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ON MATRIX SUMMABILITY OF JACOBI SERIES

SHYAM LAL

Abstract. In this paper a new theorem on Matrix Summability of Jacobi series is established.
This theorem is a generalization of several known and unknown results.

1. Definitions and Notations

Let f(z) be defined in closed interval [-1,1] such that the function (1 — z)*(1 +
)8 f(z) € L[-1, 1]; @ > —1,8 > —1. The Jacobe series corresponding to this function is

f(z) = ianpéa,ﬁ)(z) fld)
n=0
where
_@nta+pf+DIn+1)(n+a+B+1) [ - 3 (a,8) .
iy, = 2 T (n+ o+ DI(n+ B+ 1) _1(1 —g) (1 +m) " () P ™™ (o) die

and P.** are the Jacobi polynomials.
Let T = (an») be an infinite triangular matrix satisfying the Silverman-Toeplitz
(1913) condition of regularity i.e.
n
donkr—1 as n— oo,
k=0
it =0 for E>n

and )";_ o |ani| < M, a finite constant.
Let ) un be an infinite series with the sequence of partial sums {s;} where s =

k
Zu:O Uy-

The sequence-to-sequence transformation
n
tn = E Qn kSk
k=0

n
= Zan,n—-ksn—k (1-2)
k=0
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defines the sequence {t,} of Matrix means of the sequence {s,}, generated by the se-
quence of coefficients (a, ). The series ) u, is said to be summable to the sum S by
Matrix method if lim, o t, exists and is equal to s(Zygmund (1935)) and we write
tn = s(T), as n — oo.

Four important particular cases of matrix means are
(i) harmonic mean, where ap = (—m
(ii) (H,p) mean, when a, x = (mg)v—lw H‘q’;é log?(k + 1)

n
(i) Norlund mean (1919) when a,x = 22=* when P, = 3 pi
k=0

(iv) Generalized Norlund mean (1958) where a, ; = l’l"—i};—"—"’— where R, = > PrQn—k-

" k=0
We use following notations:

F(¢) = {f(cos¢) — A} (sin %)MH ( cos 52?)23“,

A being fixed constant

Wit) = /O \F(6)]do

r=Integral part of 3 = [%]

n=Integral part of = [1].

2. Main Theorem

The Norlund summability (N, p,) of Jacobi series has been studies by a number of
researchers like Gupta (1970), Choudhary (1970), Thorpe (1975), Pandey and Beohar
(1978), Prasad and Saxena (1979), Beohar and Sharma (1980). Pandey (1981) and Tri-
pathi, Tripathi and Yadav (1988) After quite a good amout of work in the ordinary
Nérlund summability of Jacobi series at the point £ = 1, Khare and Tripathi (1988) dis-
cussed generalized Norlund summability (N, p, q) of Jacobe series. (N, p, q) summability
reduces to (N, p,) summability for g, =1 Vn and to (IV,g,) means when p, =1 Vn.
But nothing seems to have been done so far in the direction of study of Jacobi series
by Matrix summability method which, as known, includes, as special cases, the meth-
ods of (N, p,) and (N,p,q) summabilities. In an attempt to make an advance study in
this direction we, in the present paper, establish the following theorem for the Matrix
summability of Jacobi series.
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Theorem Let T = (an k) be an infinite triangular regular matriz such that the ele-
ments (an,k) be non-negative, non-decreasing with k, n?*+0/24, 40 as n — co.

t2a +2
43

where £(¢) be positive, non-decreasing with ¢ such that & (n) = 0o as n — oo and

N Ang 1
2 s = O (mmron): (22)

a being a fixed positive mteger then Jacobi serles (1.1) is matrix summable (T) at z = 1
to the sum A provided —— <« < ;B> -1 and the antipole condition

Ifwﬂ—/ﬂnwm 0( )wtao (2.1)

b
/ (1 + 2)@B=3/4| f(z)|dz < oo, (2.3)
il
b fixed, is satisfied.
3. Lemmas

The following lemmas are required for the proof of the theorem.

Lemma 1.[Szeg6(1959)] If @ > ~1, 8> —1, then as n — oc.

