ON A CLASS OF FUNCTIONS OF COMPLEX ORDER

S. ABDUL HALIM

Abstract. Denote by $\mathcal{R}(b)$, the class of normalized analytic functions f which satisfies $\operatorname{Re}(1 + \frac{1}{b}(f'(z) - 1)) > 0$, for $z \in D = \{z : |z| < 1\}$ and b a non-zero complex number. In this paper, some results concerning functions belonging to this class are being considered.

1. Introduction

Denote by A the class of functions f which are normalized such that f(0) = f'(0) - 1 = 0 and analytic in the unit disc $D = \{z : |z| < 1\}$. Also denote by S, the subclass of A consisting of all univalent functions in D.

Let P be the class of functions $p(z) = 1 + \sum_{n=1}^{\infty} c_n z^n$ which are analytic and also have a positive real part in D. A function f is said to be starlike if and only if, for $z \in D$, $\operatorname{Re} \frac{zf'(z)}{f(z)} > 0$. The well-known class of starlike functions which we shall denote by S^* is a subclass of S and have been extensively studied, see [3], [4] and [14]. In [13], Nasr and Aouf intorduced the class consisting of functions which are starlike of complex order. Functions f belonging to this class, say $S^*(b)$ are those which satisfied the following condition:

$$\operatorname{Re}\left(1+\frac{1}{b}\left(\frac{zf'(z)}{f(z)}-1\right)\right) > 0, \quad z \in D \text{ and } b \neq 0, \ b \in \mathbb{C}.$$

J. W. Alexander in [1] intorduced the class \mathcal{R} consisting of normalized analytic functions whose derivative has a positive real part, and proved that for $z \in D$, if f belongs to \mathcal{R} then f is univalent, i.e. $\mathcal{R} \subset S$. This class \mathcal{R} has also been considered quite extensively by Macgregor (see [8]). We now introduce an extension of this class via the following definition.

Definition 1.1. A function $f \in A$ is said to belong to the class $\mathcal{R}(b)$, if and only if, for $z \in D$

$$\operatorname{Re}\left(1 + \frac{1}{b}(f'(z) - 1)\right) > 0$$
 (1)

where b is a non-zero complex number.

Received September 28, 1998; revised December 28, 1998.

¹⁹⁹¹ Mathematics Subject Classification. Primary 30C45.

Key words and phrases. Univalent functions, starlike of complex order, functions of complex order, integral operator.

Note that $\mathcal{R}(1) \equiv \mathcal{R}$.

In this paper, the author gives some results concerning functions in $\mathcal{R}(b)$.

2. Preliminary Results

Lemma 2.1 [6]. For any complex number μ and $p \in P$ given by $p(z) = 1 + c_1 z + c_2 z^2 + \cdots$,

$$|c_2 - \mu c_1^2| \le 2 \max\{1, |1 - 2\mu|\}.$$

Lemma 2.2 [9]. Suppose that the function $\psi : \mathbb{C}^2 \times D \to \mathbb{C}$ satisfies the condition

$$\operatorname{Re}\psi(ix,y,z)\leq 0$$

for all $x, y \leq -(1+x^2)/2$ and all $z \in D$.

If the function p(z) is analytic in D, with p(0) = 1 and if

 $\operatorname{Re}\psi(p(z), zp'(z), z) > 0 \quad \text{for } z \in D,$

then Re p(z) > 0 in D.

3. Some Properties of \mathcal{R}

Theorem 3.1. Let $f \in \mathcal{R}(b)$. If $\text{Re } b \ge |b|^2$ then f is univalent.

Proof. First, we write $b = |b|e^{i\sigma}$. Now, since $\operatorname{Re}b \ge |b|^2$, it follows that $|b| \le 1$ and $|\sigma| < \frac{\pi}{2}$. Next, inequality (1) implies that

$$\operatorname{Re}\frac{f'(z)}{b} > \operatorname{Re}\left(\frac{1}{b}\right) - 1 \ge 0,$$

provided $\operatorname{Reb} \geq |b|^2$.

Thus, we have

Re
$$e^{-i\sigma}f'(z) > 0$$

and hence f is univalent.

Remark 3.1. The question of whether the converse of Theorem 1 is true or not remains open. On the other hand, one can construct a non-univalent function belonging to $\mathcal{R}(b)$ for which b is outside this disc.

