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FORCED OSCILLATIONS OF NONLINEAR HYPERBOLIC

EQUATIONS WITH FUNCTIONAL ARGUMENTS

WEI NIAN LI AND BAO TONG CUI

Abstract. In this paper, sufficient conditions for the forced oscillations of hyperbolic equations
with functional arguments of the form

丘 位，t) = a(t)6.u(x, t)十立 ;(t)6.u(x,p;(t)) -立j(x, t)fi (u(x, Uj(t))) + f(x, t),
i=l j=l

(x, t) E Ox [O, CXJ),

are obtained 、where n is a bounded domain in Rn with piecewise smooth boundary an and t::.
is the Laplacian in Euclidean n-space Rn.

1. Introduction

Partial differential equations with functional arguments have been studied extensively
for the past few years. However, only a few papers [1-6] have been published on the
osciliation theory of hyperbolic equations with functional arguments. In this paper, we
studey the forced oscillations of hyperbolic equations with functional arguments of the
form

矗u(x, t) = a(t)L'w(x, t)臺,(t)L'>u(x, p; (t))-立x, t)J;(u(x, <7;(t)))+f(x, t), (1)

(x,t) E Ox (0,oo) 三 G, where n is a bounded domain in Rn with piecewise smooth
boundary an and~is the Laplacian in Euclidean n-space Rn.

Suppose that the following conditions (C) hold:
(Ci) a, ai E C ((0, oo) ; (0, oo)), i = 1, 2, ... , m;
(C2) Pi,aj E C([O,oo);R), lim巨 00 Pi (t) = limt-too 巧 (t) = oo, i = 1, 2, ... , m; j =

1, 2, ... , k;
(C3) qj E C(D x (0, oo); (0, oo)) and qj(t) = min這 qj (x, t), j = 1, 2, ... , k, f E C(D x

(0, oo); R);
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(C4) Ji E C(R, R) f, i are pos1t1ve and convex m
j = 1,2, ... ,k. (0, oo) and f八-u) = -Jj(u) for u 2:'. O,

Our aim is to establish
u(x, t) of (1)

sufficient conditions under which
satisfying a certain boundary condit" every (classical) solution

sense that u(x, t) has a zero on n x [O
10n 1s oscillatorY on f1 X [O, 00) in the

, oo) for every t > O
boundary conditions . We cons這er two kinds of

a
諒u(x, t) +µu(x, t) = 0, (x, t) E af2 X (0, oo), (2)

where N is the unit exterior normal vector to an and
function on an X [O, 00), and µ(x, t) is a nonnegative continuous

u(x, t) == 0, (x, t) E oft x [0, oo). (3)
In the following section 2 and section 3 th

oscillation of solutions of th e sufficient conditions are obtained for the
e problem (1), (2) and th

Note that the conditions for th e problem (1), (3) in domain G.
obtained in the work of [5].

e oscillations for Ji (u) = u·, J = 1,2, ... ,k, have been

2. Oscillation of Problem (1), (2)

Theorem Z.1. S
偽）f (

uppose that (C) hold and that
ju) are increasing in (O,oo), j =

（似 ） there exist
1, 2, ... ,k;

s a nonnegative oscillatory Junction
fn f (x, t)dx and lim巨00 ry(t) = 0 'T/ E C2(R; [O, oo)) such that ry"(t) =

Then every solution u(x, t) of the problem (1) (2)
ineuqality'is oscillatory in G if the differential

k

y"(t) +L qj(t历 (y(uj(t))) :S 0, t~O,
j=l

has no eventually positive solutions.