P (cos §) = On®),  0<¢< > 5.1)
= 0(n®), ﬂ—lSd)Sw (3.2)

n

=n"2k(¢) |cos(Np +v) + nil(i)qu ; % S¢<m-— T—ll (3.3)

where

KO = VE(sin ) e )P
)7

=841
Lemma 2. [Gupta (1970)] The antipole condition (2.3) implies that

N =
»h-|=!

= Y= (a+

/; (cos g)(w—”/?|f(cos ¢) — Aldd < (3.4)

which fruther implies that

1/n )
/ t28=112| f(— cost) — Aldt = 0O(1) (3.5)
0



194 SHYAM LAL

Lemma 3. [McFadden (1942)]: If {p.} is a non-negetive and non-increasing se-
quence, then for 0 < a < b< 00, 0 < ¢ <7 and for any n and a,

b

Zpkei(n—k)ai

a

= O(P;) (3.6)

where P, = P(y/4) and 7 = [3].

Lemma 4. [Rhoades (1984)]: Let {un}, {vn} be real sequences {u,} non-negative.
If {vn} is non-increasing, then

n T
i | 4 - Z " 3.7
Izuwkl__m 1I5nf§cn| | (3.7)

k=1 k=1

If {v,} is non-decreasing, then

b &

ukl (3.8)

n
l E ukvk‘ < 205 max
1<r<n
k=1 = =" k=1

Lemma 5. Under the condition of the theorem on (ank), for large n, uniformly in
0<odp<m0<a<b<n,

b
' Z Unn—k COS{(TL — Ko p)¢ - T}(n =t k)a+1/2 =0 (na+1/2An.T) (39)
K26

wherep:ﬁgiz,'yz—(a+%>%-

Proof.

b
l Z ann_i cos{(n — k+ p)p — r}(n — k)>+1/2
k=a

b
= O(n“"’l/z)iReal part of Z an. kel P5+P)¢=TH by Lemma (4)
k=

]

b
= O(Tba+1/2) H Z an,n—kei("—k)d’ei(p‘i’“r)
k=

b
— O(na+1/2) H z an,n—kei(n_k)d"]

k=a

= O(n®t1/24, ), by Lemma (3),

which proves the result.
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Lemma 6. Under the hypothesis of the theorem,

Y anpoik(n - k)t = O(ne1/2) (3.10)

Proof.

n—1

n—1
Z By i (T — k)“”% = O(no‘_%) [ Z an,n_k] by Lemma 4
k=0 k=0

— O(na_%) [Z an‘n_k] = O(n"‘_%)An,n
k=0
O(n*~2)0(1)
=G,
which proves the result.

Lemma 7. Let

n—1

My () =getoHl Z an,n_k/\n_kpif;cl‘ﬁ)(cos @)
k=0

where
2~letB+UD(n+ a4+ B + 2) o 9—(a+p+1) Al

Ta+)I(n+B+1) D@+l "
then, for é >a> —%, B8 > —% and if (an k) satisfied the hypothesis of the theorem,

Ap =

M($)=0(n*+?)  i0<g< Tll (3.11)
= o(na+ﬂ+1) if T — % << (3.12)
= Ofn=1/24, , (sin 2) ™7 (05 2) ]

+O[n"“1/2 (sin g)_a—wz(cos g)_ﬁ—l/g] % <¢p<m-— % (3.13)

Proof. For 0 < ¢ < -11;,

n—1

Mn($) = 0@) 37 [an niO (27540 (n - k)+ (n - k)o+]
k=0

= 0(1) [ kz_(:) Ann-tO(n - k)2°‘+2] by (3.1)
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n—1
= Di{ln 4 Z Bl by Lemma (4)
k=0

) ,
=02} ¥~ appi =0m™ ) (An,0)
k=0
= 0(n***t)0(1)
- ()(n2a+2)
If 7 — 2+ < ¢ <, using (3.2), we have

n—1

Mn(9) = O[3 annk0(n — KYO(n — )2+

k=0

n-—-1
=2 . [ Z ann-kO(n — k)"+’3+1]
k=0
n—1
= O(n>+F+1) Z B s by Lemma (4)
k=0

= ()(na+ﬁ+1) Z Ann—k = ()(na+ﬁ+1)Aﬂ,‘n
k=0

e O(noH—B—}-l)O(l)