Our next theorem looks at distortion results for $f \in \mathcal{R}(b)$.

Theorem 3.2. Let $f \in \mathcal{R}(b)$. Then for $z = re^{i\theta} \in D$,

(i) $2|b|(\log(1+r)-r) + r\frac{\operatorname{Reb}}{|b|} \le |f(z)| \le (1-2|b|)r - 2|b|\log(1-r),$

(ii)
$$\frac{\operatorname{Reb}}{|b|} - \frac{2r|b|}{1+r} \le |f'(z)| \le (1-2|b|) + \frac{2|b|}{1-r}.$$

Proof. From (1), we write

$$f'(z) = b(p(z) - 1) + 1$$
(2)

where $p(z) = 1 + \sum_{n=1}^{\infty} c_n z^n \in P$. Thus for $z = re^{i\theta} \in D$,

$$|p(z)| - 1 \leq \sum_{n=1}^{\infty} |c_n z^n|$$

$$\leq 2 \sum_{n=1}^{\infty} r^n$$

$$= -1 + \frac{1+r}{1-r}.$$
 (3)

Here, we use the known result that $|c_n| \leq 2$, (2) and (3) then gives

$$|f(z)| = \left|z + b \int_0^z (p(t) - 1)dt\right|$$

$$\leq r - 2|b|(r + \log(1 - r)),$$

which is the upper bound in (i). To prove the lower bound in (i), write

$$\begin{aligned} \frac{f(z)}{z} &\Big| = \Big| \frac{1}{z} \int_0^z f'(t) dt \Big| \\ &= |b| \Big| \frac{1}{z} \int_0^z \left(p(t) - 1 + \frac{1}{b} \right) dt \Big| \\ &\geq |b| \operatorname{Re} \Big\{ \frac{1}{z} \int_0^z \left(p(t) - 1 + \frac{1}{b} \right) dt \Big\}. \end{aligned}$$

Next, write $t = \rho e^{i\theta}$, we have

$$\begin{split} |f(z)| &\geq r|b| \Big\{ \frac{1}{r} \int_0^r \operatorname{Re}\Big(p(\rho e^{i\theta}) - 1 + \frac{1}{b} \Big) d\rho \Big\} \\ &\geq |b| \Big\{ \int_0^r \Big(\frac{1-\rho}{1+\rho} \Big) d\rho - r + r \operatorname{Re} \frac{1}{b} \Big\} \\ &= -2r|b| + 2|b| \log(1+r) + \frac{r}{|b|} \operatorname{Re} b. \end{split}$$

The upper bound in (ii) follows at once from (2) and (3).

Finally, for the lower bound of (ii), write

$$|f'(z)| = |b| \left| p(z) - 1 + \frac{1}{b} \right|$$

$$\geq |b| \operatorname{Re}\left(p(z) - 1 + \frac{1}{b}\right)$$
$$\geq |b| \left(\frac{1-r}{1+r} - 1 + \frac{\operatorname{Re} b}{|b|^2}\right)$$

which gives the result.

Theorem 3.3. Let $f \in \mathcal{R}(b)$. Then for $z = re^{i\theta} \in D$,

(i) $\operatorname{Re} f'(z) \ge 1 - \frac{2r}{1-r^2} (|b| - r \operatorname{Re} b),$ (ii) $\operatorname{Re} \frac{f(z)}{z} \ge 1 - 2\operatorname{Re} b + \frac{\log(1-r)}{r} (|b| + \operatorname{Re} b) + \frac{\log(1-r)}{r} (|b| + \operatorname{Re} b).$

We note that for b = 1, (ii) reduces to a result proved by Hallenbeck [5].

Proof. in [12], Nasr and Aouf showed that if $p \in P$, then

$$\operatorname{Re}[b(p(z)-1)+1] \ge 1 - \frac{2r}{1-r^2}(|b| - \operatorname{Re} b).$$

hence, using (2), (i) follow trivially. Next,

$$\operatorname{Re}\frac{f(z)}{z} = \operatorname{Re}\left\{\frac{1}{z}\int_0^z [bp(t) + 1 - b]dt\right\}.$$

Now write $t = \rho e^{i\theta}$, we have

$$\operatorname{Re}\frac{f(z)}{z} \ge \frac{1}{r} \int_0^z \left(1 - \frac{2|b|\rho}{1 - \rho^2} + \frac{2\operatorname{Re}b\rho^2}{1 - \rho^2}\right) d\rho$$
$$= 1 + \frac{|b|}{r} \log(1 - r^2) + 2\frac{\operatorname{Re}b}{r} \left(\frac{\log(1 + r)}{2} - \frac{\log(1 - r)}{2} - r\right),$$

which on simplication completes the proof.

