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WEAK CONVERGENCE OF COMPOUND PROBABILITY
MEASURES ON UNIFORM SPACES

JUN KAWABE

Abstract. We obtain a convergence theorem of compound probability measures on a uniform
space for a net of uniformly equicontinuous transition probabilities. This theorem contains
convergence theorems of product or convolution measures. We also show that for Gaussian
transition probabilities on a Hilbert spaces, our assumptions in the convergence theorem can be
expressed in terrns of mean and covariance functions.

1. Introduction

In Billingsley [1] it was proved that the product of probability measures on separa-
ble metric spaces is jointly continuous with respect to the weak topology of measures,
ie. po——p and vg—v imply pa X Va— i X v, where the symbol - denotes the
weak convergence. This result has been extended by Vakhania et al. [17] to T-smooth
probability measures on arbitrary completely regular spaces. On the other hand, it was
shown in Csiszar [2] that the joint continuity of convolution measures on an arbitrary
topological group, i.e., poa—sp and vy— v imply po * Vo 4 v, These results are
important in the study of weak convergence of measures. The main aim of the present
paper is to obtain a convergence theorem which contains the results above. For this end,
we introduce the notion of compound probability measures.

Let X and Y be topological spaces. For a probability measure p on X and a transition
probability A on X x Y, we define a compound probability measure x o A by

poA(D) = ]X A(z, D2)p(dz).

Compound probability measures can be viewed as a generalization of product or convo-
lution measures. In fact, if a transition probability A is given by A(z, B) = v(B) for all
z € X and all Borel subsets B of Y, where v is a probability measure on X, then po A
is the product measure g x v. On the other hand, if X =Y is a topological group and A
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is given by A(z, B) = v(z~!B), then the projection u of po A onto Y is the convolution
measure j * v.

After recalling notation and necessary definitions and results, in Section 3 we obtain a
main theorem concerning weak convergence of compound probability measures, and give
the joint continuity of product or convolution measures as its immediate consequences. In
this section, uniform equicontinuity of transition probabilities plays an important role.
As another application, we also show the lower semicontinuity of mutual information
for a uniformly continuous channel. In Section 4, we show that for Gaussian transition
probabilities on a Hilbert space, our assumptions in the theorem can be expressed in
terms of the corresponding mean and covariance functions.

Throughout this paper, we suppose that all the topological spaces, all the topological
groups and all the uniform spaces are Hausdorff. We denote by N, R and C the set of all
natural numbers, real numbers and complex numbers, respectively.

2. Preliminaries and Notation

Let X be a topological space and B(X) be the o-algebra of all Borel subsets of X.
By a Borel measure on X we mean a finite measure defined on B(X) and we denote by
P(X) the set of all Borel probability measures on X.

A family A of subsets of X is said to be filtering downwards (resp. upwards) to a subset
Ao of X, and we write A | Ag (resp. A 1 Ap) if for any A;, As € A we can find A; € A
such that Az C A; N Ay (resp. A3 D A; UA,) and 4y = nAEA A (resp. Ag = UAE.A A).
In this paper, the following concept of regularity for Borel measures is useful. We say
that a Borel measure p on X is 7-smooth if for any family F of closed subsets of X with
F | Fo we have u(Fo) = infrer p(F), and this is equivalent to the condition that for any
family G of open subsets of X with G 1 Gy, we have u(Gy) = supgeg 1(G). We denote
by P,(X) the set of all 7-smooth probability measures on X. Every Radon measure is
T-smooth, and if X is regular every 7-smooth measure is regular (see e.g., Proposition
1.3.1 of [17]). We also know that every Borel measure on a Suslin space is Radon (see
Schwartz [13], Theorem II.10 in Part I, page 122), and hence 7-smooth. Here we recall
that a topological space is called a Suslin space if it is the continuous image of some
Polish space (see Definition II.3 in Part I of [13]).

If X is completely regular, we equip P(X) with the weakest topology for which the
functionals

peP) o [ foud), feau),
are continuous. Here Cy(X) denotes the set of all bounded, continuous real-valued func-

tions on X. This topology on P(X) is called the weak topology, and we say that a net
{ta} in P(X) converges weakly to u € P(X) and we write po—2pu, if

lim /X F(@)palde) = L f(2)p(de)
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for every f € Cy(X), and this is equivalent to the condition that for each open subset G
(resp. closed subset F)of X,

lim inf 4a(G) > w(G) (resp. limsup pa(F) < u(F)),

provided that p € P, (X) (see e.g., Theorem 1.3.5 of [17]).

Let X be a topological space and Y be a completely regular topological space. A
(Borel) transition probability A on X x Y is defined to be a mapping from X into P(Y)
such that for every B € B(Y'), the function z € X — A(z, B) is Borel measurable.

We say that a transition probability A is T-smooth if the probability measure )\, =
A(z,-) is T-smooth for each z € X, that is, it is a mapping from X into P, (Y).

