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ON THE ESSENTIAL SPECTRA OF GENERAL
DIFFERENTIAL OPERATORS

SOBHY EL-SAYED IBRAHIM

Abstract. In this paper, it is shown in the cases of one and two singular end-points and when
all solutions of the equation M[u]-Auw=0, and its adjoint M*[v] — Awv = 0 are in L2 (a,b)
(the limit circle case) with f € L2 (a,b) for M[u] — Awu = wf that all well-posed extensions of
the minimal operator Tp(M) generated by a general ordinary quasi-differential expression M of
nth order with complex coefficients have resolvents which are Hilbert-Schmidt integral operators
and consequently have a wholly discrete spectrum. This implies that all the regularly slovable
operators have all the standard essential spectra to be empty. These results extend those of
formally symmetric expression M studied in [1] and [12], and also extend those proved in [8] in

the case of one singular end-point of the interval [a,b).

1. Introduction

The minimal operators To(M) and To(M™) generated by a general ordinary quasi-
differential expression M and its formal adjoint M* respectively, form an adjoint pair of
closed, densely-defined operators in the underlying L2 -space, that is To (M) C [To(M™)]*.
The operators which fulfill the role that the self-adjoint and maximal symmetric operators
play in the case of a formally symmetric expression M are those which are regularly
slovable with respect to To(M) and To(M™). Such an operator S satisfies To(M) C
S C [To(M™1)]* and for some A € C, (S — ) is a Fredholm operator of zero index,
this means that S has the desirable Fredholm property that the equation (S — Alu = f
has a solution if and only if f is orthogonal to the solution space of (S — AI)v = 0 and
furthermore the solution spaces of (S — AI)u = 0 and (S* —AI)v = 0 have the same finite
dimension. This notion was originally due to Visik in [15].

" Akhiezer and Glazman [1] and Naimark [12] showed that the self-adjoint extensions of
the minimal operator Ty(M) generated by a formally symmetric differential expression
M with maximal deficiency indices have reslovents which are Hilbert-Schmidt integral
operators and consequently have a wholly discrete spectrum. In [8] Ibrahim extend their
results for a general ordinary quasi-differential expression M of nth order with complex
coefficients in the case of one singular end-point.
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Our objective in this paper is to extend the results in [1], [8] and [12] for a general
ordinary quasi-differential expression M in the cases of one and two singular end-points
by considering that f e L2 (a,b) for M [u] — Awu = wf and when all solutions of the
equations M [u] — Awu = 0 and M*[v] = dwv = 0 are in L2 (a,b) for some (and hence all
AeC). _

We deal throughout with a quasi-differential expression M of arbitrary order n defined
by a general Shin-Zett] matrix, and the minimal operator Ty (M) generated by w11 []in
LZ (1), where w is a positive weight function on the underlying interval I. The end-points
a and b of I may be regular or singular end-points.

2. Preliminaries

We begin with a brief survey of adjoint pairs of operators and their associated reg-
ularly solvable operators; a full treatment may be found in [2, Chapter II1], [3] and
[8].

The domain and range of a linear operator T acting in a Hilbert space-H will be
denoted by D(T') and R(T) respectively, and N(T') will denote its null space. The nullity
of T, written nul(T), is the dimenssion of N (T) and the deficiency of T def(T), is the
co-dimension of R(T) in H; if T is densely defined and R(T') is closed, then.def(T) =
nul(T™). The Fredholm domain of T is (in the notation of [2]) the open subset A3(T) of
C consisting of those values A € C which are such that (T — AJ ) is a Fredholm operator,
where T is the identity operator in H. Thus A € A3(T) if and only if (T' — AI) has
closed range and finite nullity and deficiency. The inder of (T — XI) is the number ind
(T = AI) = nul(T - AI) — def(T — AI), this being defined for ) € A3 (T).

Two closed densely-deﬁned operators A, B in H are said to form an adjoint pair if
A C B* and consequently B C A*, equivalently, (Az,y) = (z,By), forall z € D(A) and
y € D(B), where (.,.) denotes the inner-product on H.

The joint field of reqularity II(A, B) of A and B is the set of A € C which are such
that A € TI(A), the field of regularity of A, X € II(B) and def(A — AI) and def(B — )
are finite. An adjoiont pair A, B is said to be compatible if II(A4, B) # ¢. Recall that
A € II(A) if and only if there exists a positive constant K () such that 5

(A - ADz|| > K(A)||z|| for all z € D(A),

or equivalently, on using the Closed-Graph Theorem, nul (A= AI) =0 and R(A - XI) is
closed.

A closed operator S in H is said to be regularly slovable with respect to the compatible
adjoint pair A, Bif A C S C B* and II(A, B) N A4(S) # ¢, where

B4(8) = {A: X € Ay(S), ind(4 — AI) = 0}.

If AC .S C B* and the resolvent set p(S) (see [2]) of S is non-empty, S is said to be well-
~ posed with respect to A and B. Note thatif ACSCB*and A e p(S), then A € II(A)
and A € p(5*) C II(B) so that if def(A—XJ) and def(B — AI) are finite, then A and B are
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compatible; in this case S is regularly slovable with respect to A and B. The terminology
“reqularly slovable” comes from Visik s’paper [15], while the notion of “well-posed” was
introduced by Zhikhar in his work on J-self-adjoint operators in [19]. The complement
of p(S) in C is called the spectrum of S and written ¢(S). The point spectrum o,(S5),
continuous spectrum o¢.(S) and residual spectrum o,(S) are the following subsets of
o(S):

(i) A € 0p(9) if and only if R(S — AI) = R(S — AI) C H,

(ii) A € 6.(S) if and only if R(S — AI) C R(S — AI) = H,

(iii) A € o(S) if and only if R(S — AI) C R(S - AI) C H,

For a closed operator S we have

a(S) = a5(S) Uo.(S) U o.(S5).