— O(na+0+1)

If - <¢<m—2L wehave, with notation as in Lemma 5.

n—1

Mn9) = 0() 3 [annmsn = Ry172 (sin 2) 77 (c0s 8)
-cos{(n —k)p+pd—71}+ (?"—'Ok()l)m] , by (3.3)
n—1 < TR —B—1./2
= O(l) [ kgo a'n..'n~k(n = k)a+1/2 (Sin %)') 3/2(COS %) .

cos{(n — k)¢ + pg — 1}
n—1

+0(1) [ Z PR k)a_1/2<sin %) -a—5/2(cos f) —3—3/2]
k=0

2
= O[T s (sin 2) ™ (s £)
k=0

(= k)™ cos{(n — k)¢ + p — 7]
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+0(n%~1/2) [nil Bl vtk (sin g) _0—5/2(cos 9) _6_3/2] by Lemma 4
k=0

2
=o((sn )™ ()"
[Til Qnn—k(n — k)o‘“/z cos{(n — k)¢ + pp — r}]
k=0
w0((sm8)™ " (eos) ) [ w7

=,0<(sin§)“aw3/2 cos%)_ﬁ ia )O(n““/zAn,r)

+0 ( ( sin 9) P ( cos 2) _6_3/2) O(n®~*/2) by Lemma (5) and (6)

2 2
= 1) ["a+1/2An,T (sin g) —a—3/2 ( cos g)—ﬁ—l/'z]
+0 [no"l/2 ( sin g) e ( cos g) _3_3/2] .

In this way Lemma (7) is proved.

4, Proof of the Theorem.

Following Obrechkoff (1936) the nth partial sum of the series (1.1) at the point z = 1
is given by

Sp(1) = 20+A+1 -/07r (sin §)2a+1 (cos g)wﬂf(cos #)S..(1,cos ¢)dgo

where S/ (1, cos @) denotes the nth partial sum of the series

Z P,(,f"ﬁ)(l)P,(na’ﬁ)(cos ®)
9m

m

(2n+a+B+1)4/(n+1)/(n+a+B8+1)
204841, [(nta+1)y/(n+B+1)

where g, =

Rao (1929) has shown that
S! (1, co8 ¢) = A PL2F1A) cos(g).

Therefore

Su() — A =22#40 [7 (sn ) (00 §) s c0s6 ~ AV o gy

— gatBH1y / F(6) P19 (cos ¢)dg,
: 0
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where ), is defined as in Lemma (7).
The matrix means of the series (1.1) at z = 1 is given by

tn = Z an,kSk(l)
k=0

n
= Z an,n—kSn- -k (] )

k=0

ort, — A= Zan,k{Sn-“k(l) — A}

k=0

= /‘7r F(¢)My(¢)dd + (an,0)O0(1) /1r F(¢)dg.
0 0

Since foﬂ F(#)d¢ is a finite constant, by assumption, second term on the right is O(1) as
n — co. Hence in order to prove theorem we have to show that

I= /7r F($)N(¢)d¢ = O(1) as n — oo
0

1/n ) n—1/n L
= ke
0 1/nvd T—1/n

=11 +I,+ 13+ 14, say (4.1)

Let us denote

F(¢)Mn(d)dd

0 being a suitable constant.
1/n

I = F(¢)Mqn(¢)do

0

1/n
B = / F($)|0(n?*)dg, by (3.11)
0

1/n
= o=+ [ 1F(@)lds
0

i 1
. 20+2
= O(n )O(n——2a+2ﬁ(n))’ by (2.1)

1
== 0(5—(7?,—)_)
= o(1), as n — 00, by hypothesis of theorem . (4.2)

In order to estimate I» we employ the asymptotic relation given in (3.13). Thus

=0

v1l/n

6 v
’ 2
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4 ) : —(204+5)/2
o) / |F(¢)’n(2cx+1)/2 ( i %) dd’}