3. Uniform Equicontinuity of Transition Probabilities

Let Y be a completely regular space. Let I" be a non-empty subset of Cy(Y). The
weak topology generated by T is the weakest topology for which all the functions in I are
continuous. The wuniform structure on P(Y) generated by I is the uniform structure in .
which a uniformity base is formed by the family of the sets

W= {(,u,u) EPY)xPY): ‘./Yg.;d(,u—u)‘ < g, i=1,2,...,n},

where ¢ > 0, n € Nyand g; € I (i = 1,2,...,n). We say that a net {v,} in P(Y)
converges I'-weakly to v € P(Y) and we write Va—sv if

lim/ gdvy =/ gdv forallgel.
@ Jy Y

It is readily proved that I-weak convergence is equivalent to the convergence with respect
to the uniform topology determined by the uniform structure on P(Y) generated by T

Let F(Y') be the vector lattice of all real-valued functions on Y with the usual point-
wise ordering and lattice operations: f < g & f(y) < g(y) forally € Y, fVg = max(f, g)
and f A g = min(f, g). In the rest of this paper we often assume that I’ C F(Y) satisfies
the following conditions:

(I'1) For any closed subset F of Y and any a ¢ F, there exists g € I'such that 0 < g < 1,
g(a) =0and g(y) =1forally € F.
(I'2) g1, g2 € T implies g; A g2 € T.

If T' satisfies (I'l) and I' C Cu(Y'), then it generates the topology on Y, i.e., the
original topology on Y coincides with the weak topology generated by I'. We also note
that if I' is a linear subspace of F(Y'), then (I'2) implies that I is a vector sublattice of
F(Y), i.e., it is a linear subspace with the property that g1, go € I" implies that g; V g2,
g1NAg €T '

In case when we have to treat characteristic functions of probability measures, in addi-
tion to (I'1) and (I'2), we shall assume the following somewhat technical condition:
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(T'3) g € I implies Re{e®}, Im{e*9} € I.

For any uniform space Y denote by U,(Y') the vector lattice of all bounded, uniformly
continuous real-valued functions on Y. For any metric space (Y, d) denote by BL(Y, d) the
vector lattice of all bounded, real-valued Lipschitz functions on ¥ with the norm ||g||gr =
lgllz + llglloo, Where llglls = sup,, l9(z) — 9()l/d(z,y) and llglleo = sup,ey lg(¥)]
The following example indicates that we can utilize the spaces Up(Y') and BL(Y,d) for
concrete examples of T

Example 1. (1) Let Y be a uniform space. Then U(Y) satisfies (I'l), (I'2) and
(T3).
(2) Let (Y, d) be a metric space. Then BL(Y, d) satisfies (I'1), (I'2) and (I'3).

Proof. The verification of (I'2) and (I'3) is easy. So we only prove (I'l). Fix a
closed subset F of ¥ and a € F. (1) By a variant of a construction for non-constant
functions due to Urysohn (see. e.g., Proposition 11.5 of James [8]), we can find a function
g € Up(Y) such that 0 < g < 1, g(a) = 0 and g(y) = 1 for all y € F. Hence Up(Y)
satisfies (I'1).

(2) Put g(y) =0V (1 —d(y, F)/a),y € Y, where a = d(a, F') > 0. Then g € BL(Y,d)
such that 0 < g < 1, g(a) =0 and g(y) = 1 for all y € F. Hence BL(Y, d) satisfies (T'1).

We collect some probably known facts about I'-weak topology defined above and give
their proofs for the sake of completeness.

Proposition 1. Let Y be a completely regular space. Assume that a non-empty
subset T of Cy(Y') satisfies (I'1) and (I'2). Then the following statements are valid.

(1) For any net {v,} C P(Y) and v € P,(Y), va—v if and only if Ve —sv.
(2) The usual weak topology on P,(Y) coincides with the uniform topology determined
by the uniform structure on P.(Y) generated by I

Proof. (2) follows from (1), and only if part of (1) is obvious. So we prove if part of

(1). Assume that Ve—v and fix a closed subset F of Y. Then by Portmanteau theorem
(see e.g., Theorem 8.1 of [15]), in order to prove that v,—v it is sufficient to show that

lim sup v (F) < v(F). (3.1)

a3

Since (3.1) is trivial for G = @ and Y, we assume that 0 S F S V. Put
F={geTl:0<g<1landg(y)=1forally€ F}.

By (T'1), F .is a uniformly bounded, non-empty subset of C;(Y), and by (I'2) it is filtering
to the left, i.e., for any ¢,, g» € F we can find g3 € F such that gz < g; A g2. Further, it
is easy to prove that inf{g: g € F} = 17, where 1 is the indicator function of F'. Since

ua—r—w and v is T-smooth, by P15 of (15, page XIII] we have

v(F) = ;élgt L gdv = ;2; lién s gdvy > limasup/Y 1pdy, = limasup va(F),
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and the proof is complete.