An important subset of the spectrum of a closed densely-defined T" in H is the so-
called essential spectrum. The various essential spectra of T are defined as in [2, Chapter
IX] to be the sets,

el ) = C\Ay(T); k=1,2,3,4,8 (2.1)

A3(T) and A4(T) have been defined earlier.

The sets g, (T") are closed and 0.,(T") C 0.;(T) if k < j. The inclusion being strict
in general. We refer the reader to [2, Chapter IX] for further information about the sets
Oek (T)

We now turn to the quasi-differential expressions defined in terms of a Shin-Zettl
matrix A on an open interval I, where I denotes an open interval with left end-point
a and right end-point b, (—oc0 < a < b < 00). The set Z,(I) of Shin-Zettl matrices on
I consists of nxn-matrices A = {a,s} whose entries are complex-valued functions on I
which satisfy the following conditions:

Qpg EL%OC(I) (].ST,SSH,H.?_Z)
arr41 70 ae.onl (1<r<n-1) (2.2)
ars =0 aeonl 2<r+1<s<n)
For A € Z,(I) the quasi-derivatives associated with A are defined by:
yl =y
y["‘} = a".:v{—i—l (y[r—l])! - Z arsy[s—ll}: (1<r<n—1) (2.3)
s=1 .

n
y = (yIn=) — 3 apeylel
s=1

where the prime ' denotes differentiation.
The quasi-differential expression M associated with A is given by,

Mly] = i"y, (2.4)



108 SOBHY EL-SAYED IBRAHIM

This being defined on the set
V(M) :={y:yl"1¢ ACloc(I),r =1,2,...,n}, (2.5)

where AC)oc(I) denotes the set of functions which arc absolutely continuous on every

compact subinterval of I.
The formal adjoint M+ of M is defined by the matrix A* € Z,(I) given by:

At =_g=l g%y, (2.6)

where A* is the conjugate transpose of A and J,,,,, is the non-singular nxn-matrix,
drgn = ((_l)r 'r,n+1—s): (l <rs< n): (27)

¢ being the Kronecker delta. If A+ = {af,}, then it follows that,

CL+ = (_1)r+s+1an——s+1,n—r+l- (28)

rs

The quasi-derivatives associated with A+ are therefore:

=y, i
yg:"] = ((an~r,n—r—1)_1{(y-[:+l])’ - ZT: ("1)T+s+lan—s+l,n—r+ly£f+1]}
(Igr<n~1), = f (2.9)
y_[:ﬂ - (ygﬂ_’*—l])f _ il(_l)r+s+lan_s+l'ly[:—1],
s=

and
M*y] =i forall ye V(M) (2.10)
VIMY) = {y: 90 € ACWe(l), r=1,2,...,n}. (2.11)

Note that, (A*)* = 4 and so (M*)* = M. We refer to (2], [3], [5], [6] and [8] for a
full account of the above and subsequent results on' quasi-differential expressions. For
u€V(M),veV(M*)and a,8 € I, we have Green’s formula,

B
/ {TM[u] — WM o]} dz = [u, v)(8)  [u, v](a), (2.12)

where,

O 3 L )

r=0

Ut

= (=)™ (u L u[“—”) Lo |5 (z); (2.13)
_[n—l]
]
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see 8], [9] and [17, Corollary 1]. .
Let the interval I have end-point a, b (—00 < a < b < ), and let w be a function
which satisfies:
w>0 ae onl, weLj.(]). (2.14)

The equation,
My - wy =0 (AeC) (2.15)

on I is said to be regular at the left end-point a, if a is finite and for all X € (a,b),
a € R,w,a,s € L'(a,X),(r=1,2,...,n). (2.16)

Otherwise (2.15) is said to be singular at a. Similarly we define the terms regular and
singular at b. If (2.15) is regular on (a,b), then we have

a,bER w,a.s € L*(a,b), (r,s=1,2,...,n). (2.17)

Note that, in view of (2.8), an end-point of I is regular for (2.15), if and only if it is
regular for the equation,
Mty - dwy =0 (Ae€C) (2.18)

Let H = L2 (a,b), denote the usual-weighted L? -space with inner-product,
(1.9 = [ f@)g@w @) (219)

and norm ||f|| := (f, f)'/?; this is a Hilbert space on identifying functions which differ
only on null sets. Set,

D(M) := {u:u€ V(M),u and w ' M[u] € L2,(a,b)}, } (2.20)

DM*T):={v:veV(M*),vand wM*[v] € L2 (a,b)}.

Note that, at a regular end-point a, say, u['"‘l](a)(vk_l}(a)) is defined for all u €
V(M)(v € V(M™)),r = 1,2,...,n. The manifolds D(M) and D(M™) of L2 (a,b) are
the domains of the so-called mazimal operators T(M) and T'(M™) respectively, defined
by:

T(M)u:=w 'Mu](u€ D(M)) and T(MHv=w"M*[v](ve V(M.