(4)

Proof. Suppose to the contrary that th .
problem (1), (2) which h ere 1s a nonoscillator

as IlO zero in f2 X y solution u(x, t) of the
we may assume that () [to, oo) for some t0 > o

U X, t > 0 in O X [
_ . Without loss generality,

that u(x, Pi(t)) > o, i = 1 2 to, oo). From (C) th2 ere exists a t >
, ，. . . ,m and ( 1 - 柘 such

U X,CTj(t)) > 0, j = 1,2, ... ,k, in OX [t1,oo).
Integrating (1) with respect to x over the domain 0, we have

口u(x, t)dx) = a(t) In Ll.u(x, t)dx臺(t)L Ll.u(x,p;(t))dx

户~q1(x, t)f1(u(x, "1 (t)))dx + k J (x, t)dx. (5)
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Green'.s formula yields

丨。Llu(x, t)dx =辶忥 dS = - jµudS~0, t 2:: ti;

丨。llu(x, p,(t))dx =辶矗u(x,p~~))dS = - 丨~oµ(x, p,(t))u(x, p,(t))dS'.". 0, t 2: 右 ，)

i=l,2, ... ,m. (7)
From conditions (C吐 （広）and Jensen's inequality,·it follows that

f。q;(x, t功 (u(x, o-; (t)))dx 2: 研 ）丨 f;(u(x, 巧 (t)))dx

2:q;(t)丨~dx·J;(丨。u(x, o-; (t))dx(l。d:)-1), tc'.t,, j=l,2, ... ,k. (8)

Combining (6), (7) and (8), we obtain

d2
己u(x, t)dx)'.".-i》j (t)丨~d祐（丨~u(x,o-;(t)dx(丨~dx)-1)+k f(x, t)dx, t 2 t,

Set

y(t) = 向 ／。u(x, t)dx - TJ(t)), t 2: 几

where 冏= fn dx. Then from (9) we obtain that

(9)

(10)

k

y"(t) s若,(t)Ji (_l u(x, a, (t))dx向 ）， t?. t,

By (10) and (C5), we have

叮~u(x, <Tj (t))dx 計 ）= 1,(記 (t)) 十崗 7J的 (t))) ?. J,(y(a,(t)),

t2:t1, j=l,2, ... ,k, (12)

(11)

Consequently, we get

k

y" (t) 十芝 叭邙 (y侶 (t)))~0, t 2 t1,
j=l

which contradicts assumption that (4) has no eventually pos1t1ve solution.
In C邸e u(x, t) < 0, then the function —u(x t)·, 1s a pos1t1ve solution o

｛
f the problem

护
霏u(x, t) = a(t)~u(x, t) + Lm k

i=l ai(t)~u(x, Pi(t)) - L q(x, t)fi(u(x, O-j(t)))- J(x, t)
j=l

綠 十µu = 0, on an x [O, oo).
(x, t) En X [O, oo) = G,
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Now set y(t) =尚(j~-u(x, t)dx - r,(t)), t 2: 苟 ，and use an argument similar to the
one used earlier to arrive at a contradiction. This completes the proof.

Lemma 2.1.(5] Suppose that y EC氕 [to,oo);R) and that

y(t) > 0, y'(t) > 0 and y" (t)~0, t 乏 柘 > 0.

Then for any A E (0, 1) there exists a number t1 2 t0, such that

(13)

y(t) 2: -Xty'(t) fort 2: 力 ． (14)

Theorem 2.2. Let the conditions (C) hold and that
(C) l f·(u)1 t iere exists a positive constant M such that一u :2: M for u > O;
（偉 ）there exists an oscillatory function TJ E C2 (R; R) such that

ry" (t) =丨f (x, t)dx and lim 叩）= 0.
n t-t=

Then every solution u(x, t) of the problem (1), (2) is oscillatory in G if the differential
inequality

k

y" (t) + ,\M芝研）y仞 (t))~O, t20,
j=l

has no eventually positive solutions for some ,\ E (0, 1).