4. Coefficient Results

We next consider coefficient estimates.

Theorem 4.1. Let $f \in \mathcal{R}(b)$ with $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$. Then

(i)
$$|a_n| \le \frac{2|b|}{n}$$
, for $n \ge 2$, (4)

and (ii)
$$|a_3 - \mu a_2^2| \le \frac{2|b|}{3} \max\left\{1, \left|1 - \frac{3}{2}\mu b\right|\right\},$$
 (5)

where μ is any complex number. The inequalities are sharp.

Proof. Since $f \in \mathcal{R}(b)$, there exists $p \in P$ such that for $p(z) = 1 + c_1 z + c_2 z^2 + \cdots$ (2) holds. Thus

$$1 + \sum_{n=2}^{\infty} na_n z^{n-1} = 1 + \sum_{n=1}^{\infty} bc_n z^n.$$
 (6)

Equating the coefficients in (6) gives

$$na_n = bc_{n-1}$$

and so (i) follows immediately, since $|c_{n-1}| \leq 2$ for $n \geq 2$. Finally using Lemma 2.1, it follows that

$$\begin{aligned} |a_3 - \mu a_2^2| &= \frac{|b|}{3} \left| c_2 - \frac{3\mu}{4} b c_1^2 \right| \\ &\leq \frac{2|b|}{3} \max\left\{ 1, \left| 1 - \frac{3}{2} \mu b \right| \right\}. \end{aligned}$$

(4) and (5) are sharp for $f_1(z) = z - 2b(z + \log(1-z))$ in the case $|2 - 3\mu b| > 2$. For $|2 - 3\mu b| \le 2$, inequality (5) is sharp for f_2 given by

$$f_2'(z) = b\left\{\frac{1+z^2}{1-z^2} - 1\right\} + 1.$$

5. Integral Operators

In this final section, we look at integral operator which preserves the class $\mathcal{R}(b)$.

Definition 5.1. Suppose that $g \in A$ with $g(z) \neq 0$ for $z \in D$. for $z \in D$, define the integral operator

$$F(z) = \frac{1+c}{g(z)^c} \int_0^z f(t) [g(t)]^{c-1} g'(t) dt,$$
(7)

where c > -1.

Putting $g(z) \equiv z$ and c = 1 in (7) gives the operator first introduced by Libera in [7]. This was then followed by Bernardi [2] who generalised Libera's operator by introducing the constant c for $c \in \mathbb{N}$. Since then, many people have extended the results obtained for Libera and Bernardi integral operators. See for example [15] and [16]. Some authors considered other similar forms of integral operators such as that given in (7) for various subclasses of S. This include Mocanu [11], Miller et. al [10] and Selinger [17].

We now proceed to state our result.

1

Theorem 5.1. Let
$$g \in S^*$$
 with $Q(z) = \frac{g(z)}{zg'(z)}$, for $z \in D$. If $f \in \mathcal{R}(b)$ and
 $\operatorname{Re}Q(z) \cdot \operatorname{Re}\left[Q(z) + \frac{2}{b}(b-1)(zQ'(z)+Q(z)-1)\right]$
 $\geq \{Im(zQ'(z)+Q(z)+c\}^2,$
(8)

for $z \in D$, then the integral operator F given by (7) also belongs to $\mathcal{R}(b)$.

We note that, in the case b = 1, this result reduces to the one given by Selinger [17]. To prove this theorem, we require Lemma 2.2.