For the regular problem the minimal operators To(M) and To(M™*) are the restrictions
of w™'M[.] and w~tM™*][.] to the subspaces,

Do(M) :={u:u € D(M),ul""U(a) =ul"-1(b) =0,r =1,2,...,n}
Do(M*) := {v:ve D(MH),o V@)=l ) =0,r=1,2,...,n} p (2.21)
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respectively. The subspaces Do(M) and Dy(M *) are dense in L? (a,b) and To(M),
To(M™) are closed operators (see [17, Section 3]). In the singular problem we first
introduce operators T (M ), Tg(M™), where To(M) is the restriction of w=1 /1 [] to

Do(M) :={u:ue D(M), supp(u) C (a,b)}, (2.22)

and with TJ(M™*) defined similarly. These operators arc densely-defined and closable
in L? (a,b) and we define the minimal operators Ty (M), To(M™) to be their respective

closures (cf [8] and [17, Section 5]). We denote the domains of To(M) and To(M™) by
Do(M) and Dy(M+) respectively. It can be shown that, if (2.15) is regular at a,

u € Do(M) —ﬁu[r‘l](a):O(r:1,2,...,n), (2.23)
v € Do(MT) ——>v_[:'_1](a) = {(r = L 250 y 1) '
Moreover, in both the regular and singular problems we have,
T3 (M) = T(M*), T*(M) = To (M), (2.24)

see [17, Section 5] in the case when M+ — M, and compare with the treatment in (2,
Section III. 10. 3] in the general case. Note that T4(M) is a closed densely-defined
operator in H.

In the case of two singular end-points, the problem on (a,b) is effectively reduced to the
problems with one singular end-point on the intervals (a,c] and [c,b), where ¢ € (a,b). We
denote by T'(M; a), T'(M;b) the maximal operators with domains D(M;a) and D(M;b),
and denote by Ty (M; a) and T), (M b) the closures of the operators Tg(M; a) and Ty (M; b)
defined in (2.22), on the intervals (a,c] and [c,b) respectively (see [5], [11], [12] and [16]).

Let Ty(M) be the orthogonal sum,

Ty (M) = Ty(M; 0) © TY(M: b) in L (a,b) = L2 (a,¢) ® L2 (c, b),
fo’ (M) is densely-defined and closable in L2 (a,b) and its closure is given by
To(M) = To(M;a) ® To(M; b).

Also,

nul[To(M) - M| = nul[Ty(M; a) — Al + nul[Ty(M; b) ~ Al],

def[To(M) — AI] = def[To(M; a) ~ M + def[Ty(M; b) — A,
and R[Ty(M) — Al] is closed if, and only if, R[To(M;a) — M| and R[To(M;b) — M) are
both closed. These results imply in particular that,

[Ty (M)] = H[To(M; a)] N T[T, (M; b)],

Remark 2.1. If §¢ i 5 regularly solvable extension of To(M;a) and St is a regularly
solvable extension of 7 (M;b), then S = S St regularly solvable extension of To(M).
We refer to [2, §I11.10.4] for more details.



ESSENTIAL SPECTRA OF GENERAL DIFFERENTIAL OPERATORS 111

Next, we state the following results; the proof is similar to that in [2, Section I11.10.4],
[9] and [12].

Theorem 2.2. TO(M) C To(M), T(M) C T(M;a) & T(M;b) and
dim{D[Ty(M)]/D[To(M)]} = n.
If X € T[T (M)] N Ag[To(M) — M, then
ind[To(M) — M) = n — def[To(M; a) — AI] — def [Ty (M; b) — AL,
and in particular, if X € T[T, (M),

def[To (M) — A1 = def[To(M; a) — AI] + def[To(M; b) — AT] - n. (2.25)

Remark 2.3. It can be shown that,

D[’fg(M)] ={u:u € D[Ty(M)] and ul=l(c)=0,r=1,2,... ,m}
' ; (2.26)
J

D[To(M*)] = {v:v € D[Ty(*M)] and W =0,r=12...n

see [2, Section II1.10.4].

3. Some Technicel Lemmas

Let ¢x(t,A) for K = 1,...,n be the solutions of the homogeneous equation (2.15)
satisfying :
qﬁg-k—ll(tg,,\) =dag k=¥ .., ,n for fixed to,a < tg < b.

Then gbg-k_l] (to, A) is continuous in (t,A) fora < t < b, |A| < 00, and for fixed t it is entire
in A. Let ¢} (¢,)) for k = 1,...,n be the solutions of the homogeneous equation (2.18)
satistying

(@ (t0, ) = (1876, ) for fixed & € [a,b),
k=1,...,n;7=1,...,n —1.
Suppose a < ¢ < b. According to Gilbert [7, Section 3] and Zettl in [17, Theorem 3J;

a solution of M[u] — Awu = wf, f € L}, (a,b) satisfying ¢ll(c) = 0,r = 0,...,mn—11is
given by

n t
80 = W6 3 &6, [ G N fhw(s)as, (3.1)
k=1 €

where ¢} (2, \) stands for the complex conjugate of ¢ (¢, ), and for each 7, k, &% is a
constant which is independent of t, ) (but does depend in general on ).



112 SOBHY EL-SAYED IBRAHIM

The variation of parameters formula for a general ordinary quasi-differential equation
is given by the following lemma:

Lemma 3.1. For f locally integrable, the sloution ¢(t,A) of the quasi-differential
equation M[y] — Awy = wf satisfying:

oM (t,A) = a1 (X)) forall r=0,1,...,n—1,t € [a,b)

is given by,

é(t,A) = Zaj(mt/\o)ﬂ(x o)/ (&)

n

(D7 55t M) ¢+ o) f (s)w(s)ds), (3-2)

k=1

for some constants a1 (A),...,an(A) € C.
Proof. See [4], [8], [12] and [17].
Lemma 3.1. contain the following lemma as a special case.

Lemma 3.2. Suppose f is locally L}, (a,b) funciton and ¢(t,\) is the solution of
My] — Mwy = wf satisfying:

o (to,N) = arp1(A) forall r=0,1,...,n— 1% € [a,b).

Then

(2, \) = Zag V8T (E 20) + (= 20)/(E7)).

(3 e ) [ 6T (5, %0)f (s)w(s)ds), (3.3)

k=1
forr=0,1,...,n—1; see [18].
Lemma 3.3. [8,Proposition 3.24]. Suppose that for some \g € C all solutions of
M{g]~ dowd =0 and M*[g*] - Rowg* = 0
are in L2 (a,b). Then, all solutions of
Mg — Awp =0 and MF[¢pt] — Awet =0

are in L2 (a,b) for every complez number A € C.
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Lemma 3.4. Suppose that for some complex number \g € C all solutions of the
equations

M[g] — dowg =0 and MHt[pt] — Xowe™ =0, (3.4)
are in L7, (a,b). Suppose f € L2 (a,b). Then all solutions of the equation M|[¢] — Adwe =
wf are in L2 (a,b) for all A € C.

Proof. Let {¢1(,,A0),...,¢n(., Ao)} and {65 (., X0),..., 03 (., X0)} be two sets of
linearly independent solutions of the equations in (3.4). Then for any sloution ¢(t, A) of
M[¢] — Aw¢ = wf which may be written as follows M[@] = dowd = (A — Xo)wod +w], it
follows from (3.2) that,

n

| n . t
o2 =3 e (05(6) + (3 €5t 00) | #76%0).

Fik=1

LA = X0)é(s,A) + £(s)]w(s)ds). (3.5)
Hence,

66,01 <3185 20+ 3 16113600 [ 147 2o,

J k=1

(1A = 20)l18(s, M| + | £ (s)])w(s)ds). (3.6)
Since f € Lj,(a,b) and ¢} (t,Ao) € L2 (a, b) for some Ao € C, k = 1,...,n, then
¢r (t,20)f € L% (a,b) for some Ao € C and k —= 1,...,n. Setting
n b
5N = 3 6% [ G0 feu(s)ds, k=1,...,m, (3.7)
Fob=1 a
then,

(66N < 3 {las (W] + ¢ (A Hs(t Ao)| + A = Aol D le.
Jj=1

j.k=1
t
(16 (£, 20)| / 187 (5, 20)16(s, A) ) (s)ds. (3.8)

On application of the Cauchy-Schwartz inequality to the integral in (3.8), we get

1982 < 3 (o) + ¢ ()5 (2, o) + A = ro] 3 Je4).
Jj=1 7.k=1

.|¢j(t,,\0)|(/ 187G, ,\0)|2w(s)ds)%(/ 16(s, \)Pw(s)ds)

From the inequalityi
(1 +0)? <200 +07), )
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it follows that,

wam%%ZmaP+ﬂmmu&W+m MPZmﬂz

k=1
-mmmmﬁ@%ﬁﬁﬂwmfwww%mm.
By hypothesis there exist positive constants Ky and K. 1 such that,
16:(, 2)lIL5(a,8) < Ko and - ¢f(, X0)lIL3(a,b) < K1 Gk=1,...,n.  (3.10)

Hence,

|6, M)I* < 4Z(|ag I+ ()i 8, 20)” +

HARZIA - %Pmem@u%Ffqu%w@ﬂ(mn

Jk=1

Integrating the inequality in (3.11) between a and t, we obtain
t
[ 166 0 Pw(s)ds < Ko +
a

+@KﬂA—Adzﬁimﬂﬁ)lW@&»@PLﬂWannﬁwﬁmdwwMS

5k=1

where
n

Ko =4K3 3 (las(WP + ().

Now, on using Growall’s inequality, it follows that,

/ |6(s, MPw(s)ds < Krexp(4KZ|A — Ao[? Z IEJ"’F/ |65 (s, Xo)*w(s)ds).

J k=1
Since ¢;(., Ao) € L% (a,b) for some Ag € C and for j =1,...,n, then, ¢(t,\) € L2 (a,b).
Remark. Lemma 3.4. also holds if the function f is bounded on [a,b).

Lemma 3.5. Let f € L2 (a,b). Suppose for some Ao € C that :

(i) Al solutions of M*[¢] — Xowe = 0 are in L2 (a,b),

(ii) ¢[r (£, Ao), J =1,...,n are bounded on [a,b) for some r = 0,1....n — 1. Then
(;S[ I(t,\) € L2 w(a, ) for any solution ¢(t,\) of the equation M[¢] — Awe = wf for all
reC.
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Proof. On using Lemma 3.2, the proof is similar to that in lemma 3:4 and therefore
omitted.

Lemma 3.6. Suppose that for some complex number Ao € C all solutions of M+ [v]—
dowv = 0 are in L% (a,c), where a < b < b. Suppose f € L2 (a,b), then,

¢
/qbf(s,/\)w(s)f(s)ds, F=1, . 0t

is continuous in (t,A) for a < t < b, for all ).
Proof. The proof follows from [7,Lemma 3.2.] and Lemma 3.4.

Lemma 3.7. [10, Theorem 4.1.]. The point spectra op[To(M)] and op[To(M )] of
To(M) and To(M) are empty.

