TAMKANG JOURNAL OF MATHEMATICS Volume 30, Number 2, Summer 1999

GROUPS WITH SMALL CONJUGACY CLASSES

G. A. HOW AND F. C. CHUANG

Abstract. A group satisfies property (*) iff every conjugacy class has size not greater than 2. This paper proves properties of this type of group and conclude that it is a central product of an abelian group with 2-groups that are "almost" extra special.

I. Introduction

All groups considered are finite groups. All characters are over the complex number field.

Let us say that a group satisfies property (*) iff every conjugacy class of G has size not greater than 2. This is obviously equivalent to the condition that $\forall x \in G$, $[G: C_G(x)] \leq 2$. This paper is to characterize all groups with property (*).

In Section II, the problem of characterizing all groups with property (*) is reduced to characterizing all such 2-groups, and some examples are given.

In Section III, we show the strong similarity between 2-groups satisfying property (*) and the extra special 2-groups. Our conclusion is:

A group satisfying property (*) is the direct product of an abelian group with an "almost" extra special 2-group.

II.

We reduce the problem of characterizing all groups with property (*) to characterizing all such 2-groups. Two lemmas are needed.

Lemma 1. If G satisfies property (*), then

(1) All subgroups of G also satisfy property (*)

(2) All Sylow subgroups of odd order of G are abelian

Proof. Let $H \leq G$, $\forall x \in H$, $[G : C_G(x)] \leq 2$ as G satisfies property (*). If $H \subseteq C_G(x)$, then $[H : C_H(x)]$ is clearly 1. If $H \not\subseteq C_G(x)$ then $HC_G(x) = G$ and clearly in this case $[H : C_H(x)] \leq [G : C_G(x)] \leq 2$. This proves (1).

Received July 20, 1998; revised December 30, 1998.

1991 Mathematics Subject Classification. 20D99.

Key words and phrases. Conjugacy classes, extra special p-groups.

Sylow subgroup P of G satisfies property (*) by (1). Thus $\forall x \in P$, $[P : C_P(x)] \leq 2$. If P has odd order, the only possibility is $[P : C_P(x)] = 1$. This proves (2)

Lemma 2. If G satisfies property (*), then G is nilpotent of class two.

Proof. $\forall x \in G$, $[G : C_G(x)] \leq 2$ implies that $G' \subseteq Z(G)$. Thus G is nilpotent of class 2.

Lemma 2 asserts that G is a direct product of all its Sylow subgroups. By Lemma 1, all Sylow subgroups of odd orders are abelian. So we conclude that G is a direct product of an abelian group with a 2-group satisfying property (*). Thus, this reduces the problem to characterizing 2-group with property (*).

Theorem 1. Let G be a non-abelian 2-group. G satisfies property (*) iff |G'| = 2.

Proof. Assume one conjugacy class of G has size greater than 2. Let x, y, z be its distinct elements. Then there exists $g_1, g_2 \in G$ such that $y = g_1^{-1}xg_1, z = g_2^{-1}xg_2$. These give rise to two distinct nonidentity elements of G', namely, $yx^{-1} = g_1^{-1}xg_1x^{-1}$ and $zx^{-1} = g_2^{-1}xg_2x^{-1}$. We have prove that |G'| = 2 implies G satisfies property (*).

Conversely, assume G satisfies property (*). Let $|G| = 2^n$, $|G'| = 2^{\alpha}$, $|Z(G)| = 2^{\beta}$. Each element in Z(G) forms a conjugacy class, and every two elements outside Z(G) form a conjugacy class. Thus G has $\frac{|Z(G)+|G|}{2}$ conjugacy class, and $\frac{|Z(G)+|G|}{2}$ irreducible complex characters. Using the equality for character degree $\sum_{\chi \in Irr(G)} \chi(1)^2 = |G|$, and the fact that G has [G:G'] linear characters, we get

$$[G:G'] + \left(\frac{|G| + |Z(G)|}{2} - [G:G']\right) 4 \le |G|$$

i.e. $2^{n-\alpha} + \left[\frac{2^n + 2^\beta}{2} - 2^{n-\alpha}\right] 4 \le 2^n$

This forces $\alpha = 1$, and so |G'| = 2.