Let X be a uniform space with the uniformity {{x. Let ¥ be completely regular space
and I' C Cy(Y'). We say that a 7-smooth transition probability A on X x Y is T-uniformly
continuous if for each g € I', the mapping z € X + [, g(y)A(z,dy) is uniformly con-
tinuous. Denote by Ur(X,Y’) the set of all 7-smooth, I-uniformly continuous transition
probabilities on X x Y. We need the following proposition in order to define the notion
of compound probability measures:

Proposition 2 ([9]). Let X be a topological space and Y be a completely reqular
topological space. Let X be a mapping from X into P.(Y). Assume that P,(Y) is equipped
with the usual weak topology of measures.

(1) A is continuous if and only if for each open subset U of X x Y, the function z €
X — A(z,U,) is lower semi-continuous on X.

(2) If X is continuous then for each Borel subset D of X x Y, the function z € X —
Mz, Dy) is Borel measurable.

Here for a subset D of X xY and z € X, D, denotes the section determined by z, that .
is, D ={yeY : (z,y) € D}.

If we assume that I' C C,(Y') satisfies (I'l) and (I'2), then by (1) of Proposition 1,
every A € Ur(X,Y) is a continuous mapping from X with the uniform topology into
P-(Y) with the usual weak topology of measures. Consequently, by (2) of Proposition
2, for any p € P(X) and any A € Ur(X,Y), we can define a Borel probability measure
poAdon X xY, which is called the compound probability measure of ;1 and A, by

po X(D) = /X Mz, D;)u(dz) forall D € B(X xY).

Denote by pA the projection of o X onto Y, that is, pA(B) = po A(X x B) for all
B € B(Y). If uis T-smooth, then po A and u are also 7-smooth (see Proposition 2 of
[9]). By a standard argument, we can verify that the Fubini’s theorem remains valid for
all Borel measurable and p o A-integrable functions h on X x Y;

L @y o Mda,dy) = /X /Y h(z,y)A(z, dy)u(dz).

We say that a subset Q of Ur(X,Y") is I-uniformly equicontinuous if for each g € T,
the set of mappings z € X = [}, g(y)A(z,dy), A € Q, is uniformly equicontinuous. It
is obvious that the I'-uniform equicontinuity of Q is equivalent to the condition that Q
is a uniformly equicontinuous set of mappings from the uniform space (X,I(x) into the
uniform space P,(Y") with the uniform structure generated by T.

We have typical examples of uniformly equicontinuous transition probabilities below.
As another important example of them, we shall consider Gaussian transition probabili-
ties on a Hilbert space in Section 4.



276 JUN KAWABE

Example 2. (1) Let X and Y be uniform spaces and {vo} C P-(Y). Put for all a,
Mo(z, B) = va(B) forallz € X and all B € B(Y).

Then {Ay} is Up(Y')-uniformly equicontinuous.
(2) Let G be a topological group and {vy} C P-(G). Put for all o,

Aoz, B) = vo(z7!B) forall z € X and all B € B(G).

Then {\q} is Us(G)-uniformly equicontinuous with respect to the right uniform structure
on G.

(3) Let T and Y be uniform spaces with their uniformities U7 and Uy, respectively.
Let (€2, A, P) be a probability measure space and Z,(t,w),t € T and w € 2, be B(T') x A-
measurable, ¥-valued, 7-smooth stochastic processes which are uniformly equicontinuous
in probability, that is, their distributions on Y are T-smooth, and for every € > 0 and
every V € Uy there exists U € Ur such that if (t1,t2) € U then P({w € 2 : (Za(t1,w),
Zo(ta,w)) € V}) > 1—¢ for all a. Put for all a,

Xe(t,B) = P({w € Q: Z4(t,w) € B}) forallt€ T and all B € B(Y).
Then {A.} is Up(Y)-uniformly equicontinuous.

Proof. (1) is obvious. (2) Let G be a topological group with the right uniform
structure. Since the v,’s are T-smooth, it follows that the A,’s are T-smooth. So we only
show that {Ay} is Up(G)-uniformly equicontinuous.

Fix € > 0 and g € Uy(G). We put

Ya(z) =/Gg(y))\a(w,dy) =/Gg(wZ)va(dz), %€ 6.

Then we can find an open neighborhood U of the neutral element of G such that z.z; e
U implies |g(z1) — g(z2)| < €. Since (z22)(212) 7! = zozy ' € U for all z € G, Toxy €U
implies |g(z;2) — g(z22)| < € for all z € G, and from this it follows that

lpa(z1) — palz2)| < /0|9(3912) — g(z22)|va(dz) < € for all a.

Consequently {pq} is uniformly equicontinuous with respect to the right uniform struc-
ture on G, and this implies Up(G)-uniform equicontinuity of {Aq}.

