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ON A CLASS OF FUNCTIONS OF COMPLEX ORDER

S. ABDUL HALIM

Abstract. Denote by R(b), the class of normalized analytic functions f which satisfies Re(l 十
r;(f'(z) - 1)) > 0, for z ED= {z: lzl < 1} and b a non-zero complex number. In this paper,
some results concerning functions belonging to this class are being considered

1. Introduction

Denote by A the class of functions f which are normalized such that f (0) = f'(0)-1 =
0 and analytic in the unit disc D = {z : I z I < 1}. Also denote by S, the subclass of A
consisting of all univalent functions in D.

Let P be the class of functions p(z) = l + L了~1 Cn玕 which are analytic and also
have a positive real part in D. A function f is said to be starlike if and only if, for z ED,
Re疣f > 0. The well-known class of starlike functions which we shall denote by S* is
a subclass of S and have been extensively studied, see [3), (4) and [14). In [13), Nasr and
Aouf intorduced the class consisting of functions which are starlike of complex order.
Functions f belonging to this class, say S* (b) are those which satisfied the following
condition:

Re(1 + 1 zf'(z)
b (f(z) - 1)) > O,

J. W. Alexander in [lJ intorduced the class R consisting of normalized analytic functions
whose derivative has a positive real part, and proved that for z E D, if f belongs to R
then f is univalent, i.e. R c S. This class 冗 has also been considered quite extensively
by Macgregor (see [81). We now mtroduce an extension of this class via the following
definition.

z ED and b =/ 0, b EC.

Definition 1.1. A function f E A is said to belong to the class R(b), if and only if,
for z ED

Re (1 + t (!'(z) - 1)) > 0

where b is a non-zero complex number.

(1)
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Note that R(l) =冗
In this paper, the author gives some results concerning functions in R(b).

2. Preliminary Results

C2Z2
十 ．．．，

Lemma 2.1 [6]. For any complex numberµand p E P given by p(z) = l + c1z 十

lc2 -µcil S 2 max{l, jl - 2µj}.

Lemma 2.2 (9). Suppose that the function 心 ：C2 X fl --r (C satisfies the cond山on

Re 心 (ix, y, z) S 0

for all x, y s -(1 +巧/2 and all z E D.

If the function p(z) is analytic in D, with p(O) = I and if

Re 心 (p(z), zp'(z), z) > 0 for z ED,

then Re p(z) > 0 in D.

3. Some Properties of R

Theorem 3.1. Let f E R(b). If Re b~jb尸 then f is univalent

Proof. First, we write b = lbJeiu. Now, since Reb~Jbl2, it follows that 圍 :s; 1 and
回 ＜囹. Next, inequality (1) implies that

f'(z) I
Re了 >Re(,;) - I 2: 0,

provided Reb 2: 丨bl2.

Thus, we have
Ree刁，J'(z)>O

and hence f is univalent.

Remark 3.1. The question of whether the converse of Theorem 1 is true or not
remains open. On the other hand, one can construct a non-univalent function belonging
to R(b) for which bis outside this disc.

Our next theorem looks at d·1stort10n results for f E R(b).

Theorem 3.2. Let f E R(b). Then for z = rei8 ED,

(i) 2jbj(log(l + r) - r)十憎 ::; lf(z)I ::; (1 - 2jbl)r 一 2lbl log(l - r),
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(ii) 盟－誓 ~lf'(z)I~(1 - 2lbl)十巒

Proof. From (1), we write

J'(z) = b(p(z) - I)+ 1

where p(z) = 1 + I:~1 Cn玕 E P. Thus for z = rei8 ED,

00

lp(z)I - 1 ::; 芝區可
n=l

00

竺 芝严
n=l

l+r= -1+— .1-r
Here, we use the known result that le司 ::; 2, (2) and (3) then gives

If (z)I = lz + b 1oz (p(t) - l)dtl

::; r 一 2lbl(r + log(l - r)),

which is the upper bound in (i).
To prove the lower bound in (i), write

I竺曰江 J'(t)dtl

= lbl/~1z (p(t) - l + })dtl

~lbjRe{ 11z (p(t) - l + i)dt}

Next, write t = pe也 we have

lf(z)I 2: rjbl{} for Re(p(pei8) - l + })dp}

2: lbl{ 1T閂）dp-r +rRei}

= -2rjbl + 2lbl log(l + r) 十工 Re b.
lbl

The upper bound in (ii) follows at once from (2) and (3).
Finally, for the lower bound of (ii), write

If'(z)丨= jbj,p(z) - I+ -I
bl
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2:: jbjRe(p(z) - 1 + -1

三:-1三
which gives the result.

Thoeren1 3.3. Let f E R(b). Then for z = reiO ED,

(i) Ref'(z) 乏 1-占(lbl - r Re b),
(ii) Re生 21-2Reb+~

r (lbl + Re b)十三r (lbl + Re b).
We note that for b = l, (ii) reduces to a result proved by Hallenbeck (5].