By Theorem 1, all extra special 2-groups satisfy property (*), but the converse is not true, since any abelian group obviously satisfies property (*). Even if we assume G to be directly indecomposable, the converse is still not true. In fact, take $A = \langle x \rangle$, the cyclic group of order 2^n , and extend it by a 2-cycle σ where $x^{\sigma} = x^{2^{n-1}+1}$. The group obtained has order 2^{n+1} with commutator subgoup of size 2. Thus it has property (*), yet it is directly indecomposable and not extra special.

III.

Some basic character theory are needed here,

Theorem A. (Isaac) [3] Theorem 6.18

Let G be a group, K/L be an elemetary abelian chief factor of G. Let $\chi \in Irr(K)$ and suppose that χ is G-invariant. Then one of the following holds:

(1) $\chi_L \in Irr(L)$

(2) $\chi_L = e\theta$ where $\theta \in Irr(L)$ and $e^2 = [K:L]$

(3) $\chi_L = \sum_{i=1}^t \theta_i$ where t = [K : L] and the $\theta_i \in Irr(L)$ are distinct.

Theroem B. (Itô) [1] Theorem 6.15 Let A be any abelian normal subgroup of G. Then $\forall \chi \in Irr(G), \chi(1)|[G:A].$

Theorem C. [3] Theorem 6.11

Let $H \leq G$ and θ be an irreducible character of H which is invariant in G. Let $I_G(\theta)$ be the inertial subgroup of θ . Then $\exists \zeta \in Irr(I_G(\theta) \text{ such that } \zeta^G \in Irr(G) \text{ and } \zeta_{I_G(\theta)} = \theta$.

Lemma 3. Let A be an abelian normal subgroup of G such that G/A is abelian. Then any nonlinear irreducible character of G is induced from some linear character of some normal subgroup N of G with $A \leq N \leq G$.

Proof. Since G/A is abelian, $G' \leq A$.

Let $G = G_0 > G_1 > G_2 > \cdots > A$ be a chief series of G through A. Each chief factor G_i/G_{i+1} has prime order. Let χ be any nonlinear irreducible character of G. χ_A reduces as A is abelian, so we choose k such that χ_{G_K} is irreducible but $\chi_{G_{k+1}}$ reduces. Clearly χ_{G_K} is invariant in G. By Theorem A, $\chi_{G_{k+1}} = \sum_{i=1}^{P} \theta_i$ where $P = [G_k : G_{k+1}]$ is a prime, and θ_i are distinct irreducible character of G_{k+1} . Thus the inertia group $T_1 = I_G(\theta_1 \text{ is a proper subgroup of } G$. By Lemma C, $\exists \gamma \in Irr(T_1 \text{ such that } \gamma^G = \chi$ and $\gamma_{G_{k+1}} = \theta_1$.

Note that $T_1 \triangleleft G$ as $T_1 \ge A \ge G'$, so if γ is linear, the proof is complete. If γ is nonlinear, then consider the situation where A is an abelian normal subgroup of T_1 , and T_1/A is abelian. By induction on |G|, every nonlinear irreducible character of T_1 is induced from some linear character of some normal subgroup N of T_1 with $A \le N \le T_1$. In particular, $\exists \theta \in Irr(N), \ \theta(1) = 1$ and $\theta^{T_1} = \gamma$. Thus $\theta^G = \gamma^G = \chi$. Note that $N \triangleleft G$ as $G' \le N$. This complete the proof.

Corollary 4. Let G be a metabelian group. Then any nonlinear irreducible character of G is induced from a linear character of some normal subgroup N of G with G' < N.

Proof. Take A = G' in Lemma 3.

Theorem 2. Let G be a nonabelian 2-group with property (*). Then

- (1) All nonlinear irreducible characters of G have the same degree equals $[G: Z(G)]^{\frac{1}{2}}$.
- (2) All maximal abelian normal subgroups of G have the same order. Fix any maximal abelian normal subgroup A, then any nonlinear irreducible character of G is induced from some linear character of A.
- (3) $\Phi(G) \leq Z(G)$, where $\Phi(G)$ is the Frattini subgroup of G.