(15)

Proof. Suppose to the contrary that there is a nonoscillatory solution u(x, t) of the
problem (1), (2) which has no zero inn x [to, oo) for some to 2: 0. Without loss generality,
we may assume that u(x, t) > 0 in n x [to, oo). Form (C2) there exists a t1 2: 柘 such
that u(x, Pi(t)) > 0, i = 1, 2, ... , m,. and u(x, aj(t)) > 0, j = l, 2, ... , k, in n x [t1, oo).
Integrating (1) with respect to x over the domain n, we have

d2 m
霍l u(x, t)dx) = a(t) L L'>.u(x, t)dx 十苫 佑(t)丨~Ll.u(x,p,(t))dx

－訌 qj 位 ，t)J, (u(x, u; (t)))dx 十丨~J(x, t)dx. (16)

Green's formula yields

f。6u(x, t)dx =辶嘉dS = -! µudS :S 0, t 2: t1; (17)

L Ll.u(x,p,(t))dx =辶矗u(x,p~~))dS = -丨µ(x,p,(t))u(x,p,(t))dS'.S 0,
80

t~t1, i = 1, 2, ... , m. (18)
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From conditions (C斗 (C4), (C1) and Jensen's inequality, it follows that

丨qi (x, t)Jj (u(x, uJ (t)))dx 2碉 fi(u(x, uj(t)))dx

n 2 Mq1(;£u(x, u; (t)dx, t 2 t,, j = 1, 2, ... , k. (19)

Thus we combine (17), (18) and (19) and get

d2 k

詞k u(x,t)dx) s; -M~研 ）丨~u(x, "i (t))dx 十丨~f(x, t)dx, t 2 犰 (20)

Set

y(t) = j u(x, t)dx - TJ(t), t 2: t1,
n

from (20) we obtain

k

y"(t) :S -M苫 研 ）L u(x, a;(t))dx :S 0, t ::, t1.

(21)

(22)

We claim that there is a number t2 2 t1 such that y(t) > O, t 2 互 In fact, if y(t) S 0
then fn u(x, t)dx S TJ(t), which is impossible in view the fact that u(x, t) > O and the
function TJ is oscillatory. From (22) we have y"(t) S O, t 2 互 Using the fact that
y(t) > 0 and y"(t) SO we have y'(t) > 0, t 2 互 Now, since y is an increasing function
and lim尸= TJ(t) = 0, it follows from (21) that there is a number t3 2 互 by Lemma 2.1,
such that

丨u(x, O'j(t))dx 2 .\y(aj(t)), t 2 互 j = 1, 2, ... , k.
n

Consequently, we get

k

y"(t) + AML研 ）y(巧 (t)) s:; 0, t~ 耘
j=l

(23)

which contrdaicts the assumption that (15) has no eventuully positive solution.
In case u(x, t) < 0, then the function -u(x t)·

｛护
, 1s a pos1t1ve solution of the problem

k
詎u(x, t) = a(t)L\u(x, t) + L:i ai(t)L\u(x, Pi(t)) - L q(x, t功 (u(x,巧 (t)) - f(x, t)

'j=l

(x,t) En X [O,oo) = G,
膈 十µu = 0, on 80 X (0, oo).

Now set y(t) =犀-u(x, t)dx - TJ(t), t~to, and use arguments similar to the one
used earlier to arrive at a contradiction. This completes the proof.

Theorem 2.3. Suppose that cond山ons (C), (C1) and (C討 hold and that
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(Cg) CJ(t) = max1~逗伝 (t)} :S t, a'(t) 2: 0, t 乏 柘 for some to 2: 0.
If there exista a >. E (0, 1) such that

吧悶pM It 辶 ，(s)a1(s)ds >~'
, (t) j=l

(24)

then every solution u(x, t) of the problem (1), (2) is oscillatory in G

Proof. On the contrary let u(x, t) be a nonoscillatory solution of (1), (2), which
we assume to be positive on n x (0, oo). Similarly to the proof of Theorem 2.2, we
can prove that the function y defined by (21) satisfies the inequalities (13) and (15) for
above,\ E (0, 1). By Lemma 2.1 we can choose a number 右 sufficiently large such that
y(t) 2: ..\ty'(t) fort 2: t1, and

y(aj(t)) 2: ,\巧 (t)y'(巧 (t)) fort 2: ti, j = 1,2, ... ,k.