1/n
=11+ 12, say (4.3)

Now

5
o (2at1)/2 |F'(¢)|An,rd¢
I 1 =0(n ) [/1/11 $2a+3)/2

- 5 glat:
= O(n22+1)/2) [O(f( +) & i’j_; )j/n + o{ " (f(;)z %((b(ii’;)m)d(ﬁ]

)

é ¢2a+? A,
( ) ¢2a+5)/2

; = A
= o(1) + o(1 S e / R Ty I
5L} -+a(l) i ) 1/5 u(2a+3)/2§(u) .

An
GO

+O(n(2(x+1)/2)

do,

l/n

1
5 = u by the hypothesis of theorem

n
44.n’k

=o(1) + O(Tb(2a+1)/2) Z f(k)k(z—a‘H”W

= g(1), by (2.2). (4.4)

) ey .
/ |F(¢)|n(20'1)/2(sin %(}5) (2 +5)/2d¢]

1/n

o [ EO

| ) 2043 ) (2a=3)/2
:O(n“"‘_”/‘)[{ ¢(2ai‘5)/20(¢§(%+) )}j/n * O{ 1n : £(2) d¢}]

—(2a—1)/2 d ¢(2a—3)/2
—o(n2aV/2) 4 o(na-D/2) (B ) 4, LR / L AR,
( vl oSy ) T || Sy

‘ 1 nl2e—1)/2 B || e s
- (2a—1)/2 (2a—3) /2
o(n )+0(£(n) ) +o( o) ) /1/n ¢ d¢, by mean value theorem
(2a— 1)/)

(2a—1)/2
=)+ O(_ £(n) ){ ga—1/2}1/n ( ;S‘K;)

1)+0(n(m 1)/)) (nm 1)/9)(7%“(2““”/2)

where a = [—] +1, n> [—]

.[9220
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n(2a—1)/2 1
—o(1 o MO ..
W+ () + ()
=o(1) + o(1)
=o(1), as n — co. (4.5)
Considering I3, we have
T—1/n IF‘(¢)IAn,T-n(za+I)/2
fa= O[/J 5\ 2t/ B (2ﬁ+1)/2d¢]
(sm 5) (cos 2)
m—1/n d¢
(20—1)/2
+0(n'“™ /)[/5 IF(¢)1( . ¢)(2a+5)/2( . ¢)(2ﬁ+3)/2]
sSin 3 COS 5
, e (28-1)/2
= QP4 ) / |F(cos ¢) — A|(cos -(é) cos édq&
! 2 2
. [TUn (26-1)/2
+O(n(2““1)/2)/ | F(cos ¢) — A|(cos g) do
5
=0(pBtN24, ) + OmB=—1/12), by (3.4)
=0(1)+0(1), asn—> o0
=o(1). as n — oo. (4.6)
We finally consider I,.
Io= 0=+ [ [F(g)ldg, by (312)
nm—1/n
B eedain B - p\2atl 2041
= 0(n )/7r 1/nlf(cosqﬁ) A](sm2) (cos2)
£\ 20+1 £ 268+1
nota+1 -z in — ki — 0=
)/ — cost) A|(cos2) (st) dt takingw —¢ =t
1/n
= O(n"“"ﬂ“)/ |f(—cost) — A|$?P+! dt
0
1/n
= 0(n2a-1/2)/ |f(—cost) — AJt?B—1)/2 4t
Jo
=gl as n — 0o. by (3.5) (4.7)

Thus the theorem is completely established.

5. Particular Cases

(6) If 855 = p"n' and £(r) = logz, result of Gupta (1970) becomes the particular case

of main theorem.
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(b) Result of Tripathi, Tripathi and Yadav (1988) becomes the particular case of our
theorem if (ay, ;) is defined as in (a) and &(z) = (Flei):0<e<l,

(c) If anp = P2z~ where R, = Y i Prdn—k and £(z) is as defined as in (a) then
result of Khare and Tripathi (1988) becomes the particular case of main theorem.
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