Proof. By Theorem 1, |G'| = 2, so G is metabelian. Let χ be any nonlinear irreducible character of G. Cor 4 asserts that χ is induced from some linear character θ of some normal subgroup N with $G' \leq N \leq G$. By Clifford's Theorem, $\chi_N = k \sum_{i=1}^{s} \theta_i$, where θ_i are conjugate to $\theta_1 = \theta$. Thus Ker $\chi \geq N'$. As |G'| = 2, either N' = G' or

 $N' = \{e.N' = G' \text{ means Ker } \chi \ge G' \text{ contradicting the nonlinearity of } \chi.$ So $N' = \{e \text{ and } N \text{ is abelian. Clearly } N \text{ is maximal abelian or else } \theta^G \text{ reduces.}$

If $\chi_1, \chi_2 \in Irr(G)$ are nonlinear. By the above argument, there exists maximal abelian normal subgroup N_1, N_2 of G such that $\chi_1 = \theta_1^G, \chi_2 = \theta_2^G$ where $\theta_i \in Irr(N_i$ i = 1, 2. By Theorem B, $\chi_1(1)|[G : N_2] = \chi_2(1)$ and $\chi_2(1)|G : N_1] = \chi_1(1)$ proving $\chi_1(1) = \chi_2(1)$. This proved that any two nonlinear irreducible character of G have the same degree. Using the equality $\sum_{\chi \in Irr(G)} \chi(1)^2 = |G|$, we get $[G : G'] + (\frac{|G|+|Z(G)|}{2} - [G;G'])\chi(1)^2 = |G|$ and this forces $X(1)^2 = [G : Z(G)$. This proved (1). To prove (2), let A be any maximal abelian normal subgroup of G and χ any nonlinear irreducible character of G. By Lemma 3, $\exists N \triangleleft G$ such that $A \leq N \leq G$ and $\chi = \theta^G$ with θ a linear character of N. Note that $G' \leq A \leq N$. By the same argument as in the first part of the proof, we see that N is abelian and so N = A as A is maximal abelian normal in G. This in particular shows that $[G : A] = \chi(1)$, or $|A| = |G|/\chi(1)$. This proves (2).

 $\forall x \in G, \text{ if } x^2 \notin Z(G), \text{ then } \exists y \in G \text{ such that } x^2yx^{-2}y^{-1} \neq e. \text{ So } xyx^{-1}y^{-1} \neq e. \text{ As } |G'| = 2, \text{ we must have } x^2yx^{-2}y^{-1} = xyx^{-1}y^{-1} \text{ and this forces } xy = yx, \text{ a contradiction.}$ Thus $G^2 \leq Z(G) \text{ and } \Phi(G) = G'G^2 \subseteq Z(G).$

Theorem 2 shows strong similarity between nonabelian 2-group with property (*) and extra special 2-group.

A group G is a central product of its subgroups N_1, \ldots, N_k if $G = N_1 N_2 \ldots N_k$ and for each $x \in N_i, y \in N_j, i \neq j$, then $x^{-1}y^{-1}xy = e$. See [1] pg 179.

Theorem 3. If G is a nonabelian 2-group satisfying property (*), then G is a central product of 2-generator groups and an abelian group.

Proof. Without loss of generality, we assume that G is directly indecomposable. Let $x \in G \setminus Z(G)$, so $[G : C_G(x)] = 2$. Choose $y \in G \setminus C_G(x)$, and let $A = \langle x, y \rangle$. Obviously, $[G : C_G(y)] = 2$ and hence $C_G(A)$ has index 4 in G. As $[A : Z(A)] \ge 4$, we have

$$|AC_G(A)| = \frac{|A||C_G(A)|}{|Z(A)|} \ge |G|$$

So $AC_G(A) = G$. We conclude that G is a central product of A and $C_G(A)$. Now $C_G(A)$ being a subgroup of G also satisfies property (*). If it is abelian, the proof is complete. Otherwise, use induction on |G| to conclude that $C_G(A)$ is a central product of 2-generator groups with an abelian group. $C_G(A) = A_2A_3\cdots A_sL$ where A_i are 2-generator groups and L is abelian. So $G = AA_2A_3\cdots A_sL$ is a central product of 2-generator groups and an abelian group as required. This complete the proof.

References

- [1] L. Dornhoff, Group Representation Theory, Part A. Marcel Dekker, New York, 1971.
- [2] G. A. How, Special Classes of Monomial Groups III, Chinese Journal of Mathematics 12 (1984), 199-211.
 [2] J. M. J.
- [3] I. M. Isaacs, Character Theory of Finite Groups, Academic Press, New York, San Franscisco, London, 1976.

 [4] I. M. Isaacs and D. Passman, Groups with Representations of bounded degree, Canad. J. Math. 16 (1964), 299-309.

School of Mathematical Sciences, University Sains Malaysia, 11800 Pulau Pinang, Malaysia. Department of Applied Mathematics, Feng Chia University, Taichung, Taiwan.