Proof. in [12], Nasr and Aouf showed that if p E P, then

Re[b(p(z) - 1) + lJ 2 1 2r-—(lbl - Re b).1 一 r2
hence, using (2), (i) follow trivially.
Next,

Re俘 =Re{江 [bp(t) + l - bJdt}

Now write t = pe引 we have

Re f(z) 1
z—2-「(1-芒 三r 。 1- p2 十 1- p2)dp

lbl= 1 + -log(l 一 r) + 22 Reb log(l+r) log(l-r)r 了 (—了－－—了—-r),
which on simplication completes the proof.

4. Coefficient Results

We next consider coefficient estimates.

Theorem 4.1. Let f E R(b) with J(z) = z 十立~2an玕. Then

(i) Jani :s; 2lbl
—, for n > 2n -'

2lbland (ii) Ja3 -µa~I :s; —max仁 j1- -33 2µbl},

whereµ 為 any complex number. The inequalities are sharp.

、,＇

、
丿

4

5

,'`、

,
＼

Proof. Since f E R(b), there exists p E P such that for p(z) = 1 + c1z + c2z2 十 ．．．
(2) holds. Thus

00

1 + Lnan尸 =1+立 际Zn.
n=2 n=I

(6)
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Equating the coefficients in (6) gives

nan = bcn-1

and so (i) follows immediately, since le正 11 ::; 2 for n 2: 2. Finally using Lemma 2.1, it
follows that

la3 -µa~I = 麈 |今＿嵒
4
碣

2lbl 3
5了max { 1, j1- 2叫｝

(4) and (5) are sharp for Ji (z) = z - 2b(z + log(l - z)) in the case 12 - 3µbl > 2. For
12 - 3µbl~2, inequality (5) is sharp for h given by

片(z) = b{三-1}+1.

5. Integral Operators

In this final section, we look at integral operator which preserves the class R(b).

Definition 5.1. Suppose that g E A with g(z) f= 0 for z ED. for z E D, define the
integral operator

F(z) = 1 + C z
訂 J f(t)[g(t)r-1g'(t)dt,
。

(7)

where c > -1.
Putting g(z) = z and c = 1 in (7) gives the operator first introduced by Libera in [7).
This was then followed by Bernardi [2) who generalised Libera's operator by introducing
the constant c for c E N. Since then, many people have extended the results obtained
for Libera and Bernardi integral operators. See for example [15] and [16). Some authors
considered other similar forms of integral operators such as that given in (7) for various
subclasses of S. This include Mocanu [11), Miller et. al [10) and Selinger [17).

We now proceed to state our result.

Theorem 5.1. Let g ES* 画th Q(z) = ...!lE辶zg'(z)' for z E D. If f E R(b) and

ReQ (z)·Re [Q (z) +~(b - I) (zQ'(z) + Q (z) - 1)]
2: {Im(zQ'(z) + Q(z) + c}2,

for z E D, then the integral operator F given by (7) also belongs to R(b)

(8)

We note that, in the case b = 1, this result reduces to the one given by Selinger (17].
To prove this theorem, we require Lemma 2.2.
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Proof. For F given by (7), it can easily be deduced that

zQ(z)F'(z) + cF(z) = (1 + c)f(z).

Differentiating (9) again, gives

zQ(z)F"(z) + F'(z)[zQ'(z) + Q(z) + c] = (1 + c)J'(z)

Now, since f E R(b) and c > -1, thus

(9)

Re{ zQ(z)h'(z) + (zQ'(z) + Q(z) + c)h(z)十扣 - b)(zQ'(z) + Q(z) - 1)} > 0, (10)

where h(z) = 1 + i(F'(z) - 1).
For convemence , we·mtroduce functions B and D, and rewrite (10) as follows:
Re{zQ(z)h'(z) + B(z)h(z) + D(z)} > 0.

We next show that for g E S* with inequality (8) true, h E P and this in turn implies
that FE R(b). We do this by using Lemma 2.2. First, define

心 (ix, y, z) = yQ(z) + ixB(z) + D(z)

In order to use Lemma 2.2, we need to verify that Vx E 良 y ::; =1与凸 and z E D,
Re心 (ix, y, z) :=; 0.

Re心 (ix, Y, z) = yReQ(z) - xlmB(z) + ReD(z)
-(1 + z勺

::; ReQ(z) - xlmB(z) + ReD(z);z

for y :=; :-(1十丑 ）
2 and g ES*.

Therefore,

2 ReQ(z)
Re心 (ix, Y, z) :S -x 2 - xlmB(z) + Re (D(z) - 綱 ）·

Since, inequality (8) is true, i.e. Re Q(z)·Re[Q(z)-2D(z)] 2: [ImB(z)]2, thus we conclude
that Re 心 (ix,y,z):三 0. Furthermore, since (10) implies that Re(h(z), zh'(z), z) > O, for
z ED, thus by Lemma 2.2, h E P and this completes our proof.
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