(3) It can be proved using the definition of uniform equicontinuity in probability for
stochastic processes, and hence we omit its proof.

Now we can state our main theorem concerning the weak convergence of compound
probability measures. -

Theorem.1. Let X be a uniform space. Let Y be a completely regular space and let
a linear subspace T' of Cp(Y) satisfy (I'1), (I'2) and (I'3). Assume that a net {Ao} C
Ur(X,Y) satisfies
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(a) {Aa} is T-uniformly equicontinuous, and
(b) there ezists A € Up(X,Y) such that Aa(z, -)l})\(:c, :) for each z € X.

Then for any net {tq} in P(X) converging weakly to p € Pr(X), we have Pho O Aa—3 [LO .

Remark 1. In Theorem 1 of [9] we assume that {Ay} is equicontinuous on every com-
pact subset of X, i.e, for each g € Cy(Y') the set of mappings z € X — Jy 9z, dy),
)\ € Q, is equicontinuous on every compact subset of X. Then it is easy to see that
the equicontinuity above is equivalent to Cp(Y)-uniform equicontinuity on every com-
pact subset of X, i.e., for each g € Cp(Y) the set of mappings = € X = prz) =
Jy )Xz, dy), A € Q, is uniformly equicontinuous on every compact subset of X. (cf.
Theorem 2.4.5 of [4]). Consequently, our assumption imposed on {Aq} of Theorem 1 is
stronger than that of Theorem 1 in [9] as to the extent of the domain of definition, in
which {g,} is uniformly continuous. However, it has an advantage that the same result
of Theorem 1 of [9], as well as the convergence of convolution measures and product mea-
sures, holds without any assumptions concerning the restriction of spaces and uniform
tightness of probability measures and transition probabilities.

Further, our assumptions in Theorem 1 do not seem to be very strong conditions for
Gaussian transition probabilities on a Hilbert space, which are one of the most important
examples, because they are derived from uniform equicontinuity of the corresponding
mean and covariance functions (see Theorems 2 and 3 in Section 4).

Before starting to prove Theorem 1, we give some applications.

(1) Applications to Weak Convergence of Product or Convolution Measures: Let G be
a topological group and let u € P(G) and v € P,(G). By [2] (or Propositions 1 and 2 of
[9]), we can define the convolution p * v of u and v by

p*v(B) = po G x B) for all B € B(G),
where A(z, B) = v(z~'B) for all z € G and all B € B(G). Then we have

Corollary 1. Let G be a topological group, and let {fia} be a net in P(G) and {vq}
be a net in Pr(G). If pra—p and vo——v, where p,v € Pr(G), then pq * Va—3 [ * V.

Proof. We put Mo(z, B) = vo(z~'B) and A(z,B) = v(z7'B) for all z € G and
B € B(G). Then {\,} is Uy(G)-uniformly equicontinuous with respect to the right
uniform structure by (2) of Example 2, and it is clear that A,(z, )5 X(x, +) for each
z € G. Therefore, if weset X =Y = G and I’ = U(G) in Theorem 1, then we have
e 0 Aa—=1t 0 X and hence poAa—spX. This implies pq * Vot b % V.

Remark 2. The corollary above is Corollary to Theorem 1 of [2].

If we put A(z,B) = v(B) for all z € X and B € B(Y), where v € P,(Y), then we
have o A = u x v for each p € P(X), and hence by (1) of Example 2 and Theorem 1,
we can easily prove the following
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Corollary 2. Let X and Y be uniform spaces. Let {fin} be a net P(X) and {v,} be
a net in Pr(Y). If po—p € Pr(X) and vg—v € P (Y) then g X Va—rp X V.

Remark 3. Corollary 2 was known in case when X and Y are separable metric spaces
(see e.g. [1, Theorem 3.2]), and has been. extended by Vakhania et al. [17, Proposition
1.4.1] to completely regular spaces. But their technique is that the weak convergence
[ta—> 11 can be proved by showing that pq(A) — p(A) for some special class of sets A,
and is different from ours.

(IT) An Application to Information Theory: In information theory, a transition prob-
ability A : X — P(Y) is called a channel from an input space X to an output space Y,
and p € P(X), uA € P(Y),and po X € P(X xY) are called an input source, an output
source, and a compound source, respectively (see e.g., Umegaki [16]). Then our result
shows that for a net of uniformly equicontinuous channels, the weak convergence of in-
put sources and channels assures the weak convergence of output sources and compound
sources.

To evaluate channel capacity, we use the mutual information I(u,A) between an
input source and an output source, which is defined using the notion of relative entropy
as follows:

I(p, A) = H(po A, p x pA),

where for any probability measures ;4 and v on a measurable space

_ [ Jlog%dy ifp<v
Hp,v) = { 0o otherwise,

where p < v denotes that u is absolutely continuous with respect to v.

