A NOTE ON A THEOREM OF BOSANQUET

HÜSEYIN BOR

Abstract

In this short note we have proved a general theorem on $|C, 1|_{k}$ summability methods which generalizes a result of Bosanquet [3].

1. Introduction

Let Σa_{n} be given infinite series with partial sums $\left(s_{n}\right)$. By z_{n} and t_{n} we denote the n-th $(C, 1)$ means of the sequences $\left(s_{n}\right)$ and $\left(n a_{n}\right)$, respectively. The series Σa_{n} is said to be summable $|C, 1|_{k}, k \geq 1$, if (see [4])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|z_{n}-z_{n-1}\right|^{k}<\infty \tag{1}
\end{equation*}
$$

But since $t_{n}=n\left(z_{n}-z_{n-1}\right)$ (see [6]) condition (1) can also be written as

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}\right|^{k}<\infty \tag{2}
\end{equation*}
$$

Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \text { as } n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, i \geq 1\right) \tag{3}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
u_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{4}
\end{equation*}
$$

defines the sequence (u_{n}) of (\bar{N}, p_{n}) means of the sequence $\left(s_{n}\right)$ generated by the sequence of coefficients $\left(p_{n}\right)$ (see [5]).

The series Σa_{n} is said to be summable $\left|\bar{N}, p_{n}\right|_{k} k \geq 1$, if (see [1])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(P_{n} / p_{n}\right)^{k-1}\left|u_{n}-u_{n-1}\right|^{k}<\infty \tag{5}
\end{equation*}
$$

Received January 12, 1999.
1991 Mathematics Subject Classification. 40D05, 40D15, 40F05, 40G05, 40G99
Key words and phrases. Absolute summability, summability factors, infinite series.

In the special case when $p_{n}=1$ for all values of $n,\left|\bar{N}, p_{n}\right|_{k}$ summability is the same as $|C, 1|_{k}$ summability.

The following theorem is known.
Theorem $\mathbb{A}([2])$. Let $k \geq 1$. Suppose $\left(p_{n}\right)$ and $\left(q_{n}\right)$ are positive sequences such that $P_{n} \rightarrow \infty$ as $n \rightarrow \infty$ and $Q_{n} \rightarrow \infty$ as $n \rightarrow \infty$. If $\Sigma a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}$, whenever $\sum a_{n}$ is summable $\left|\bar{N}, q_{n}\right|_{k}$, then

$$
\begin{equation*}
\lambda_{n}=O\left\{\frac{q_{n} P_{n}}{p_{n} Q_{n}}\right\}^{\frac{1}{k}} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta \lambda_{n}=O\left\{\frac{q_{n}}{Q_{n}}\right\}^{\frac{1}{k}} \tag{7}
\end{equation*}
$$

2.

One of the simplest and most basic results on absolute Cesaro summability factors is the following theorem due to Bosanquet [3].

Theorem B. Necessary and sufficient conditions for $\Sigma a_{n} \lambda_{n}$ to be summable $|C, 1|$, whenever Σa_{n} is summable $|C, 1|$ are

$$
\begin{equation*}
\lambda_{n}=O(1) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta \lambda_{n}=O\left(\frac{1}{n}\right) \text { as } n \rightarrow \infty \tag{9}
\end{equation*}
$$

It may be noted that these two conditions are sufficient for $\Sigma a_{n} \lambda_{n}$ to be summable $|C, 1|_{k}$, whenever Σa_{n} is summable $|C, 1|_{k}, k \geq 1$. In fact, let $\left(T_{n}\right)$ be the ($C, 1$) mean of the sequence ($n a_{n} \lambda_{n}$). hence

$$
\begin{aligned}
T_{n}=\frac{1}{n+1} \sum_{v=1}^{n} v a_{v} \lambda_{v} & =\frac{1}{n+1} \sum_{v=1}^{n-1} \Delta \lambda_{v} \sum_{r=t}^{v} r a_{r}+\frac{\lambda_{n}}{n+1} \sum_{v=1}^{n} v a_{v} \\
& =\frac{1}{n+1} \sum_{v=1}^{n-1}(v+1) \Delta \lambda_{v} t_{v}+\lambda_{n} t_{n} \\
& =T_{n, 1}+T_{n, 2}, \text { say. }
\end{aligned}
$$

