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CAUCHY PROBLEM AND REDUCTION OF A SYSTEM
OF PARTIAL DIFFERENTIAL EQUATIONS

J. STEFANOVSKI, K. TRENCEVSKI AND V. COVACHEV

Abstract. The Cauchy problem for systems of homogeneous and also nonlinear partial dif-
ferential equations is considered. If the compatibility conditions are satisfied, the solution is
represented as functional series. The algorithm for reduction of a system of partial differential
equations with linear homogeneous algebraic constraints is considered. It is proved that the
compatibility conditions for the reduced system are identically satisfied.

1. Introduction

In the paper vector notations are used, where the vectors and matrices are in bold. For
this notation we assume that the differential (row) operator 2 denotes [6;;, B I

For example, if ¢ is a scalar function, then

0p _ 2.‘6’_]
Ox ‘0z’ Oz,
h1
and for any vector function h(z;,...,z,) = | ! | we use the notation
hm

8h1/a$1 6h1/8l‘2 ¥ Ghl/amn
oh 8h2/8$1 3h2/6z2 Ly 6h2/6zn
ox | ; oo}
Ohun 0Ty Ol /0T - - - Oy | O,

This paper is based on the papers [5,6,7,8] and represents a further generalization of
them. So we will give a brief overview of these papers.
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In [6] a Charpit system of partial differential equations (PDEs)

9y
ox

is considered together with the algebraic constraints

h;(x,y) + gi(x,y) =0, i=1,...,p, (1.1)

f(x,y) = f(z) =0, b

where the unknown vector function y is m-dimensional and depends on the n-dimensional
variable x, while h;, g;, f are given vector functions. Then it is expanded up to the
equivalent system with respect to the unknown function F(x,y) = F(z):

oF - =
e wilz) =8, %=1, z—[y], (1.3)

where w;(z) = [hi ] , for some g > p, so that (1.3) identically satisfies the compatiblity
1

conditions, and it is proven [6] that if the solution of (1.1) satisfies the algebraic equations
(1.2), then it also satisfies the algebraic equations

5 wilz) =0, 4= ...8 (1.4)
We generate other algebraic equations, besides the equations (1.2). Let us put fo(z) =
fo(x,y) = f(x,y) = f(z) = 0 and let us assume inductively that we have obtained the
vector equation fj(z) = 0. Let us sort the components of f; into f; and f so that the rows
of the matrix 8f;/0z be linearly independent and the rows of the matrix ij / 0z be linearly
dependent on the rows of the matrix Of;/0z. While generating the vector functions f;
let us assume that the components of f; are ordered so the the first components of f are
the components of f;_;. Applying the previous assertion to the equations f;(z) = 0, new

equations can be obtained. Let us put

£;
of; '

£ = ( ,/az) =0. (1.5)

(0f;/ 32)

This completes the description of the algorithm.
A necessary condition for existence of a solution of (1.1) and (1.2) is the existence of
points z; such that

f'j(zj) =0, f‘j(zj) =O, j=0,1,.... (16)

As a result of the algorithm we obtain that the number of components of the vector
function fJ permanently increases and its first components are the components of the
previous function f] 1. There exists a minimal positive integer k such that fr4, = fi,
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because the maximal number of components of f;,  =0,1,2,... is bounded above. A
condition for the existence of a solution of the problem (1.1) and (1.2) is dim f;, < dimy.

Tf there exists at least one solution z; of the equation fi(z¢) = 0 which is a necessary
condition, then from the equation fi(x,y) = 0 by the implicit function theorem y can

be expressed as a function of x. This can be done as follows. The vector y can be
!

partitioned as y = [z,,] so that the matrix 6f; /8y’ is nonsingular. Thus the equation

fi(x,y) = 0 can be solved with respect to y', y' = ¢(x,y"). Let us partition the PDE
(1.1) in accordance with the partitioning of the vector y, i.e.

oy" .
i(x,y) +gi(x,y) =0, Y nxy) +gl(xy) =0, i=1,...,q, (L.7)

oy’
& ox

9%
where

B gll g;]
[gla"'agq] [grllgg )

and obtain a new system of PDEs with respect to y”

y" o _ .
3y hi(x, 0%, ¥"),y") + 81 (%, 0(x,¥"),y") =0, i=1,...,q, (1.8)

and a system of algebraic equations

Oy h Op

L 5 By = =0, i=1,...,q, 1.9
B By" g +g; i q (1.8)

which does not give us anything new in solving of the problem (1.1) and (1.2) because it
is equivalent to the equation fy4; = fi, i.e. fx41 = 0.

Theorem 1.1. Sufficient conditions for the exzistence of a solution for the problem
(1.1) and (1.2) are

i) dimf; < dimy, -
ii) there exists a solution zy of fi(z) = 0,
iii) fry1(zx) =0,

) the new system of PDEs (1.8) is satisfied.

iv

A solution of the problem is given by y} and y}, where the components of the vector y
are partitioned (and eventually permuted) into the vectors y' and y" so that the matriz
Ofy /0y’ is nonsingular. Thus y} is a function which satisfies the system of PDEs (1.8)
and y', is a solution of ¥y (x,yx) = fk(x,¥},¥%) = 0.