We know that the relative entropy H(u,v) is a lower semicontinuous function of p
and v in the weak topology of measures on a metric space (this fact can be proved as
in the proof of corollary to Lemma 2.1 of Donsker and Varadhan [3]). Consequently,
by our result we obtain the lower semicontinuity of mutual information for a uniformly
continuous channel: '

fa—p implies lim infI(pa,A) > I(u, ),

which will be of use in information theory.
We start to prove Theorem 1. The following lemma is a slight generalization of
Lemma 1 of [2].

Lemma 1. Let X be a uniform space with its uniformity Ux and p € P,(X). Then
jor every U € Ux and € > 0 there ezist T1,%2,...,%, € X and a function g € Up(X)
such that 0 < g < 1, g(zs) = 0 for i = 1,2,...,n, g(z) = 1 for z ¢ U, U(z;) and
[y 9(z)u(dz) < e, where U(z;) = {z € X : (z,z;) € U}.

Proof. Let U € Ux and fix e > 0. Since X is a uniform space, for each a € X we
can find a function g, € Uy(X) which satisfies 0 < g, < 1, go(a) = 0, and gq(z) = 1 if
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z ¢ U(a) (the existence of such a function g, follows from a variant of a construction for
non-constant functions due to Urysohn; see e.g., Proposition 11.5 of [8]). Let a range
over the finite subsets of X and for a = {z1,2a,...,2,} we put
golz) = 12% gkE); =€ X

Then {go} is a decreasing net of uniformly continuous functions on X converging point-
wise to 0 (the ordering for the o’s being the set-theoretical inclusion). Since u is 7-smooth,
I go(z)pu(dz) < € for some o = {z1,%3,...,2,} by Proposition 1.3.2 of [17], and this
function g, is a required one.

Denote by Up(X;C) the set of all bounded, uniformly continuous complex-valued
functions on X. We can prove the following lemma as in the proof of Theorem 1 of [2],
if we shall use Lemma 1 of this paper instead of Lemma 1 of [2]. So we omit its proof.

Lemma 2. Let X be a uniform space and let {un} be a net in P(X). Suppose that
a net {vq} C Up(X,C) satisfies

(a) {@a} is uniformly bounded, and
(b) {wa} is uniformly equicontinuous.

If u € Pr(X) and po—p, and if o € Up(X;C) and pa(z) — () for each z € X,
then we have

lim [ pa(ehsa(de) = [ pla)u(ds).

Lemma 3. Lei X be a uniform space. Let Y be a completely regular space and
I' CCo(Y). Let {pia} be a net in P(X). Assume that {\o} C Ur(X,Y) is T'-uniformly

equicontinuous. If p € P.(X) and po——p, and if A € Up(X,Y) and M (=, -)LM(:B, )

for each z € X, then pgAq L>,u,\. Consequently, if I satisfies (I'l) and (I'2), then we
also have proAg—— .

Proof. Fix g € I" and put for each z € X,
alz) = /Y gl A (i) amd i) = fy g(y) Mz, dy).

Then the net {¢,} satisfies assumptions of Lemma 2. Since po—>u, by Lemma 2 we
have

lim / 9(y) ara(dy) = lim ] Yo (T)pa(dr) = / p(z)pu(de) = / 9(y)pA(dy),
Y * J¥ b'e Y
and this implies pq Ao ~—F—>,u/\. If T satisfies (I'1) and (I"2), it follows from (1) of Proposition
1 that peAq—>s i, since pA is T-smooth as stated in Section 3.

Lemma 4. Let X be a regular space. Assume that a family G of subsets of X satisfies
the following two conditions:
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(1) G is closed under finite unions.
(2) G contains an open basis for the topology of X .

Then, for any non-empty open subset G of X we can find a subfamily H of G such that
H1TG. '

Proof. Weput H = {H € G: H C H C G}. Then, using assumption (1), it is
easy to see that H is filtering upwards. Hence we have only to show that the equality
Ureyy H = G holds. Fix z € G. Since X is regular, there exists an open subset U of X
such that x € U C U C G. On the other hand, we can find H € G suchthat z € H C U
by assumption (2). Consequently we have z € H € H, and this implies g H D G.
The reverse inclusion is obvious.

For each u € P(X), define its characteristic function fi by

af) = /X @ yu(ds), f e C(X),

where C(X) denotes the set of all continuous real-valued functions on X. Then the
following lemma asserts that a 7-smooth probability measure, as well as a Radon proba-
bility measure, is uniquely determined by its characteristic function {(c.f. Theorem IV.2.2
of [17]).

Lemma 5. Let X be a completely regular space and p, v € P.(X). Assume that a
linear subspace ¥ of C(X) generates the topology on X, that is, the original topology on
X coincides with the weak topology generated by X. If i(f) = 0(f) for all f € ¥ then we
have p = v on B(X).