Lemma 3.8. [2, Lemma IX.9.11] If I = [a,b], with —co < a < b < 0o, then for any
A € C, the operator [Ty(M) — M| has closed range, zero nullity and deficiency n. Hence

oex[To(M)] = {g’: g: - i %3)

4. The Case of One Singular End-Point

We see from (2.24) that To(M) c T(M) = [To(M™*)]* and hence Tp(M) and To(M™)
form an adjoint pair of closed, densely-defined operators in L% (a,b). By [3, Corollary
II1.3.2], def[To(M) — AI] + def[To(M+) — Al] is constant on the joint field of regularity
[To(M),To(M™)] and we have shown in [4] that,

n < def[To(M), ] + def[To (M) — X1] < 2n for all A € II(Ty (M), Ty (M*)].

For II(To (M), To(M™*)] # 0 the operators which are regularly solvable with respect to
To(M) and To(M™) are characterized by the following theorem which is proved for the
general case in [4] and [8]; see also [2] and [3, Theorem 10.5]. We shall use the notation

[u,v](b) = 11}13;1__ [w,v](z), u€ D(M)andve D(MT),

if b is a singular end-point of I , and similarly for [u,v](a) if a is singular. Note that it
follows from (2.12) that these limits exists for € D(M) and v € D(M™) since then
UM [u] and uM*[v] are both integrable by the Cauchy-Schwartz inequality.

Theorem 4.1. Let To(M) and To(M™) be compatible and suppose that def (To(M) —
M) = def(To(M*)~XI) =n forall A € H[To(M), To(M™T)]. Then every closed operator
S which is regularly solvable with respect to To(M) and To(M™) is the restriction of T(M)
to the set of function u € D(M) which satisfy linearly independent boundary conditions

[u’¢j](b) - [u, ¢J](a) =0, (.7 =1y 255 ':n)‘ (41)
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The set {¢1,¢2,...,8n} is a basis for {D(S*)/Do(M+)} where dim{D(S*)/Do(M+)} =
def(To(M ™) —XI), and S* is the restriction of T'(M™) to the set of functions v € D(M™)
which satisfy linearly independent boundary condtions :

[, 01(0) = [¢,0)(@) =0, (j=1,2,...,n) (4.2)

The set {t1,v3,...,4,} is a basis for {D(S)/Do(M)} where dim{D(S)/Do(M)} =
def(Tp(M) — A1) and

[V, 6k)(0) =[5, del(a) = 0, (j,k=1,2,...,n). (4.3)

Conversely, for arbitrary functions {d1, 02, ..., 00} ({¥1,10,... »%n}) in DT (D)
which are linearly independent modulo DF(Dy), it Dy (D) is the set of functions in
D(D*) which satisfy (4.1) (4.2) and (4.3) is satisfied, then S = T|D; is regularly solvable
with respect to To(M) and To(M™), and S* = T(M™*)|D,.

S is self-adjoint, (J-self-adjoint) if, and only if, M = M*(M+* = M) and i = ¢;(; =
gj) forj=1,2,...,n.

We shall now investigate in the case of one singular end-point that the resolvents of all
well-posed extensions of the minimal operator Ty(M), and we show that in the maximal
case, L.e., when def[Tp(M) — A1) = def[To(M+) — M]=nforall A € O[To (M), To(M)],
these resolvents are integral operators, in fact they are Hilbert-Schmidt integral operators
by considering that the function f be in L2 (a,b), ie., is quadratically integrable over
the interval [a, b).

The following theorem is an extension of that proved in Akhiezer and Glazman [1, Vol.
IT] and Naimark [12, Vol. IT) namely the case of self-adjoint extensions of the minimal
operator and the function f has compact support interior to [a,b), and also extends of
that proved in [8, Theorem 3.27] with compact support of the function [

Theorem 4.2. Suppose for an operator To(M) with one sigular end-point that
def[To(M) — M| = def[Ty(M*) — M) =n forall ) e M[To (M), To(M)], and let S
be an aribirary closed operator which is q well-posed extension of the minimal operator
To(M) and X € p(S), then the resolvents Ry and R} of S and S* respectively are Hilbert-
Schmidt integral operators whose kernels are continuous functions on [a,b) x [a,b) and
satisfy,

Kz, t.4) = K+, z, ),
and

/b /b |K (2, t, \)[*w(z)w(t)dzdt < co.

Remark. An example of a closed operator which is a well-posed with respect to a
compatible adjoint pair is given by the Visik extension (see [2, Theorem IT1.3.3] and [15,
Theorem 1]). Note that if S is a well-posed, then Ty(M) and To(M+) are a compatible
adjoint pair and S is regularly solvable with respect to To(M) and To(M™).
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Proof. Let
def[To(M) — X] = def[To(M™*) — M) =nforall A€ H[To (M), To(M)],

then we choose a fundamental system of solutions {61(6,2), .., 0 (8, M)}, 91 (8, 0), ...,
Yn(t, A)} of the equations,

M[qf)J] — /\quw =0, M+['t/)j] —'Xl,bjw =0, =318 ., on [a, b), (4.4)

so that {¢1(2,]),...,8.(t,A)} and {th1(t,),...,¥n(t, A)} belong to L2 (a, b), i.e., they
are quadratically integrable in the interval [a, b).

Let By = (S — AI)~! be the resolvent of any well-posed extensions S of the minimal
operator To(M). For f € L2 (a,b), we put ¢(¢,\) = Ry f, then

M[¢) - Mo =wf

and consequently has a solution ¢(t, A) in the form

#(t, ) = Zaj (N ;(to, \)

n b
HO=2)/M] 3 5t0,3) [ FFlo o) f(pwieds], (45

J,k=1

for some constants a1(A),-..,an(A) € C (see Lemma 3.1). Since, f € L2 (a,b) and
®r (- A0) € L2(a,b), k = 1,...,n for some do € C, then ¢f (., X0)f € LL(a,b), k =
L,...,n for some Ag € C, and hence the integral in the right-hand side of (4.5) will be
finite.