According to this theorem we obtain again a system of PDEs (1.8) with dimension
less than the former one and without algebraic constraints. Moreover, the following
proposition holds.
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Proposition 1.2. If the system of PDEs (1.3) identically satisfies the compatibil-
ity conditions, then the system of PDEs (1.8) also identically satisfies the compatibility
conditions.

The paper [5] is a special case of the previous results such that f is a linear function

of y, h; are functions of x only and g; = 0.
In the papers [7] and [8] solutions of systems of PDEs are given assuming that the
systems are analytical. Let us consider the following system

0
ébf'JrGu-yzo (1<u<n), (1.10)
where y = (y1,...,Ym)T are unknown functions of x = (z1,...,2,)7 and G, are ana-

lytical matrix functions of x. Then the compatibility conditions for (1.10) are
Ri;;=0 (1.11)
where
Rij = 0G;/0z; — 0G;/0z; + G- G; — G; - G; (1<14,j <n).
In [7] the following theorem is proved.

Theorem 1.3. Let the system (1.10) be given and let the compaiibility conditions
(1.11) be satisfied. Then there ezxist m x m matriz functions P<1»¥=>(x), vy,..., v, €
Ny such that

P<0,...,0> - I; (1.12)
P<visnvitl,va> 5%13<v1,....vn> 4G P<Viy¥Un> (1_13)

and the solution of (1.10) is given by

y = Z io: i (""1171.)1)1 (_1'2)'02 o (_3371.)‘”" P <V > c, (114)

where € = {8y, . ..olin)y 6:= §:(0).

Further in [7] the nonlinear system of PDEs

Oy w .
T Zezfil-'~imu<x)yi‘y? ¥m =0 (Isu<n) (1.15)

is considered, where f;, ;. are analytical functions. Moreover, suppose that there exists
a neighbourhood U of 0 such that all vector functions f;,...; . are regular in U. Let W
be such that the Laurent series in (1.15) converge fory € W and x € U. If frs,...i. 0 (X)
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(1<r<m,l<u<n,i,...,im € Z) are the coordinates of f;,...; ., we define new
functions

hil---imjx-jm‘u- and Ri1~--imj1-jmuv (il, o 5o o Bgpn s csmgilsn K diy L% et 5 n)

m
Rigimiyogmu = Y bsfs(it = 1) -+ (Js — is + 1) -+ (jm — Gm)u (1.16)
=1

and

R I M = R LI I I
11" ImJ1 " Jm UV ' 6mu 1 mJl1 " Jm am'u 1 mJ1° " Jm

+ E ht1-“tmjx---jm‘vh‘il---‘imtl-"tmu — E ht1"'tmj1---jmuhi1-~-imt1"-tm’v' (117)

Cliasiiis tm EZ t1y:-s B €EZ

-S_ o J1 . g dm § . wm oa L s i
hzl---lmjl”'Jmuyl ym a-nd Rzl...lm_ﬂ,l-..;)muvyl y'n;."
Figeesy Im€Z Jlr?]mez

converge for y € W and x € U. In order to simplify the notations, sometimes we will
denote by the Greek indices a, 3,7,... a set of m integer indices %y - im;j1 " Jm; -
We will denote by {r} the set of m indices 0...010...0 where the unit appears at the
r-th place. Now o + 3 and a — 3 are defined by iy -« -ip, £ j1 - - Jm = (61 £ j1)(i2 £
J2) -+ (im £ jm). The following properties are proved in [7]:

hatp)yyu = ha(r-pyu + Po(ra)us (1.18)
R(atp)yuv = Ra(y—pyuv + Rg(y—a)uvs (1.19)
haﬁu = Zish{s}(ﬁ—a+{s})u1 | (1'20)

s=1

. m
Repuy = ZisR{s}(ﬁ—a+{s})uv: where a = 11 Um. (1.21)

s=1

Theorem 1.4. (i) The compatibility conditions for the system (1.15) for arbitrary
initial conditions y(0) = ¢ are

Ropuy =0, e R{r}ﬁuu =0. (1.22)
(i) If the compatibility conditions (1.22) are satisfied, then there exist functions

<‘U.)1,4..1.U . . . o
Pil...imj;--?jm(x)’ wl:"',w‘neNOv L1,-- 5 tmy J1y-- -5 0m EZ:
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in a neighbourhood of 0 such that

<0,...,0> = 1T .rEh
i1 o dm g1 m ‘5113151232 52,,-.],-,,) (1'23)
P<w1’ ,wu+1 Wn> i <wy,..eyWn >
“tm J1 - Oz, 11 imJ1Jm
Wi ?wn>
5 E (E 'Lsfs(tl i1)-(ts—is+1)-- (tm—zm)u)Ptl tmj1 - Jm " (124)

t1,.-tm€EZ s=1

If c € W, then the solution of (1.15) in a neighbourhood of 0 is given by

— (_zl)wl (_zn)wn <wy,...,\Wn > j jm
Yr = Z [ w;! o why! Z P{r}:llmz Jm c“ o ] 2
wlv--»wnGNO * jlr"'vjmez

for1 < r < m. This solution is unique with the given initial conditions in a neighbourhood
of 0.

