

k
y' () + XM Y g;(t)o;(t)y'(0;(2) <0, t>t.
Fe]

Integrating the above inequality from o(t) to ¢ we have

t k
y'(@t) —y' (o) + /\2M/(t) qu(s)aj(s)y'(oj(s))ds <0, 124

Therefore,
2 e ! y'(t)
) ML(t)quj<s)aj<s)y (e3(Nds 1= X0 <1, vz
And hence

t—o00

t k
1
lim supM/( : Z q;(8)oj(s)y'(o(s))ds < 1z
o(t j:l
which violates the condition (24).
The proof of the case u(z,t) < 0 is similar and is omitted.

Corollary 2.1. In addition to conditions (C), let (C7), (Cq) hold and suppose that
f(z,t)=0. If ;

t— oo

. t k
lim SupM/ qu(s)aj (s)ds > 1, where o(t) = max {o;(t)},
o(t) j=1 1<5<k
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then every solution u(z,t) of the problem (1), (2) is oscillatory in G.

Remark 1.1. Theorem 2.2 and Theorem 2.3 improved the results of Theorem 2.1
and Theorem 2.2 from [5] and Corollary 2.1 extended the corollary 2.1 in [5].

3. Oscilation of Problem (1),(3)

In the domain Q we consider the following Dirichlet problem

Au+au=0in
u =0 on 6N

where o is a contant. It is well know [7,8] that the least eigenvalue aqg of the problem
(25) is positive and the corresponding eigenfuction ¢(z) is positive on Q.

(25)

Theorem 3.1. Let the conditions (C) and (Cs) hold and that
(C10) There ezists a nonnegative oscillatory function n € C%(R;[0,00)) such that

" () = /Q f(z,t)p(z)dz and tl_lglo n(t) = 0.

Then every solution u(z, t) of the problem (1), (3) is oscillatory in G if the differential
inequality

k
y'(8) + ) qi(0)fiy(o;(8) <0, t>0, (26)
$=4

has no eventually positive solutions.

Proof. Suppose to the contrary that there is a nonoscillatory solution u(z,t) of
the problem (1), (3), which has no zero in Q x [to, 00) for:some ¢y > 0. Without loss
generality, we may assume that u(z,t) > 0in Q x [to,0). From (C;) there exists a
t1 2 to such that u(z, p;(t)) > 0,4 =1,2,...,m, and u(z,0;(t)) >0, =1,2,...,k, in
£} x [tl, OO)

Multiplying (1) by ¢(z) and integrating over (2, we obtain

&2 m -
o /Q u(z, t)p(z)dz) = a(t) /9 Au(a:,t)go(a:)dm-f—j;ai(t) /n Au(z, pi(8))o(z)dz

k
-3 | 4@ 05505 O)p(@)ds + | fe ey, 12 0. ()
J=l
Using Green’s formula, it follows that
: / Avp(z)dr = / u(z, t)Ap(z)dr = —ag/ u(z,t)p(z)dz < 0,t > t;. (28)
Q Q Q

/ Au(z, pi(t))p(x)dz= / u(, pi(t)) Ap(z)dz = —ao / u(z, pi(t))p(z)dz <0, t>1;.
Q Q Q
(29)
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From conditions (C3), (C4) and Jensen’s inequality, it follows that
/Q 03 (2, 1) f;(u, (2, 03())p(2)de > ¢;(2) /Q f3(u(z,05(8)))p(@)de
> 05(0) | pla)dsfs( | wo3e)e@in [e@an™), i=12.k >0

Now conbining (28), (29) and (30), we obtain
2 k
(| ulz,0p(a)an) < -yl Jy e@aes( [ uta,ospptoin [ p@an )

+/Qf(a:,t)d:z:, . (31)
Set
y(t) = ( /Q o(@)dz) ) ( /Q u(z, o)z —n(t)), >, (32)
by (31), we obtain

k
V') <= RO wmos)e@s [ p@an), txn. (@
And from (32) and (Cs) we have

fj(/Q u(z,0; (t))fp(ﬂﬁ)dﬂc(/Q p(z)dz)™") = f(y(o;(1) + (/Q p(z)dz) ™ - n(0;(2)))
ij(y(aj(t))): tZtly .7:1:2a7k (34)

Consequently, we get

k
V') + Y a0 fiulo;(t) <0, t>4,

=1

Which contradicts the assumption that (26) has no eventually positive solution. A similar
proof can be given for the case u(z,t) < 0. This completes the proof.

Theorem 3.2. Let the conditions (C) and (Cy7) hold and that
(Ci2) There ezists an oscillatory function 1 € C?(R; R) such that
i) = / f(z,t)p(z)dz and lim n(t) = 0.
Q t— oo

Then every solution u(z,t) of the problem (1), (3) is oscillatory in G if the differential
inequality

k ' v
y"(t) +AM Y g;(y(o; (1) <0, ¢>o0, (35)
9=
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has no eventually positive solutions for some X € (0,1).

Proof. Suppose to the contrary that there is a nonoscillatory solution u(z, t) of the
problem (1), (3) which has no zero in 2 x [¢9, 00) for some o > 0. Without loss generality,
we may assume that u(z,t) > 0 in Q x [tg,00). From (C,) there exists a t; > to such
that u(z, pi(t)) > 0,7 =1,2,...,m and u(z,0;(t)) >0, =1,2,...,k, in Q x [t1, 00).

Multiplying (1) by ¢(z) and integrating over 2, we obtain

2

& /Q u(z, p(z)dz) = af) /Q Au(m,t)ga(:v)dx—i—;ai(t) /Q Au(s, pi(8))wo(z)de

k
_J;/Qqj(a:,t)fj(u(a:,aj(t)))cp(:c)dm+/Qf(z,t)<,o(:z;)dz. (36)

From Green’s formala it follows that
/ Aup(z)dzr = / u(z,t)Ap(r)dz = —ao/ u(z,t)p(z)ds <0, t>t; (37)
Q Q Q
| ute, )o@t = [ uie o) Ap(e)ds
Q Q
= -a0 [ ule,pOe@ds <0, t2t, i=12...,m. (38)
Q
Moreover, from conditions (C3), (C4) and (C;) and Jensen’s inequality, it follows that
/qy'(:v,t)fj(u(m,ﬂj(t)))w(ﬂf)dx o Qj(t)/ fi(u(z,0;(t)))p(z)dz
Q Q
> 60 [ p@)tely([ ute,os(O)ol@)is | ol
% gell) / ola)delt / sl o il dal /Q o(z)dz)~!
= Mg;( t)/ u(z,0;(t))p(z)dz, j=1,2,...,k t> . (39)
Q

Then using (37), (38) and (39), we obtain

2

;iz (/ u(z,t)p(z)dz) < — MZq,(t)/ u(z,0;(t) tp(z)d:r+/ f(z,t)o(z)dz,
L>1. (40)

Set,

y(t) = /Q u(z, p(@)ds — (), ¢ >t (a1)
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by (40) we obtain
k
V') <MY 0500 [ u@mo@)eEds, ¢, (42)
=1 .

We note that [, u(z,t)¢(x)dz > 0, hence as in the proof of Theorem 2.2 we have
y(t) >0, t>1iy >, (43)

and by (42) we have
y'(1) <0, t>¢ (44)

Form (43) and (44) it follows that y’ (t) > 0, ¢ > ¢;. Since y is an increasing function
and lim;_,o, y(t) = 0, we conclude from Jou(z, p(z)dz = y(t) + n(t) that there exists
a number t3 > ¢, such that the following inequalities hold

/ u(z, p(@)dz > Ay(t), ¢ > ts,
Q

/Qu(:r,aj(t))w(m)dz > My(o;(t), t>ts, j=1,2,... .k

Consequently, we get

k
y"(8) +AM Y g;(t)y(0; (1)) <0, ¢ >t

=1

which contradicts the assumption that (35) has no eventually positive solution. A similar
proof can be given for the case u(z, t) < 0. This completes the proof.

The proof of the following Theorem can be modelled on that of Theorem 3.2 and
Theorem 2.3.

Theorem 3.3. Suppose that the conditions (C), (C7), (Cy) and (C11) hold, and that
there exists a A € (0,1) such that

! 1
lim supM/(t) qu(s)aj(s)ds b= VL
g .7=1

t—o0

then every solution of the problem (1), (3) is oscillatory in G.

Corollary 3.1. Let conditions (C), (Cr) and (Cy) hold, and suppose that f(z,t) = 0.
If

t— o0

t k -
lim sup M / > " 4i(s)aj(s)ds > 1,

then every solution of the problem (1), (3) is oscillatory in G.
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4. Examples
Following are illustrative examples.

Example 1. Consider the hyperbolic equation

Ut (T, 1) = Uge (T, 1) + Uge (2,8 — 37) — e tu(z,t — 31) — u(z,t - 47r)
—e"H(1 + cosz) cost, (z,t) € (0,7) x [0, 00), (45)

with boundary condition
Uz (0,8) =uz(mt) =0, #>0. (46)
Here a’(t) = 17 a’l(t) == 17 pl(t) =t- 37!', QI(t) == e_t7 Q2(t) — 1: fl(s) =S, f2(3) =S,

f(z,t) = —e7*(1 +cosz) cost, oy (t) =t — 3, o2(t) =t —4m, o(t) =t — 37 < t. We note
that '

/ Flz tjdx = / e (1 + cosz) costdz = —me ™~ cost (47)
. Q 0

We can choose 7(t) = Ze~tcost. It is easy to verify that all the hypothesises of
Theorem 2.3 are satisfied and hence all the solutions of problem (45), (46) are oscillatory.
One such solution is u(z,t) = (1 + cosz) cost.

Example 2. Consider the hyperbolic equation

Uts (T, t) = Ugq (2,) + 2" Fugy(z, t — g) —2e¢ "u(z,t — ) — e tcostsinz,

(z,t) € (0,7) x [0, 00). (48)

with boundary condition .
(0,0 =u(x,t) =0, £>0 (49)
Here Q = (0,7), a(t) = 1, a;(t) = 2%, pr(t) =t -3, qi(t) = 2e™, fi(s) = s, o(t) =
o1(t) =t —7m < ¢, f(x,t) = —e~tcostsinz. Moreover, the corresponding eigenvalue

problem
Au+au=0, z € (0,7)
{u:O,:c:O,ﬂ' (50}
has the eigenvalue ay = 1 with the corresponding eigenfunction ¢(z) = sinz > 0 on
(0, 7).
We note that

/ f(z,t)p(z)dz = -/ e tcostsin® zdr = ~ge“tcos £, (51)
Q 0

Choose the function 5(t) = Ze~tsint. Now it is easily checked that the hypothesises
of Theorem 3.3 are verified. Thus all the solutions of peroblem (48), (49) are oscillatory.
One such solution is u(z,t) = e~t costsin z.
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