To determine the constants ¢;(A), j = 1,... n, let Y (8, A), k=1,... ,n be a basis
for {D(S*)/Do(M*)}, then because $(t,A) € D(S) C p(S) C A4(S), we have from
Theorem 4.1 that

[¢, ;] (b) — [6,%5)(@) =0, (k=1,... ,n) on (a,b), (4.6)

and hence from (4.5), (4.6) and using Lemma 3.2, we have

n

n b
(B9800 = 3= [es) + 10 =20/ 3 & [5G a0 hu()ds] gy, w0,

i=1 J k=

[, 95)@) =) a;j(Nbs,971(a), k=1,....n.
=]

By substituting these expressions into the conditions (4.6), we get

n n b .
[ X a0+ =20/ Y 6% [ G600 feh(o)ds] gy, w70

Jk=1
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¢j(A)[¢;,¥F](a). This implies the system

NE

1

e,
]

b

M

cj(A) ([¢j= %b:f])a
1

LY
Ii

n b
= =10 =200/ 3 85,9810 [ 9F G N ehws)ds], (47)
Jk=1 @
in the variables a;(\), = 1,2,...,n. The determinent of this system does not vanish

(see [8, Theorem 3.27] and [12]). If we solve the system (4.7), we obtain

b
o0 = [k = Ao)/i”][/ hi(s, N f(SYw(s)ds], j=1,2,...,m,

where h;(t, A) is a solution of the system

> hi(s N 85,91 = — 3 €185, wF10)5E (5, 30). (48)
i=1 k=1

Since, the determinent of the above system (4.8) does not vanish, and the functions
¢';:(t,)\0), k =1,...,n are continuous in the interval [a,b), then the functions hj(t, )
are also continuous in this interval. By substituting in formula (4.5) for the expressions
a;j(A), (j =1,...,n), we get

R)\_f = ¢(t: /\)
= (O=20)/] 32 65(t:30) [ €705, 30) + b5, M) (s)(s)ds

7. k=1

3 b
+ 3065t 0) [ hy(s, 0 f(s)w(s)ds]. (49)
j=1 ¢

Now, we put

[(A— AO)/in}FZ}ﬁ;l @5 (t, Ao)h;(s, )\)} fort < s

[(A = 20) /8] | 327 ket 85(8: 20) (€75 67 (5, Ag) + (s, /\)]] fort > s
(4.10)

K(t,s,)\) = {

Formula (4.9) then takes the form,
b
Raf(t) = / K (t,5,) f(s)w(s)ds for all ¢ € [a, b), (4.11)

ie.,, Ry is an integral operator with the kernel K (t,s,\) operating on the functions
f € Li,(a,b). Similarly, the solutions ¢+ (¢,A) of the equation M*[1)] — Xwtp = wg has
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the form,

61 (5,0) = 3 a;(M)gt (s, Ao

HO=X)/P)[ 32 ot 00) [ e Rlauie)ar] (4.12)
Jk=1 a

where ¢ (t, Ag) and qu (5,20), 4,k =1,...,n are solutions of the equations in (4.4). The
argument as before leads to,

b
Rig= / K+(s,t,X)g(t)w(t)dt for g € L2 (a,b), (4.13)

i.e., is an integral operator with kernel K*(s; 1, X) operating on the functions g € L2 (a, b),
where

K+(s,1,3) = [(:)E - 50)/2”] Z?:l G’);-(S, )\o)h;'(f.f, /\)] for s < ¢
(8= 20)/47) 325 ms 85 (5, 20) (CFFFE 30) + i (5, V)] for s> ¢
(4.14)
and h;."(t, A) is a solutions of the system,
SoRFEN [Wr 811 = = 3 Ml 67 10)u(t, Do), (4.15)
j=1 Jik=1

From definitions of R, and X» it follows that,
b b
(Raf,g) = / { f K (t,5,0) (s)w(s)ds  gw(t)ds
b b
= [{ [ Ko 0a@u0) sohutsrts = (1,739 (016

for any continuous functions f,9 € H, and by construction (see (4.10) and (4.14))
K(t,s,A) and K+(s,¢,) are continuous functions on [a,b) x [a,b), and (4.16) gives
us

K(t,s,A) = K+(s,t,)) forallt,sec [a, b) x [a,b). (4.17)

Since ¢;(t,A), ¢} (s,A) € L2 (a,b) for (j,k = 1,...,n) and for fixed s, K(t,s,]) is a
linear combination of ¢;(t,A), while, for fixed ¢, K *(s,t,X), is a linear combination of
o3 (s,A). Then we have,

b b
/ K (£, 5, 1) Pw(t)dt < oo, / KF (s, D)Pw(s)ds < 00, a<s,t<b
a Q
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and (4.17) implies that,
b b ﬁ_
[ K (2, 5, 0)Pw(s)ds :/ K+ (s, 8, X)Pw(s)ds < oo,
b - b
/ JE (5,8, M) [Pw(t)dt :/ |K (¢, s, \)|Pw(t)dt < oco.

Now, it is clear from (4.8) that the functions hj(t,A), (j =1,...,n) belong to L2 (a,b),
since h;(t,A) is a linear combination of the functions qu-'(t,)\) which lie in L2 (a,b) and
hence h; (¢, A) belong to L2,(a,b). Similarly h(t,A) belong to L2 (a,b).