Proof. Let C be the o-field generated by the cylinder sets of the form

{z € X : (fi(2), fa(@),. ... fa(®)) € B},

where n € N, fi, fa,..., fn € £ and B € B(R"). Here R™ denotes the n-dimensional
Euclidean space. Denote by po and vy the restrictions of 4 and v to C, respectively.
Then by Lemma 1.3.1 of [17], o and v are regular on C, and it is obvious that pg and
vo are To-smooth on C (see also [17] for necessary definitions). Consequently, noting that
C contains an open basis for the topology of X, by Theorem 1.3.2-(a) of [17], po and vp
admit unique 7-smooth Borel extensions fip and i, respectively. Since ia(f) = o(f) for
all f € ¥, we have o = vy on C by Theorem IV. 2.2-(a) of [17], and by the uniqueness
of the extension, we have jig = % on B(X). Thus we complete the proof if we show that
i = fig and v = &g on B(X).

It is obvious that u(C) = fio(C) for all C € C. Let G be an drbitrary non-empty open
subset of X. Since C satisfies conditions (1) and (2) of Lemma 4, we can find a subfamily
H of C with H 1 G. Then we have u(G) = supyey u(H) = supyey Bo(H) = f10(G)
since u and fip are T-smooth. Therefore p and fip coincide on the open subsets of X,
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and hence they coincide on B(X) since p and fip are also regular. Similarly we can show
that v = 9 on B(X).
We shall prove the theorem.

Proof of Theorem 1. Assume that {uq} and {\} satisfy conditions of Theorem
1. We first show that every subnet of {ua © Ao} contains a further subnet converging to
a 7-smooth probability measure on X x Y. To do this, by Theorem 6 of [14], we have
only to show that the condition of “r-smoothness”

P{Iéffhm;sup o © A(F) =0 (3.2)
holds for every family F of closed subsets of X x Y with F | 0. (We remark that in
Theorem 6 of [14], we need not assume that a net (uq) is in My (X;7)— it is enough
to consider a net in M, (X); then the conditions of the theorem are the necessary and
sufficient conditions that every subnet of (u.) contains a further subnet converging to a
measure in M4 (X;7)). '

Fix € > 0 and let F be an arbitrary family of closed subsets of X x Y with F | 0. If
we put £ = {G° : G is open and G° D F for some F' € F}, then we can show that £ | 0
as in the proof of Lemma 4. Since x and A are 7-smooth, by Proposition 2 of [9], po A is
also T-smooth, and hence we have infgcs p o A(E) = 0, which implies that there exists
an open subset G of X x Y such that G¢ D F; for some F. € F and

poAG) < 3. (3.3)

Lol Mm

We put

g:{ U(Ui x V;) : The U;’s are open subsets of X and the V;’s are open subsets of Y} ;

i=1

then G satisfies conditions (1) and (2) of Lemma 4. Consequently we can find a subfamily
H of G such that H 1 G, and this and (3.3) implies

poMGe) = sup p(H)>1-=.
HeH 3

Thus there exists H, € H such that H. C G¢ and
€

‘uo)\(He)>1—2

(3.4)

Since H. € G, it can be expressed by the form H, = U?:l(Ui x V;), where the U;’s are
open subsets of X and the V;’s are open subsets of Y.
Since I satisfies (I'l) and (I'2), by Lemma 3 and assumptions of Theorem 1, we have

po—pt and g Ag—> . (3.5)
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Consequently, if we notice that F. C G¢ C H¢ and the equality

H:{(QU) xY}U{Xx (DV)}

holds, putting K = (., Uf and L = (_, V¢, then by (3.4) and (3.5) we have
lim sup pq © Aa(Fe) < limsup py 0 A (HE)
) = limC;uppa oA ((K xY)U (X x L))
< limasup Po © Aa(K X Y) + limsup po © Aa(X x L)
= lim:sup o (K) + lim jup ,ua/\o:zL)
< u(K) + pA(L)

=poA(K xXY)+poX(X xL)
<2po MH) <,

and this implies that (3.2) holds.
For each v € P(X x Y), define its characteristic function ¥ by

5(h) = / eh@)n(dz, dy), h € C(X x V).
XxY

Weput = Up(X)®T = {f@g: f € Up(X),g € '}, where (f & g)(2,y) = f(z) + 9(y),
(z,y) € X x Y. Since I is a linear subspace of Cy(Y') and satisfies (I'1), it is easy to see
that ¥ is a linear subspace of C'(X x Y') and the product topology on X x Y is generated
by L. Then by Lemma 5 and a standard argument (see Theorem IV.3.1 of [17]), in order
to complete the proof it is sufficient to show that for each f € Uy(X) and g € T, we have

(BaoXa)(f D G) = (Lo X)(fDg). (3.6)