Since $\left|T_{n, 1}+T_{n, 2}\right|^{k}<2^{k}\left(\left|T_{n, 1}\right|^{k}+\left|T_{n, 2}\right|^{k}\right)$, to complete the proof of this result it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|T_{n, r}\right|^{k}<\infty, \quad \text { for } r=1,2 \tag{10}
\end{equation*}
$$

Since $\Delta \lambda_{n}=O\left(\frac{1}{n}\right)$, by (9), firstly by Hölder's inequality when $k>1$, we have

$$
\begin{aligned}
\sum_{n=2}^{m+1} \frac{1}{n}\left|T_{n, 1}\right|^{k} & =\sum_{n=2}^{m+1} \frac{1}{n}\left|\frac{1}{n+1} \sum_{v=1}^{n-1}(v+1) t_{v} \Delta \lambda_{v}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \frac{1}{n^{k+1}}\left\{\sum_{v=1}^{n-1}(v+1)\left|t_{v} \| \Delta \lambda_{v}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{1}{n^{k+1}}\left\{\sum_{v=1}^{n-1} \frac{v+1}{v}\left|t_{v}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{1}{n^{k+1}}\left\{\sum_{v=1}^{n-1}\left|t_{v}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{1}{n^{2}} \sum_{v=1}^{n-1}\left|t_{v}\right|^{k} \times\left\{\frac{1}{n} \sum_{v=1}^{n-1} 1\right\}^{k-1} \\
& =O(1) \sum_{v=1}^{m}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m} \frac{1}{n^{2}} \\
& =O(1) \sum_{v=1}^{m} \frac{1}{v}\left|t_{v}\right|^{k} \\
& =O(1) \text { as } m \rightarrow \infty, \text { by }(2)
\end{aligned}
$$

Finally, since $\lambda_{n}=O(1)$, by (8), we have

$$
\sum_{n=1}^{m} \frac{1}{n}\left|T_{n, 2}\right|^{k}=\sum_{n=1}^{m} \frac{1}{n}\left|\lambda_{n} t_{n}\right|^{k}=O(1) \sum_{n=1}^{m} \frac{1}{n}\left|t_{n}\right|^{k}=O(1) \text { as } m \rightarrow \infty, \quad \text { by }(2)
$$

Therefore we get that

$$
\sum_{n=1}^{\infty} \frac{1}{n}\left|T_{n, r}\right|^{k}=O(1) \text { as } m \rightarrow \infty \text { for } r=1,2
$$

This completes the proof of the result.
So it is natural to ask whether they are also necessary when $k>1$. We show they are not. In fact, taking $k>1$ we show, a special case, that $\Sigma a_{n} \lambda_{n}$ is summable $|C, 1|_{k}$, whenever Σa_{n} is summable $|C, 1|_{k}$, in the case in which

$$
\Delta \lambda_{n}=\left\{\begin{array}{c}
2^{-i / k}\left(n=2^{i}, i=0,1,2, \ldots\right) \\
0 \quad \text { otherwise }
\end{array}\right.
$$

Note that since $\Sigma \Delta \lambda_{n}$ converges, this implies that λ_{n} is bounded. Thus (8) holds. However (9) does not; thus (9) is not necessary when $k>1$. Now, we give the following main theorem.

Theorem. Let $k>1$. If $\Sigma a_{n} \lambda_{n}$ is summable $|C, 1|_{k}$, whenever Σa_{n} is summable $|C, 1|_{k}$, then $\lambda_{n}=O(1)$ and $\Delta \lambda_{n}=O(1 / n)^{1 / k}$.

Proof. If we take $p_{n}=q_{n}=1$ for all values of n in Theorem A, then we get the result.

References

[1] H. Bor, On two summability methods, Math. Proc. Cambridge Phil. Soc. 97(1985), 147-149.
[2] H. Bor, On absolute weighted mean summability methods, Bull. London Math. Soc. 25(1993), 265-268.
[3] L. S. Bosanquet, Note on convergence and summability factors, J. London Math. Soc. 20(1945), 39-48.
[4] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and paley, Proc. London Math. Soc. 7(1957), 113-141.
[5] G. H. Hardy, Divergent Series, Oxford University press, 1949.
[6] E. Kogbetliantz, Sur les series absolument sommables par la methode des moyannes aritmetiques, Bull. Sci. Math. 49(1925), 234-256.

Department of Mathematics, Erciyes University 38039, Kayseri, Turkey.
E-mail: bor@erciyes.edu.tr