By the upper half of the formula, (4.10) and (4.14), we have

b b
/ w(t)dt/ K (2, 5, 2)Pw(s)ds < oo,
Q L

for the inner integral exists and is a linear combination of products ¢,(t, N7 (s, A)
(B 2= 1, voonsy n) and these products are integrable because each of the factors belongs to
L?,(a,b). Then by (4.17), and by the upper half of (4.14) ,

/bw(t)dt/f]K(t, $, A)2w(s)ds = /b w(t)a,’t/tE [K*(s,t,A)|?w(s)ds < co.

a

Hence, we also have,

b pb
/ f [K (t, 5, \)Pw(t)w(s)dtds < oco.

and the theorem is completely proved for any well-posed extension.,

Remark 4.3. It follows immediately from Theorem 4.2 that, if for an operator
To(M) with one singular end-point that, def[To(M) — M| = def[To(M ™) — X = n for
all A € II[Ty (M), To(M)], and S is well-posed with respect to To(M) and To(M™) with
A € p(S), then Ry = (S — AI)~! is a Hilbert-Schmidt integral operator. Thus it is a
completely continuous operator, and consequently its spectrum is discrete and consists
of isolated eigenvalues having finite algebraic (so geometric) multiplicity with zero as the
only possible point of accumulation. Hence, the spectra of all well-posed operators S are
discrete, i.e.,

oek(S) =0, fork=1,234,5. (4.18)

We refer to [2, Theorem IX.3.1] for more details.

5. The Case of Two Singular End-Points

For the case of two singular end-points, we consider our interval to be = (a,b) and
dencte by To(M) and T(M) the minimal and maximal operators. We see from (2.24)
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that To(M) C T(M) C [To(M™*)]* and hence To(M), To(M™) form an adjoint pair of
closed densely-defined operators in L2 (a, b).

Lemma 5.1. For ) € H[TQ(M),TO(M+)], def[To(M) — M| + def[To (M) — XI] s
constant and
0 < def[Th(M) —/\I]+def[Tg(M+)—XI] < 2n. (5.1)

In the problem with one singular end-point,
n < def[To(M) — M) + def[Ty (M) — X < 2n,
for all X € U[To (M), To(M)]. In the regular problem,
def[To(M) — AI] + def[To(M ™) — XI] = 2n.

Proof. See [4] and [9, Lemma 3.1].
For A € n[To(M), To(M™)], we define r, s and m as follows:

r=r(A) : = def[To (M) — ] )
= def[To(M;a) — M| + def[Ty(M; b) — M| —n
=nr + To—T

s =38(A) : = def[To(M*) — XI]
= def[To(M™;a) — M) + def[To(M+;b) — XI] - n
=81+ 82 —n,

f (5.2)

and

m:=r+s. J
Since,
r=ry+r; —n, § =81 + 82 —n,

then,

= (T‘l + 31) -+ (7‘2 + .5‘2) — 2n (53)

m=r+s=(r +712 —n)+ (51 + 53 —n)
=mi + mqs — 2n.

Also, since, n < m; < 2n (¢ =1,2,), then by Lemma 5.1 we have that,
0<m < 2n. (5.4)

For II[Ty (M), Ty (M *)] # 0, the operators which are regularly solvable with respect
to To(M) and To(Mt) are characterized by the following theorem which was proved in
[9, Theorem 3.2].

Theorem 5.2. For ) ¢ O[To (M), Ty(M™)], let v and m be defined by (5.2) and let
Vil =1,2,...,r), pp(k =1 + 1,...,m) be arbitrary functions satisfying:

) {¥:7=1,...,r} c D(M) is linearly independent modulo Do(M) and {¢r : k =
r+1,....,m} CD(M") is linearly independent modulo Do(MT);
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(i) [¢;,v%](a) - (%5, #](B) =0 (j = L...,mk=r+1,...,m).

Then the set,
{u:ue D(M),[u,di](a) - [u, $r](0) =0,k =r+1,...,m} (5.5)

is the domain of an operator S which is reqularly solvable with respect to To(M) and
To(M™*) and

{U:’UED(M-'_):[wj’v](a)_[szv](b) =0, j= 1:21"':T} (56)

is the domain of S*; moreover \ € A3z(S).

Conversely, if S is regularly solvable with respect to Tp(M) and To(M+) and X €
II[To(M), To(M*)] N Ag(S), then with r and m defined by (5.2) there exist funcitons
YiG=1,....,r), ¢k =71 +1,. .-,™) which satisfy (i) and (ii) and are such that (5.5)
and (5.6) are the domains of S and S* respectively.

S is self-adjoint if and only if M = Mt r=sand ¢ = Ye-r(k=r+1,...,m); S
is J-self-adjoint if M = JM*J (J is a complex conjugate), r = s and ¢, = Yy (k=
v+ L, .o

For an operator Tp(M) with two singular end-points, Theorem 4.2 remains true in its
entirely, that is all well-posed extensions of the minimal operator Tp(M) in the maximal
case, i.e., when ry =r, = n and 81 = 83 = m in (5.2) have resolvents which are Hilbert-
Schmidt integral operators and consequently have a wholly discrete spectrum, and hence
Remark 4.3 also remain valid. This implies as in Corollary 5.3 below that all the regularly
solvable operators have standard essential spectra to be empty. We refer to [1], [2], [12]
and [16] for more details.

Now, we prove Theorem 4.2 in the case of two singular end-points.