Fix f € Uy(X) and g € T, and put

Ya(z) = e (=) /

e W\, (z,dy) and p(z) = eif(:r)/ e W \(z, dy).
¥

Y

Since I satisfies (I'3), by assumptions (a) and (b) of Theorem 1, it is easily verified that
{pa} and ¢ satisfy assumptions of Lemma 2. Therefore, by Lemma 2 we have

lim /X o (2)ia(dz) = L o(z)(dz),

~ and this implies (3.6). Hence the proof of Theorem 1 is complete.
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4. Uniform Equicontinuity of Gaussian Transition Probabilities

In this section we consider uniform equicontinuity of Gaussian transition probabilities
on a Hilbert space. Let H be a real Hilbert space with norm || - || and inner product
(-,-). A Borel probability measure u on H is said to be Gaussian if for each u € H, the
function w € H — (w,u) is a (possibly degenerate) Gaussian random variable on the
probability measure space (H,B(H), u). Since every Gaussian measure y satisfies

| i) < o,
H

we can define a mean vector m, € H and a covariance operator S, € S(H) by

Wmm=memmLu€E

and
(Sur0) = [ (0= myu)w = my,o)uldw), u e .
H

Here S(H) denotes the set of all positive and symmetric trace class operators on H; it
is endowed with the metric topology derived from the trace norm || - ||zr. See e.g. [17],
[11] and [12] for definitions, properties and related facts on trace class operators. Since
a Gaussian measure p is uniquely determined by its mean vector m, and covariance
operator S, we write p = N (my,S,) (see e.g., Theorem IV.2.4 of [17]).

Let (X, A) be a measurable space. A transition probability A on X x H is said to
be Gaussian if for each z € X, A;() = A(z,-) is a Gaussian measure on H. For a
Gaussian transition probability A on X x H, we can define weakly measurable mappings
my: X =+ H and S, : X - S(H) such that

(ma(z),u) = f (w,u)M(z,dw), z€ X, ue H, (4.1)
H
and
(O ()i, v) = /H(w —ma(z), u){w — my(z),v)Nz,dw), z€ X, u,ve H  (4.2)

See Hille and Phillips (7, page 74] for the definitions and results concerning the measur-
ability of vector and operator valued functions. We note here that weak measurability
and strong measurability of my and S, are equivalent in our case since H is separable.
‘The functions my : X = H and S) : X — S(H) defined by (4.1) and (4.2) are called the
mean function and the covariance function of A, respectively.

Conversely, if mappings my : X = H and Sy : X — S(H) are weakly measurable
and )y = N(mx(z),Sx(z)) for each z € X, then A = A, (-) is a transition probability
on X x H by Proposition 1 of [10]. From this, together with the fact that a Gaussian
measure is uniquely determined by its mean vector and covariance operator, it is readily
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verified that a Gaussian transition probability X is also uniquely determined by its mean
function my and covariance function Sy, and hence we write A = TN [mj, S,

Denote by BL(H) the Banach space of all bounded, real-valued Lipschitz functions on
H. We also denote by U(X; H) (resp. U(X;S(H))) the set of all uniformly continuous
mappings from a uniform space X into H (resp. S(H)) with the metric topology derived
from the norm on H (resp. the trace norm on S(H)).

In this section we show that the following theorems, which state that for Gaussian
transition probabilities we can express assumptions of Theorem 1 in terms of the corre-
sponding mean and covariance functions. We note here that every transition probability
on X x H are T-smooth since any probability measure on H is Radon, and hence 7-
smooth.

Theorem 2. Let X be a uniform space.

(1) Let A = TN[mx,S\] be a Gaussian transition probability on X x H. Then X is
BL(H)-uniformly continuous if my € U(X; H) and S) € U(X;S(H)).

(2) Lei Q be a set of Gaussian transition probabilities on X x H with A = TN [my, S)],
A € Q. Then Q is BL(H)-uniformly equicontinuous if {myx} C U(X; H) and {S»} C
U(X,S5(H)) are uniformly equicontinuous.

Theorem 3. Let X be a uniform space. Let Aoy = TN[my,Sa] be a net of Gaussian
transition probabilities on X x H and A = TN[m,S] a Gaussian transition probability
on X x H. Assume that the following conditions are satisfied:

(a) {mo} CU(X; H) and {S.} C U(X;S(H)) are uniformly equicontinuous.
(b) me U(X;H) and S € U(X;S(H)).
(c) limg ||ma(z) — m(z)|| = 0 and lim, ||Sa(z) — S(z)||tr = O for each z € X.

Then for any net {ua} C P(X) converging weakly to p € P.(X), we have g0 Ag—= o X.