S. ABDUL HALIM

Proof. For F given by (7), it can easily be deduced that

$$zQ(z)F'(z) + cF(z) = (1+c)f(z).$$
(9)

Differentiating (9) again, gives

$$zQ(z)F''(z) + F'(z)[zQ'(z) + Q(z) + c] = (1+c)f'(z).$$

Now, since $f \in \mathcal{R}(b)$ and c > -1, thus

$$\operatorname{Re}\left\{zQ(z)h'(z) + (zQ'(z) + Q(z) + c)h(z) + \frac{1}{b}(1-b)(zQ'(z) + Q(z) - 1)\right\} > 0, \quad (10)$$

where $h(z) = 1 + \frac{1}{b}(F'(z) - 1)$.

For convenience, we introduce functions B and D, and rewrite (10) as follows: Re{zQ(z)h'(z) + B(z)h(z) + D(z)} > 0.

We next show that for $g \in S^*$ with inequality (8) true, $h \in P$ and this in turn implies that $F \in \mathcal{R}(b)$. We do this by using Lemma 2.2. First, define

$$\psi(ix, y, z) = yQ(z) + ixB(z) + D(z).$$

In order to use Lemma 2.2, we need to verify that $\forall x \in \mathbb{R}, y \leq \frac{-(1+x^2)}{2}$ and $z \in D$, $\operatorname{Re}\psi(ix, y, z) \leq 0$.

$$\operatorname{Re}\psi(ix, y, z) = y\operatorname{Re}Q(z) - x\operatorname{Im}B(z) + \operatorname{Re}D(z)$$
$$\leq \frac{-(1+z^2)}{z}\operatorname{Re}Q(z) - x\operatorname{Im}B(z) + \operatorname{Re}D(z);$$

for $y \leq \frac{-(1+x^2)}{2}$ and $g \in S^*$. Therefore,

$$\operatorname{Re}\psi(ix, y, z) \leq -x^2 \frac{\operatorname{Re}Q(z)}{2} - x \operatorname{Im}B(z) + \operatorname{Re}\left(D(z) - \frac{Q(z)}{z}\right).$$

Since, inequality (8) is true, i.e. Re $Q(z) \cdot \text{Re}[Q(z) - 2D(z)] \ge [\text{Im}B(z)]^2$, thus we conclude that Re $\psi(ix, y, z) \le 0$. Furthermore, since (10) implies that Re(h(z), zh'(z), z) > 0, for $z \in D$, thus by Lemma 2.2, $h \in P$ and this completes our proof.

Acknowledgement

The author is very much grateful and thankful to the referee for his comments and suggestions which resulted in an improvement of the paper.

152

References

- J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. of Math. 17(1915), 12-22.
- [2] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135(1969), 429-446.
- [3] P. L. Duren, Univalent Functions, Springer Verlag, Berlin, 1983.
- [4] A. W. Goodman, Univalent Functions, Vol. I, II, Polygonal Publishing House, Washington, 1983.
- [5] D. J. Hallenbeck, Convex hulls and extreme points of some families of univalent functios, Trans. Amer. Math. Soc. 192(1974), 285-292.
- [6] F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20(1969), 8-12.
- [7] R. J. Libera, some classes of regular univalent functions, Proc. Amer. Maths. Soc. 16(1965), 755-758.
- [8] T. H. Macgregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 9(1962), 532-537.
- S. S. Miller and P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl. 65(1978), 289-305.
- [10] S. S. Miller, P. T. Mocanu and M. O. Reade, Starlike integral operators, Pacific J. Math. 79(1978), 157-168.
- [11] P. T. Mocanu, On a close-to-convexity preserving integral operator, Studia Univ. Babes-Bolyai, Math. 32(1987), 53-56.
- [12] M. A. Nasr and M. K. Aouf, Radius of convexity for the class of starlike functions of complex order, Bull. Fac. Sci. Assiut Univ. 12(1983), 153-159.
- [13] —, Starlike functions of complex order, J. of Natural Sciences and Mathematics 25 (1985), 1-12.
- [14] R. Nevalinna, Uber die konforme Abbilung von Sterngebieten, Oversikt av Finska-Vetenskap Soc. Förh. 63(1921), 1-21.
- [15] H. M. Srivastava and S. Owa (Editors), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, new jersey, london and Hong Kong, 1992.
- [16] Rosihan M. Ali and D. K. Thomas, Proc. Japan Acad. 67A (1991), 319-321.
- [17] V. Selinger, Some integral operators preserving certain geometric properties, Rev. Roumaine Math-Pures Appl. 33(1988), 10, 889-900.

Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia.