NOTE ON 1-DIMENSIONAL INTEGRALLY CLOSED MORI SEMIGROUPS

YOSHIKO KITSUNEZUKA, RYÛKI MATSUDA AND TAKASI SUGATANI

Abstract. We show that a 1-dimensional integrally closed quasi-local Mori semi-group need not be a valuation semigroup, which is a negative answer to a semigroup version of the question of Querré.

1. Introduction

In [4], Querré states that a 1-dimensional integrally closed quasi-local Mori domain is a discrete valuation domain. As a semigroup version of this statement, the second author posed the question [3, (3.17)]: Is a 1-dimensional integrally closed quasi-local Mori semigroup a discrete valuation semigroup of rank 1? For integral domains, V. Barruci [1] showed that a 1-dimensional integrally closed quasi-local Mori domain need not be a discrete valuation domain. Our aim of this short note is to answer the question in the negative.

Notation: Let $S \ni 0$ be a subsemigroup of a torsion-free abelian group, with the binary operation +. Let q(S) denote the quotient group of S. A subsemigroup of q(S)containing S is called an *oversemigroup* of S. A mapping v from a torsion-free abelian group G onto a totally ordered additive group Γ is called a Γ -valued valuation on G if v(x+y) = v(x) + v(y) are satisfied for all $x, y \in G$. The subsemigroup $\{x \in G : v(x) \ge 0\}$ of G is called the valuation semigroup of G associated with v. A Z-valued valuation is called a discrete valuation of rank 1. A discrete valuation semigroup of rank 1 is the valuation semigroup associated with a discrete valuation of rank 1. An element x of an extension semigroup T of S is called *integral* over S if $nx \in S$ for some $n \in \mathbb{N}$. Let \overline{S} be the set of all integral element of q(S) over S. Then it is readily seen that \overline{S} is an oversemigroup of S. We call \overline{S} the *intrgral closure* of S. If $S = \overline{S}$, then S is called integrally closed. The supremum of the length of the strict chains of proper prime ideals $P_1 \subset P_2 \subset \cdots \subset P_n$ of S is called the *dimension* of S, which is denoted by dim(S). For a non-empty subset A of q(S), we put $A^{-1} = \{x \in q(S) : x + A \subseteq S\}$, and $(A^{-1})^{-1} = A^v$. An ideal I of S is called *divisorial* if $I = I^{v}$. S is called a *Mori* semigroup if every ascending chain $I_1 \subset I_2 \subset \cdots$ of ideals of S, which are divisorial, is stationary.

Received November 25, 1998.

1991 Mathematics Subject Classification. 13F30, 13G05, 20M14.

Key words and phrases. Mori semigroup, valuation semigroup.

YOSHIKO KITSUNEZUKA, RYÛKI MATSUDA AND TAKASI SUGATANI

For other unexplained notation, our general reference is [2].

Let F be a torsion-free abelian group, and H a proper subgroup of F. We assume that H is integrally closed in F. Observe that $\mathbb{Z} \oplus \{0\} \subset \mathbb{Z} \oplus \mathbb{Z}$ is such an extension of semigroups. Let V be a discrete valuation semigroup of rank 1, of the form $F \cup M$, where M is the maximal ideal of V. Let v be the valuation associated with V. Here is an example satisfying all the properties above: Let $G = F + \mathbb{Z}X$ with a symbol X. It is readily seen that G is a torsion-free abelian group. Now define a mapping v from G to \mathbb{Z} by $v(\alpha + nX) = n$ for $\alpha \in F$ and $n \in \mathbb{Z}$. It then follows that v is a discrete valuation on G, and $V = F + \mathbb{Z}_+X$ is the valuation semigroup associated with v, where \mathbb{Z}_+ is the non-negative integers. Further the maximal ideal of V is $M = F + \mathbb{N}X$, and hence $V = F \cup M$. Consider the subsemigroup $S = H \cup M$ of V. We have q(S) = q(V) = G, and M is the unique maximal ideal of S.

Under these preparation, we can prove that S is a 1-dimensional integrally closed quasi-local Mori semigroup that is neither a valuation nor a Noetherian semigroup. We will complete the proof in six steps. In the steps 1 and 2, similar arguments to those of [1] will be used.

Step 1. We show that if I is a non-principal divisorial ideal of S, then I is an ideal of V. Let I be a non-principal divisorial ideal of S. Let $y \in I^{-1}$. It is readily seen that y + I is a proper subset of S, since I is not principal. Therefore y + I is contained in the maximal ideal M. It then follows that $y + I + V \subseteq M + V = M \subseteq S$. Hence $I^{-1} + I \subseteq S$, or $I + V \subseteq I^v$. Since I is divisorial, it follows that I is an ideal of V, completing Step 1.