To prove theorems above we need some information on 8-distance and L? Wasserstein
distance between probability measures, and an inequality for covariance operators.
Let u,v € P(H). The -distance between pu and v is defined by

B, v) = sup {UH 9d(p —v)

Nollsz < 1} |

The L? Wasserstein distance between p and v is defined by

1/2
W) = {in [ = ol o)}
HxH

where the infimum is taken over the family of all probability measures on H x H with
marginals ¢ and v respectively. See Dudley [4], and Givens and Shortt [6] for a discussion
- on these and other distances on probability measures. We collect some results needed in
the sequel, whose proofs can be found in [6] and [5].
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Theorem 4. (1) Let p,v € P(H). Then we have
Bl v) < Walp,v). (43)

(2) For any two Gaussian measures p = N[my,S,] and v = N[my, S, on H, we have -
an explicit expression (Gelbrich [5])

Wa(u, v)? = [Imy — mu||® + tr(Su + S, — 2(S,/25,5,/%)'/%). (4.4)

The following trace inequality for covariance operators will be used in proving uniform
equicontinuity of Gaussian transition probabilities.

Lemma 6. For any S, T € S(H), we have

tr(S + T — 2(SY2TS/?)/2) < tr((SY2 — TY?)?) < IS = Tls»- (4.5)

Proof. We first prove the left-hand inequality in (4.5). Note that S/2 and T'/2
are positive and symmetric operators of Hilbert-Schmidt class, and hence S/2T1/2 and
T1/281/2 are trace class operators. Then we have

Sl/szlfz — 51/2T1/2T1/231/2 — (T1/251/2)*(T1/251/2) - |T1/2.S'1/2|2,
and this implies that
tr((SY2TSY3)?) = tr(|TV2SY2)) > |tr(T/2SY2)| > tr(TH/28M/?). (4.6)
Since tr(T1/28%/2) = tr(SY/2T/?), by (4.6) we have
tr(S + T — 2(SY2TSY2)V/2) < tr(8) + tr(T) — 2tr(T*/*S*/?)
= ({82 = TV,

Next we prove the right-hand inequality in (4.5). Put A = S'/2 — T1/2 and B =
S1/2 4 T1/2 Then A and B are symmetric operators and AB + BA = 2(S —T). By
positivity of S/2 and T'/2, we have B > +A.

Since A is a symmetric operator of Hilbert-Schmidt class, it has an representation

Au = Z )\i(u,ei)ei, u € H, (4.7)

1=1

~where {e;} is an orthonormal basis in H, {\;} is a set of real numbers with }_; | A? < o0,
and the sum in (4.7) converges in norm. Then we have

IS = Tller = (S = T1)

- % S (|AB + BAjei,e:)

i=1
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>

B =

> I{(AB + BA)e;,e;)| (since |AB + BA| > +(AB + BA))
1=1

|Ai(Bei,e;)| (since Ae; = \;e; for all )

o

1

-
Il

|Ail|(Aes, e;)|  (since B > +A)

NE

>

i

A7 (since Ae; = Aze; for all 7)

e

1

o,
i

(Agei,ei) = tr(Az) = tr((Sl/2 _ Tl/z)z)’

S

1

i

and the proof is complete.
By Theorem 4 and Lemma 6, we have the following

Proposition 3. For any two Gaussian measures pp = N[m,,S,] and v = N[m,, S, ],

we have
Wz(#ﬂ’)z < ”mu - mVH2 + “S.u ~ Sl

Proof of Theorem 2. (1) follows from (2), and hence we only prove (2). Fix A € Q,
9 € BL(H) and z;,z2 € X. Then by (1) of Theorem 4, Proposition 3 and definition of
(-distance, we have

[ s - [ g(y)A(xz,dy)’
H H

< “Q”BL ' JB(’\(xlr '))’\(1'2: ))
<llgllsz - Wa(A(z1,-), A(z2, -))
<llgllaL - {llma(z1) — ma(z2)l1* + [|Sa(z1) = Sa(z2)|]er }*/2.

From this it follows that Q is BL(H)-uniformly equicontinuous since {my} and {S\} are
uniformly equicontinuous by assumption of Theorem 2.

Proof of Theorem 3. Since BL(H) satisfies (I'1), (I'2) and (I'3) by (2) of Example
1, we put I' = BL(H) in Theorem 1. Then we have only to verify that {),} and X satisfy
assumptions (a) and (b) of Theorem 1.

It followi,s from Theorem 2 and assumptions (a) and (b) of Theorem 3 that {\,} is
I'-uniformly equicontinuous and A € Ur(X, H).

Let z € X and g €' = BL(H). Then by (1) of Theorem 4, Proposition 3 and the

definition of -distance, we have

[ saa,d) - | g(y)A(m,dy)'
H H
S ||g”BL ’ IB(/\a(xa )s'\(ma))




CONVERGENCE OF COMPOUND MEASURES 287

< ”Q”_BL ' WQ(A&(:L‘: '): /\(17, ))
< ligliar - {llma(z) — m(@)|? + [1Sa() = S(@)ller}'7>.

From this and assumption (c) of Theorem 3 it follows that A (z, -)——E-h\(:r, -) for each |
z € X. Consequently, {\o} and X satisfy assumptions (a) and (b) of Theorem 1, and
the proof of Theorem 3 is complete.
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