Now, by (23) we can to get

k

y"(t) + ,\2ML叭叭 (t)y'(巧 (t))::;;o, t~ 互
j=l

Integrating the above inequality from CJ(t) to t we have

y'(t) - y'位 (t)) + A2MJ'tq;(s尼 (s)y'邑(s))ds :S 0, t 2: 互
, (t) j=l

Therefore,

江／立，(s)"J(s)y'的 (s))ds <:: 1一工 辶 < 1,
<J"(t) j=l y'位 (t))

And hence
t k

吃悶pM丨芷qj(S瓦 (s)y'仞 (s))ds:::; ~'
<J"(t) j=l

which violates the condition (24).
The proof of the case u(x, t) < 0 is similar and is omitted.

t 2: t1.

Corollary 2.1. In addition to cond山ons (C), let (C斗 媯）hold and suppose that
f (x, t) 三 0. If

t k

吧翌pM I Lqi(s尼 (s)ds > 1
u(t) j=l

, where u(t) = max {Uj (t)},
1今 '.S;k
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then every solution u(x, t) of the problem (1), (2) is oscillatory in G.

Remark 1.1. Theorem 2.2 and Theorem 2.3 improved the results of Theorem 2.1
and Theorem 2.2 from [5] and Corollary 2.1 extended the corollary 2.1 in [5].

3. Oscilation of Problem (1),(3)

In the domain n we consider the following Dirichlet problem

{ Au + au = 0 in 0
u = 0 on 8!1 (25)

where a:: is a contant. It is well know [7,8] that th Ie east eigenvalue a::0 of the problem
(25) is positive and the corresponding eigenfuction 1.p(x) is positive on n.
Theorem 3.1. Let the conditions (C) and (C5) hold and that

(C10) There exists a nonnegative oscz

丨
llatory function 17·E C2 (R; [O, oo)) such that

1]11 (t) = f (X, t坪 (x)dx and lim 17(t) = 0.
n t-+oo

Then every solution u(x, t) of the problem (1) (3)·, 1s oscillatory in G if the differential
mequality

k

y" (t) 十芷叭邙 (y(O"j(t))) ::; 0, t~0,
j=l

has no eventually positive solutions.

(26)

Proof. Suppose to the contrary that there is a nonoscillatory solution u(x, t) of
the problem (1), (3), which has no zero in n x [to, oo) for, some to~o. Without loss
generality, we may assume that u(x, t) > O in n x [to, oo). From (C2) there exists a
t1~ 柘 such that u(x, Pi(t)) > 0, i = 1 2
0 X [t1, oo).

, ，. . . ,m, and u(x, ui(t)) > 0, j = I, 2, ... , k, in

Multiplying (1) by <p(x) and integrating over n, we obtain
d2
dt2丨

m—(n u(x, t沖 (x)dx) = a(t) L Au(x, t坪 (x)dx +L ai(t)丨Au(x, Pi(t)坪 (x)dx
j=l n

幻~q;(x, t訪 (u(x,u;(t))沖 (x)dx 十丨~J(x,t坪 (x)dx, t 2: t1. (27)

Using Green's formula, it follows that

丨~Awp(x)dx=丨~u(x, t)師(x)dx = -a。j u(x, t沖 (x)dx <:: 0,t 2: !1.

丨~Au(x, p; (t)坪 (x)dx=丨~u(x, p,(t))凶(x):=-a。丨~u(x,p;(t)坪 (x)dx<;O, t::,:'.~B)

(29)
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From conditions (C3), (C-1) and Jensen's inequality, it follows that

丨~q;(x, t)f;(u, (x, 巧 (t)))<p(x)dx 2: q;(t) J f;(u(x,";(t)))cp(x)dx
2 研 ）丨~<p(x)dxf; (L u(x, ";(t))cp(x)dx(丨:(x)dx)-1), j = 1, 2, .. , k, t 乏 柘 (30)

Now conbining (28), (29) and (30), we obtain

d2 k

霍L u(x, t)<p(x)dx) :,: -~ 紅 ）／。<p(x)dxf; (L u(x, "; (t))cp(x)dx(i, <p(x)dx)-1)

