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A NOTE ON A THEOREM OF BOSANQUET

HUSEYIN BOR

Abstract. In this short note we have proved a general theorem on IC, 111.: summability methods
which generalizes a result of Bosanquet 圍·

J. Introduction

Let 訌n be given infinite series with partial sums (sn)- By Zn and tn we denote the
n-th (C, 1) means of the sequences (sn) and (nan), respectively. The series~邸 is said
to be summable IC, llk, k 2: 1, if (see [4])

00

芝 nk-1區 -z正 ilk < 00.

n=l
(1)

But since tn = n(zn - Zn-I) (see [6]) condition (1) can also be written as
00 1芷 －回 k < 00.

nn=l
(2)

Let (Pn) be a sequence of positive numbers such that
n

Pn =芷 Pv -+ oo as n -+ oo, (P一i=P一 i = 0, i ?:: 1).
v=O

The sequence-to-sequence transformation

1 n

匹＝瓦 芝 P囧v
v=O

(3)

(4)

defines the sequence (un) of (N,Pn) means of the sequence (sn) generated by the sequence
of coefficients (Pn) (sec [5]).

The series~an is said to be summable IN, p晶 k 2'. 1, if (see [1])
00

芷 (Pn品 ）辶 1回-u正 ilk<oo.
n=l

(5)
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In the special case when Pn = 1 for all values of n, IN,p叩 summability is the same as
IC, llk summability.

The following theorem is known.

Theorem A([2]). Let k~1. Suppose (Pn) and (qn) are positive se~uences such that
Pn-+ oo as n-+ oo and Qn-+ oo as n-+ oo. If EanAn is summable IN,p庫 ，whenever
Ean is summable IN, q庫 ，then

-Xn = O{ QnPn t
PnQn
｝ (6)

and
6An = O{生甘

Qn
(7)

2.

One of the simplest and most basic results on absolute Cesaro summability factors is
the following theorem due to Bosanquet [3].

Theorem B. Necessary and sufficient conditions for EanAn to be summable IC, 11,
whenever~an is summable IC, ll are

An = 0(1) (8)

and
1

.6.An = 0(-) as n ---+ oo.
n (9)

It may b·e noted that these two conditions·are sufficient for EanAn to be summable IC, Ilk,
whenever Ean is summable IC, 1比 k 2: 1. In fact, let (Tn) be the (C, 1) mean of the
sequence (na訟n). hence

1 n
1 n-1

Tn =— I:va占＝— V
A ,1

n+l n+l 芝~AvL rar + --2:_芷 vav
v=l n+lv=l r=t v=l

1 n-1
＝戸了芝 (v + l)~A山 十Antn

v=l
= Tn,1 + Tn,2, say.

Since ITn,I + Tn,2丨k < 2k(ITn,l 丨k + ITn,2lk), to complete the proof of this result it is
sufficient to show that

f 2-irn坩 <oo, for r = 1,2.nn==l
(10)
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Since Ll.An = 0(i), by (9), firstly by Holder's inequality when k > 1, we have

m+l 1 m+l n-1L -ITn,1竹＝芷 I
1 1 k

n - — Lev+ 1)t心Mn n+ 1n=2 n=2 v=I
m+l 1 n-1

5 芷严 ｛芝 (v + l)ltvl!A.Xvl}k
n=2 v=l

m+l 1 n-1 v+l= oc1) L 严 心 了－叫}k
n=2 v=l
m+l n-1

= 0(1) L 計 ｛辶叫}k
n=2 v=l
m+l n-1 n-1

= oc1) L缸: it坩 X -
1｛芷 l}k-1
nn=2 v=l v=l

m m

= 0(1)芷 比1k L 1
""''n2

v=l n=v+l
m 1= 0(1)芝 -It詛

Vv=l
= 0(1) as m-+ oo, by (2).

Finally, since An = 0(1), by (8), we have

m 1 m

芝 -ITn,2 户 1 m 1
n ＝芝 -I獄詛=0(1)芝 -It詛=0(1) as m-+ oo, by (2).

n nn=I n=l n=I

Therefore we get that

00 1芝 -ITn計 =0(1) as m~oo for r = 1, 2.
nn=l

This completes the proof of the result.
So it is natural to ask whether they are also necessary when k > l. We show they

are not. In fact, taking k > l we show, a special case, that 巔訟n is summable IC, llk,
whenever~an is summable IC, llk, in the case in which

L\.X 2一 i/k (n = 2i i = 0, 1, 2, ...)
n={ 。 ；therwise

Note that since~L\.Xn converges, this implies that An is bounded. Thus (8) holds.
However (9) does not; thus (9) is not necessary when k > l. Now, we give the following
main theorem.
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Theorem. Let k > l. If I:anAn is summable IC, Ilk, whenever I:an is summable
IC, Ilk, then 〉ln = 0(1) and~An = O(l/n)1lk.

Proof. If we take Pn = Qn = 1 for all values of n in Theorem A, then we get th~
result.
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