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NOTE ON 1-DIMENSIONAL INTEGRALLY CLOSED

MORI SEMIGROUPS

YOSHIKO KITSUNEZUKA, RYUKI MATSUDA AND TAKASI SUGATANI

Abstract. We show that a I-dimensional integrally closed quasi-local Mori semi-group need not
be a valuation semigroup, which is a negative answer to a sem1group version of the question of
Querre.

1. Introduction

In (4], Querre states that a I-dimensional integrally closed quasi-local Mori domain
is a discrete valuation domain. ·As a semigroup version of this statement, the second
author posed the question (3, (3.17)]: Is a I-dimensional integrally closed quasi-local
Mori semigroup a discrete valuation semigroup of rank 1? For integral domains, V.
Barruci [1] showed that a I-dimensional integrally closed quasi-local Mori domain need
not be a discrete valuation domain. Our aim of this short note is to answer the question
in the negative.

Notation: Let S 3 0 be a subsemigroup of a torsion-free abelian group, with the
binary operation +. Let q(S) denote the quotient group of S. A subsemigroup of q(S)
containing S is called an oversemigroup of S. A mapping v from a torsion-free abelian
group G onto a totally ordered additive group r is called a f-valued valuation on G if
v(x+y) = v(x) +v(y) are satisfied for all x, y E G. The subsemigroup {x E G: v(x)~O}
of G is called the valuation semigroup of G associated with v. A Z-valued valuation is
called a discrete valuation of rank 1. A discrete valuation semigroup of rank 1 is the
valuation semigroup associated with a discrete valuation of rank 1. An element x of an
extension semigroup T of S is called integral over S if nx E S for some n E N. Let S
be the set of all integral element of q(S) over S. Then it is readil~seen that S is an
oversemigroup of S. We call S the intrgral closure of S. If S = S, then S is called
integrally closed. The supremum of the length of the strict chains of proper prime ideals
P1 C P2 C· · ·C 凡 of Sis called the dimension of S, which is denoted by dim(S). For a
non-empty subset A of q(S), we put A-1 = {x E q(S): x +A~S}, and (A-1尸=Av.
An ideal I of S is called divisorial if I = JV. S is called a Mori semigroup if every
ascending chain Ii C 12 C· · ·of ideals of S, which are divisorial, is stationary.
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For other unexplained notation, our general reference is [2).

Let F be a torsion-free abelian group, and H a proper subgroup of F. We ass.ume
that H is integrally closed in F. Observe that ZEB {O} C ZEB Z is such an extension
of semigroups. Let V be a discrete valuation semigroup of rank 1, of the form FU M,
where M is the maximal ideal of V. Let v be the valuation associated with V. Here is
an example satisfying all the properties above: Let G = F + ZX with a symbol X. It is
readily seen that G is a torsion-free abelian group. Now define a mapping v from G to
Z by v(a + nX) = n for a E F and n E Z. It then follows that v is a discrete valuation
on G, and V = F + Z+X is the valuation semigroup associated with v, where Z+ is
the non-negative integers. Further the maximal ideal of V is M = F + NX, and hence
V =FU M. Consider the subsemigroup S =HU A1 of V. We have q(S) = q(V) = G,
and M is the unique maximal ideal of S.

Under these preparation, we can prove that S is a 1-dimensional integrally closed
quasi-local Mori semigroup that is neither a valuation nor a Noetherian semigroup. We
will complete the proof in six steps. In the steps 1 and 2, similar arguments to those of
[1] will be used.

Step 1. We show that if I is a non-principal divisorial ideal of S, then I is an ideal
of V. Let I be a non-principal divisorial ideal of S. Let y E 1-1. It is readily seen that
y + I is a proper subset of S, since I is not principal. Therefore y + I is contained in the
maximal ideal M. It then follows that y +I+ V~M + V = M~S. Hence 1-1 + I 戶 s,
or I+ V 呈尸 Since I is divisorial, it 飼 lows that J is an ideal of V, completing Step 1.

Step 2. In order to see that Sis a Mori semigroup, let Ii ch c···be an ascending
chain of ideals of S, which are divisorial. We must show that the chain is stationary.
Now Step 1 reduces it to the following two cases: (1) each [11 is an ideal of V, and (2)
each In is a principal ideal of S.

If case (1) happens, then we see that kn = min{v(x) : x E /11} form a descending
sequence k1 乏 佖 乏 ···~0. Hence we find r E N such that 比 ＝梠 for each n~r
Since each In is an ideal of V, we have that Ir = In :for each n~r.
If case (2) happens, then each In is of the form S + an for some an E S. Then the

chain V + a1~V + a2~ · · ·must be stationary. Let r E N be such that V + ar = V + an
for each n~r. Let an = Vn + an+I with Vn E V. Then we have Vn = an - an+I is in
S\M for each n~r. Hence Ir = In for each n~r.
Thus S is a Mori semigroup.

Step 3. We will show that S is not a valuation semigroup. To this end, suppose
that S be a valuation semigroup. Choose a E F\H. Then q(S) = G implies that either
a or -a is contained in S. This in turn shows a E H, a contradiction. Hence S is not a
valuation semigroup.

Step 4. In _order to see dim(S) = 1, let P be a proper prime ideal of S. Let x E M.
Take y E P. We can find n EN such that v(nx) > v(y). It then follows that nx-y EM,
and so nx E P. Hence x E P. Thus P = M.
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Step 5. To show that Sis integrally closed, let a E G be intrgral over S. Since V is
a valuation semigroup on G, we have a E V. If a E F, then we have a E H, since H is
integrally closed in F. If a rt F, then a E M. Thus S is integraly closed.

Step 6. It remains to show that Sis not Noetherian. To this end we show that M
is not finitely generated. For a contradiction we suppose that M is finitely generated.
Let x1, ... ,xn be a minimal generator of M so that M = (S + xi) U· · ·U (S + Xn)­
Note that each v(xi) = 1. Now take a E F\H. It is readily seen that a + x1 E M,
and further a+ x1 ft S + x1. Hence we have a+ x1 E H + x2, say.. Let k > l. We
assume that we can arrange the x/s in such a way that a+ Xi rt u;=l (S + X孔 ，and
a+ Xi E H + Xi+l for each 1 ::; i ::; k - 1. We want to show that a+ Xk rt u;=l (S + Xj).
If otherwise, then we would find 1 ::; j ::; k such that a+ Xk E H + Xj. Then we see that
a+ Xj EH+ Xj+i, ... ,a+ Xk-l EH+ Xk,a + Xk EH+ Xj yield (k - j + l)a EH.
This implies that a E H, since His integrally closed in F. This contradiction completes
a+ Xk rt u;=l (S + Xj)• Thus in particular a+ Xn rt M, the required contradiction.
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