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THE BEST CONSTANT IN AN INEQUALITY OF OSTROWSKI TYPE

T. C. PEACHEY, A. MCANDREW AND S. S. DRAGOMIR

Abstract. We prove the constant. t in Dragomir-Wang's inequality [2] is best

1. Introduction

The classical ine~uality of Ostrowski, (1, p. 469] is

Theorem 1.1. Let I be an interval in R, 1°the interior of I, J : I 弓 R be
differentiable on 1°. Let a, b E 1°with a< b and IIJ'lloo = SUPtE[a,/JJ lf'(t)I < oo. Then

f(x) -三t f(t)dt s [~+ (~b--『t] (b- a)llf'lloo (Ll)

for all x E (a,b].
The constant i in (1.1) is the best possible.

For, suppose that

f(x) - 二t f(t)dt s [k + (二? ] (b - a)llf'lloo (1.2)

for all x E (a, b]. Taking f(x) = x,·gives 11!'1100 = 1 and (1.2) becomes

尸 鬥 ：：：：[k+ (二? ] (b- a)

for all x E [a, b). With x = a this becomes

b;a::; (k+i)(b — a)

giving k > 1
"- 4·
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2. The Results

In [2], Dragomir and Wang obtained a related inequality:

Theorem 2.1. Let I, f, a, b be as above and f'E£1 [a,·b]. Then

f(x) - 二t J(t)dt s [~+ Ix二 1 J 11f'll1

for all x E [a, b],

(2.1)

but did not prove that the constant ! is the best possible one.
In [3], S. S. Dra.gomir gave an extension of Theorem 2.1 for mappings with bounded

variation, i.e., he proved the result:

Theorem 2.2. Let f : [a, b] --t R be a mapping with bounded variation on [a, b].
Then for all x E [a, b[, we have the inequality:

f(x) -三{ f(t)dt :S 仁 ＼丁 ］汩
where v~(J) denotes the total variation off on [a, b].

The constant ! is the best possible one.

For the sake of completeness and as the paper 圍 is not published yet, we give here
a short proof of Theorem 2.2.

Using the integration by parts formula for Riemann-Stieltjes integral, we have

(2.2)

where

「p(x, t)df (t) = f (x)(b - a) -「f (t)dt
a a

p(x, t) := { t - a 寸tE[a,x)
t - b ift E [x,bJ.

(2.3)

for all x, t E [a, b].
It is well known that if p : [a, b] ---+ R is continuous on [a, b] and v : [a, b] ---+ R is with

bounded variation on [a, b], then

J.'p(x)dv位）1 s ,up 丨p(x)I V(v)
xE[a,b] a

Applying the inequality (2.4) for p(x, ·) and f, we get

「p(x, t)df(t)~sup Jp(x, t)J \j(!)
a tE[a,b] a

b

= max{x - a, b - x) V(!) = [与 竺+ x- 丁 ］立(f)
a

(2.4)
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Using the identity (2.3), we deduce the desired result (2.2).
To prove the sharpness of the constant 吉 in the class of mappings with bounded

variation, assume that the inequality (2.2) holds with a constant C > 0, i.e.,

「f(t)dt - f(x)(b - a) :S [C(b- a)+ x 一二 ~l b (2.5)
a

2 VU),
a

for all x E [a, b].
Consider the mapping f : [a, bJ -t R given by

f (X) = { 0 if X E [a, b] \{于｝
1 if X =哇

in (2.5). Then f is with bounded variation on [a, b] and

b

VU)= 2,
a
「f(t)dt = 0

a

and for x =于 we get in (2.5), 1 :::; 2C; which implies that C~! and the theorem is
completely proved.

Now, it is clear that if f is differentiable on (a, b) and f'E L1 [a, b], then f is with
bounded variation on [a, b] and applying Theorem 2.2 we get Theorem 2.1. But we are not
sure that the constant ! is best in the class of differentiable mappings whose derivatives
are in L1 (a, b). We give an example showing that the constant ! remains best for this
class of mappings, too.

Suppose that

f(x) -三户(t)dt s [k + Ix二 1 J 11J'll1, X E [a, b]. (2.6)

Let C be any positive real and let

C 1
f(x) = c2 + x2 - tan-1 屁）

with a = -1 and b = l.
Direct calculation shows that J: J(t)dt = 0.
Also, since f'(x) :SO for all x 2: 0,

1

llf'lli = 2 fo 11'(t)jdt = -2 /1 J'(t)dt = 2[/(0) - f(l)]
。

=2 [b-』寸=C(C; + 1)
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Substituting these into (2.6) and taking~.r; = 0 then gives

Z5 - tan-時) I :s; k C(C;+ l)

so that

k 2: C2t 1 [ 1 - C tan- i 信 ）］

Since the right side tends to t as C -+ O+, we get k 2: t, which shows that the
constant ! is the best possible in Theorem 2.1.
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