十丨f (x, t)dx, t~ 互
。 (31)

Set y(t) = (丨~<p(x)dx尸 cfo u(x, t)<p(x)dx -1)(t)), , t 乏 柘， (32)

by (31), we obtain

k

y"(t) s;若 ，(t)h(丨~u(x,<T;(t)坪 (x)dx(丨~,p(x)dx)-1), t 2: t1. (33)

And from (32) and (C5) we have

可 。u(x, 巧 (t)坪 (x)dx(丨。,p(x)dx)-1) = f.渾的(t)) + (丨 ,p(x)dx)-1 . ~仞 (t)))
。

~h(Y(CJi(t))), t~ti, j = 1, 2, ... , k. (34)
Consequently, we get

k

y" (t) 十芝研 ）/j(y(CJj(t)))~0, t~ 右 ，
j=l

Which contradicts the assumption that (26) has no eventually positive solution. A similar
proof can be given for the case u(x, t) < 0. This completes the proof.

Theorem 3.2. Let the conditions (C
(C12) Th

) and (C1) hold and that
ere exists an oscillatory function T/ E C2 (R; R) such that

1]11 (t) =丨f(x, t坪 (x)dx and lim 17(t) = 0.
n t-+oo

Then every solution u(x, t) of the problem (I) (3)
inequality , is oscillato叩 in G if the differential

k

y"(t) + AML研 ）y((J"j(t))~0, t 2: 0,
j=l

(35)
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has no eventually positive solutions for some ,,\ E (0, 1).

Proof. Suppose to the contrary that th· ·ere 1s a nonoscillatory·solution u x t of the
problem (1), (3) which h . (')

as no zero m D x [to, oo) for some t0 2 0. Without loss generality,
we may assume that u(x, t) > 0 inn x [to, oo). From (C2) there exists a t1 2 柘 such
that u(x, Pi(t)) > 0, i = 1, 2, ... , m and u(x, CJj(t)) > 0, j = 1, 2, ... , k, inn x [t1, oo).

Multiplying (1) by cp(x) and integrating over n, we obtain

戶(L u(x, t)\"(x)dx) : a(t) 丨~!',.u(x, t)l"(x)dx十户 ,(t) 丨。!',.u(X, Pi (t)坪 (x)dx

苫 fa Q;(x. t访 (u(x, u; (t)))<p(x)dx 十丨。f(x, t坪 (x)dx. (36)

From Green's formala it follows that

丨~~ucp(x)dx =丨u(x, t)~cp(x)dx = -o:0 u(x, t)cp(x)dx::; 0, t 2: 耜 (37)

丨~L\u(x,p,(t))<p(:idx＝丨~u(x, p,(t))L\<p(idx
= -o:o丨u(x, Pi(t))cp(x)dx :'.S 0, t 2: t1, i = 1, 2, ... , m. (38)
。

Moreover, from conditions (C3), (広）and (C1) and Jensen's inequality, it follows that

丨Qj (x, t) Ji (u(x, o-i (t)))cp(x)dx 2: Qj (t) Ji (u(x, <Jj (t)))cp(x)dx
n j 丨。

乏 Qj (t) n cp (x) dxJi (丨~u(x, O-j (t))cp(x)dx(丨cp(x)dx)-1)

::, Qj (t)丨~<p(x)dxM丨~u(x, "J (t))<p(x)dx(l <p(x)dx)-1

= Mqi(t) j u(x,o-i(t))cp(x)dx, j = 1,2, ... k t > t
n , ，- 1·(39)

Then using (37), (38) and (39), we obtain

；」。u(x,t坪 (x)dx) :; -Mt,研 ）丨~u(x, a;(t)沖 (x)dx + lo f(x, t坪 (x)dx,

t 2'. ti. (40)

Set

y(t) = / u(x, t坪 (X) dx - 7] (t) , t 2: 几
n (41)
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by (40) we obtain

k

y" (t) :'.S -M芝研）丨u(x, ai(t))cp(x)dx, t > t
j=l n 一 l·

We note that J;。u(x, t)cp(x)dx > 0, hence as in the proof of Theorem 2.2 we have

y(t) > 0, t 乏 t2 2: 几
and by (42) we have

(42)