Proof. Let,
Aef[To (M) — A1) = def[To(M*) — XI] = n for all X € O[T (M), To(M )],
then we choose a fundamental system of solutions

_ J 97(t,A) on (a,(] . _ [ ¥%(t, ) on (a,(]
360 = { A on ool ang wg(t,A)—{w;,;(t, g

of the equations
MIj] = Mwd; = 0, M*[y;) — Xwnp; =0, j = 1,...;n on (a,b). (5.7)

- so that {¢1(2,A)s- -+, dn(t, A)} and {4 (¢, As-- > ¥n(t,A)} belong to L2 (a,b), i.e., they
are quadratically integrable in the interval (a,b).
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Let Ry = (S — AI)™! be the resolvent of any well-posed extension .S = 5@ S of
the minimal operator To(M). For f ¢ L2 (a,c) ® L2(c,b), we put ¢(z, A) = Rxf(t), then
M(#) — Mw¢ = wf and hence as in (4.5) we have,

Raf(t) = a;j(Na;(to, \)

j=1
n t
HO =20/ 37 6 ¢5(t0,3) / &1 (s, 20 f(s)u(s)ds],  (58)
7.k=1 B
for some constants a;(A),...,a,()\) € C, where

_ J 9*(t,A) on (a,(]
bl 4) = {qbb(t,/\) on [, b).

By proceeding as in Theorem 4.2, we find that
b
a; () = [\ — Ao)/z'"][/ by (s, N (s)w(s)ds], G =1,...,n,

where h;(Z, A) are continuous functions on the interval (a,b),

h$(t,A) on (a, ]
: — )y
gl ) = {h;’-(t,/\) on[c,b), 7=1,...,n.

By substituting in (5.8) for the constants a;j(A), i =1,...,n, we get,
b
Ry f =/ K(t,s, ) f(s)w(s)ds
where,

_ J K%,s,A) on (a,c
K(t,9,4) = {Kb(t,s,/\) on [c,b).

and K()(t, s, A) can be obtained as in (4.10). Similarly,
Rig = /b K*(s,t,A)g(s)w(s)ds.
Form (4.10) and (4.14) we have that,
fb |K (¢, 5, \)|>w(t)dt < oo, /b K (s,t, N)*w(s)ds < 00, a<s,t<b
a a
and (4.17) implies that,

b b
/ K (2, 5, ) Pw(s)ds = / o 8, Pl 3,

23

/b [KF (5,8, X)Pw(t)dt = /b K (t, 5, ) [Pw(t)dt < co.
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The rest of the proof is entirely similar to the corresponding part of the proof of
Theorem 4.2. We refer to [1], [8] and [12] for more details.
Corollary 5.3. Let \ € M[To (M), To(M™)] with
def[To(M) — M| = def[To(M™*) — XI] = n.

Then,
oer(S) =0, (k=1,2,3), (5.9)

of all requiarly solvable extensions S with respect to the compatible adjoint pair To(M)
and TQ(M+)

Proof. Since,
def[To(M) — M| = def[To(M*) — M]=nforall X e O[To (M), To(M™)]
Then we have from [2, Theorem II1.3,5] that,
dim{D(S)/Do(M)} = def[To(M) — Al] = m,
dim{D(8*)/Do(M ™)} = def[To(M™*) — XI] = n.
thus S is an n-dimensional extension of To(M) and so by [2, Corollary IX.4.2],
Oek(S) = oer[To(M)], (k= 1,2,3), (5.10)
From Lemmas 3.7 and 3.8 we get,
oer[To(M)] =0, (k=1,2,3)
Hence, by (5.10)we have that

oer(S) =0, (k=1,2,3).

Remark 5.4. If S is well-posed (say the Visik extension) we get from (4.18) and
(5.10) that
O’ek[Tg(M)]:m, (k:1,2,3)

On applying (5.10) again to any regularly solvable operators S under consideration, hence
(5.9).

Corollary 5.5. If for some Ao € C, there are n linearly independent solutions of
Mlu] — Aowu = 0 and M*[v] = Xowv = 0 in L2 (a,b), then Xy € H[To(M), To(MT))],
and hence I[To(M), To(M*)] = C and Oek[To(M), To(M™*)] = 0, k = 1,2,3, where
0ek[To(M), To(M™)] is the joint essential spectra of To(M) and To(MY) defined as
I[To (M), To(MH))].
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Proof. Since all solutions of M[u] — Apwu = 0 and M*[v] — Agwv = 0 are in L? (a,b)
for some Ag € C, then

def[To(M) — AoI] + def[To(M ™) — AoI] = 2n for some Ag € [Ty (M), To(M)].

From Lemma 3.7, we have that T,(M) has no eigenvalues and so [To(M) — AgI] ™! exists
and its domain R[To(M) — Ao!] is a closed subspace of L2 (a,b). Hence, since Ty(M) is
a closed operator, then [To(M) — AI]~! is bounded and hence II[Ty(M) = C. Similarly
II[To(M*)] = C. Therefore II[To (M), To(M )] = C and hence,

def[To (M) — M| + def[To(M*) = X] = 2n for all A € T[T(M), To(M™)].

Form Corollary 5.3 we have for any regularly solvable extension S of To (M) that oex (S) =
0 and by (5.10) we get gex[To(M )] =0, k =1,2,3. Similarly o.x[To(M™*)] = 0. Hence,
oer[To(M), To(M™)] =0, k= 1,2,3.

Remark 5.4. If there are n linearly independent solutions of the equations M[u] —
Awu = 0 and M*[v] — dwv = 0 in L2 (a, b) for some \g € C, then the complex plane can
be divided into two disjoint sets:

C = U[To(M), To(M¥)] U ger[To(M), To(M*)], k=1,2,3.

We refer to [13] and [14] for more details.
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