Step 2. In order to see that S is a Mori semigroup, let $I_1 \subset I_2 \subset \cdots$ be an ascending chain of ideals of S, which are divisorial. We must show that the chain is stationary. Now Step 1 reduces it to the following two cases: (1) each I_n is an ideal of V, and (2) each I_n is a principal ideal of S.

If case (1) happens, then we see that $k_n = \min\{v(x) : x \in I_n\}$ form a descending sequence $k_1 \ge k_2 \ge \cdots \ge 0$. Hence we find $r \in \mathbb{N}$ such that $k_r = k_n$ for each $n \ge r$. Since each I_n is an ideal of V, we have that $I_r = I_n$ for each $n \ge r$.

If case (2) happens, then each I_n is of the form $S + a_n$ for some $a_n \in S$. Then the chain $V + a_1 \subseteq V + a_2 \subseteq \cdots$ must be stationary. Let $r \in \mathbb{N}$ be such that $V + a_r = V + a_n$ for each $n \geq r$. Let $a_n = v_n + a_{n+1}$ with $v_n \in V$. Then we have $v_n = a_n - a_{n+1}$ is in $S \setminus M$ for each $n \geq r$. Hence $I_r = I_n$ for each $n \geq r$.

Thus S is a Mori semigroup.

Step 3. We will show that S is not a valuation semigroup. To this end, suppose that S be a valuation semigroup. Choose $\alpha \in F \setminus H$. Then q(S) = G implies that either α or $-\alpha$ is contained in S. This in turn shows $\alpha \in H$, a contradiction. Hence S is not a valuation semigroup.

Step 4. In order to see dim(S) = 1, let P be a proper prime ideal of S. Let $x \in M$. Take $y \in P$. We can find $n \in \mathbb{N}$ such that v(nx) > v(y). It then follows that $nx - y \in M$, and so $nx \in P$. Hence $x \in P$. Thus P = M.

296

Step 5. To show that S is integrally closed, let $\alpha \in G$ be intrgral over S. Since V is a valuation semigroup on G, we have $\alpha \in V$. If $\alpha \in F$, then we have $\alpha \in H$, since H is integrally closed in F. If $\alpha \notin F$, then $\alpha \in M$. Thus S is integrally closed.

Step 6. It remains to show that S is not Noetherian. To this end we show that M is not finitely generated. For a contradiction we suppose that M is finitely generated. Let x_1, \ldots, x_n be a minimal generator of M so that $M = (S + x_1) \cup \cdots \cup (S + x_n)$. Note that each $v(x_i) = 1$. Now take $\alpha \in F \setminus H$. It is readily seen that $\alpha + x_1 \in M$, and further $\alpha + x_1 \notin S + x_1$. Hence we have $\alpha + x_1 \in H + x_2$, say. Let k > 1. We assume that we can arrange the x_i 's in such a way that $\alpha + x_i \notin \bigcup_{j=1}^i (S + x_j)$, and $\alpha + x_i \in H + x_{i+1}$ for each $1 \leq i \leq k-1$. We want to show that $\alpha + x_k \notin \bigcup_{j=1}^k (S + x_j)$. If otherwise, then we would find $1 \leq j \leq k$ such that $\alpha + x_k \in H + x_j$. Then we see that $\alpha + x_j \in H + x_{j+1}, \ldots, \alpha + x_{k-1} \in H + x_k, \alpha + x_k \in H + x_j$ yield $(k - j + 1)\alpha \in H$. This implies that $\alpha \in H$, since H is integrally closed in F. This contradiction completes $\alpha + x_k \notin \bigcup_{j=1}^k (S + x_j)$. Thus in particular $\alpha + x_n \notin M$, the required contradiction.

References

- [1] V. Barucci, On a class of Mori domains, Comm. Alg. 11(1983), 1989-2001.
- [2] R. Gilmer, Commutative Semigroup Rings, Univ. Chicago Press, 1984.
- [3] R. Matsuda, On some properties between rings and semigroups, Math. J. Ibaraki Uinv. 29(1997), 9-23.
- [4] J. Querré, Sur une propriété des anneaux de Krull, Bull. Sci. Math. 95(1971), 341-354.

Department of Mathematics, Toyama University, Gofuku, Toyama 930, Japan.

Department of Mathematical Sciences, Ibaraki University, Mito, Ibaraki 310, Japan.

Department of Mathematics, Toyama University, Gofuku, Toyama 930, Japan.