(43)

y"(t)::;o, t~t1 (44)
Form (43) and (44) it follows that y'(t) > O t > t1. Since·y 1s an mcreasing function
and limt--*oo y(t) = 0, we conclude from fn u(x, t)cp(x)dx = y(t) + ry(t) that there exists
a number t3~t2 such that the following inequalities hold

丨u(x, t)cp(x)dx~Ay(t), t~ 紅
丨0。u(x, 巧 (t))cp(x)dx~Ay(";(t)), t~ 紅 j = 1,2, ... , k.

Consequently, we get

k

y"(t) + .\M芷研）y的 (t))~0, t~ 耘
j=l

which contradicts the assumption that (35) has no eventually positive solution. A similar
proof can be given for the case u(x, t) < 0. This completes the proof.
The proof of the following Theorem can be modelled on that of Theorem 3.2 and

Theorem.2.3.

Theorem 3.3. Suppose that the cond山ons (C), (C1), (Cg) and (C11) _hold, and that
there exists a A E (0, 1) such that

吧翌pM/ 立 ，(s)巧 (s)ds > 1
u(t) j=I 范'

then every solution of the problem (1), (3) is oscillatory in G.

lf
Corollary 3 1· ·Let conditions (C), (C1) and (C9) hold, and suppose that f(x, t) 三 0.

t k

Ii農翌pAf丨芝的尼(s)ds > 1,
u(t) j=l

then every solution of the problem (1), (3) is oscillatory in G.
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4. Examples

Following are illustrative examples.

Example 1. Consider the hyperbolic equation

uu(x, t) = Uxx(x, t) + Uxx(x, t - 31r) - e-tu(x, t - 31r) - u(x, t - 41r)
-e-t(l + cos x) cost, (x, t) E (0,司 x[O,oo), (45)

with boundary condition

Ux(O, t) = Ux(1r, t) = 0, t 2: 0. (46)

Here a(t) = 1, a1 (t) = 1, P1 (t) = t - 31r, q1 (t) = e-t, q2(t) = 1, J月(s) = s, h(s) = s,
f(x, t) = -e-t(l + cos x) cost, u1 (t) = t - 31r, u2(t) = t- 41r, u(t) = t - 31r < t. We note
that k f(x, t)dx = 11r尸(1 + cosx) costdx = -1r尸cost (47)

We can choose TJ(t) =~尸cost. It is easy to verify that all the hypothesises of
Theorem 2.3 are satisfied and hence all the solutions of problem (45), (46) are oscillatory.
One such solution is u(x, t) = (1 + cos x) cost.

Example 2. Cons這er the hyperbolic equation

uu(x, t) = Uxx (x, t) + 2e- 至Uxx(x,t 7r- -) - 2e-1ru(x, t 1r) 刁

2 一 e cost sm x

(x, t) E (0, 1r) x [0, oo). (48)

with boundary condition
u(O, t) = u(rr, t) = 0, t?: 0 (49)

Here n = (0, 1r), a(t) = 1, a1 (t) = 2e弓 ，P1 (t) = t 一 差，q1(t) = 2e-7r, fi(s) = s, CJ(t) =
CJ1 (t) = t - 1r < t, f (x, t) = -e-t cost sin x. Moreover, the corresponding eigenvalue
problem

{ 6.u + au = 0, x E (0,司
u = O,x = 0,1r (50)

has the eigenvalue a0 = 1 with the corresponding eigenfunction cp(x = sin x > O on
(0, 司 ．

）

We note that

丨~f(x, t)cp(x)dx = - fox尸 costsin2 xdx = -;尸 cost

Choose the function TJ(t) = i尸sin t. Now it is easily checked that the hypothesises
of Theorem 3.3 are verified. Thus all the solutions of peroblem (48), (49) are oscillatory.
One such solution is u(x, t) =尸 cos tsin x.

(51)
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