The paper [8] generalizes the paper [7] so that for the corresponding system the
compatibility conditions are not assumed identically satisfied and they depend on the
choice of the initial conditions. If the initial conditions are given, then the necessary and
sufficient conditions for the existence of a solution are given, and if they are satisfied, the
solution is given in a functional series as in Theorems 1.3 and 1.4.

2. Solution of the Cauchy Problem

In this section we will give the solution of the Cauchy problem for linear and nonlinear
systems of PDEs. Let p < n and let us consider the following system

0y/0z, +Gy,-y=0 (u=1,...,p) (2.1)
with the initial condition

Y(O,...,O,$p+1,...,$n) :Kb(m.p+1,---a$n) (22)

with respect to the unknown vector function y = (yi1,...,ym) of the vector variable
x = (z1,...,Z,), where G, are given analytical matrix functions of x regular in a neigh-
bourhood of (0,...,0,2p41,...,2,) and 7 is a given vector function. The compatibility
conditions for the system (2.1) with arbitrary initial conditions (2.2) are

Ri; =0 (i,j=1,...,p), (2.3)
where R;; were defined in Section 1. Now we will prove the following theorem.

Theorem 2.1. Let the system (2.1) with the initial conditions (2.2) be given and
the compatibility conditions (2.3) be satisfied. Then there exist m x m matriz functions
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P<wir¥r>(x), wy,...,wp € No such that

P<0,...,0> =1 (2.43)
0
0z

P<w1,‘..,wu+1,...,wp> P<w1,...,wp> i Gu . P<w1,...,wu,...,w,,>’ u = 1’ . (24b)

and the solution of (2.1) with (2.2) in a neighbourhood of (0,...,0,zpt1,...,2,) is given
by

(o] 0 oo wy w2 w
=<1 —T2 — P
y = Z E _S_ ( w? ( ) ( p)' XP<w1""’wP>-’l,[)(:I:p+1....,£Ek).
w1=0 we=0 wp=0 1:

w2! Wyp-
(2.5)
This solution is unique with the given initial conditions in a neighbourhood of (0,...,0,

Zp+1,...,2n)-

Proof. Suppose that the system (2.1) is given and the compatibility conditions (2.3)
are satisfied. In order to prove that there exist matrix functions

P<uwi- wp>(x) (wl,...,wp & NO)
such that (2.4a) and (2.4b) are satisfied, it is sufficient to prove that

2 1 2
P<w1,...,w£ )+1,,..,w£1)+1,...,wp> = P<w1,...,w‘(‘ )+1,...,w£ )+1,...,'wp> (26)

for each u, v € {1,...,p}, u < v, where wd = w,(,l), w? = w?, Indeed, using the

definition of the matrix functions P and the compatibility condition (2.3), we obtain

P<wi w41, w41, awp> P<wirw+H1, w41, >

= Ry, - P<w9> = g,

Now we should prove that the vector function y defined by (2.5) satisfies the system
(2.1) and the initial condition (2.2). The uniform convergence of the right-hand side of
(2.5) in a neighbourhood of 0 is proved in [7]. Further, for an arbitrary vector function
Y(Tpt1,...,%n) according to (2.5) and (2.4b) we obtain

w1 wu—-l Wp
By 0z, = ey Em)™ T ()
/e wi ..%:GNO wi! (=1) (wy — 1)! wp!
XP<’w‘1 ..... "-”p> '¢($p+1,...,:t;n)
(=20 | (=23)% 0w
T Z wll! 7 o wz! ’ Oy [ o “Y(Tpt1,- -0 Zn)]

Wi, Wp ENQ

T = N . Lo

w,! wy! w,!

w1,...,wp ENg
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("':171)1“1 (—mp)wp 0 LWyensWp > | .
+ Z 'wl! wp! " [amuP ] 'g/)(xp+1,...,:cn)

wl,...,wPGNo

e B (—z)"  (—zp)"r [P<w1,...,wu+1,...,wp>
N wy! wp!

wi,...,wpENo

__6_P<w1 ..... 'UJp>] .1/)(—331)+1,...,$n)

oz,

— w1 —T Wp i w
-y B e pen ) e, o)
14 P

wi,...,wpENp

=0 [ Z (—z1)™ (_Cﬂp)wp P <Wisewp> '¢(-’rp+1,---,$n)]

w1! wp‘.

w1 ,"')waNO

= _G’u 'Y,
and hence (2.1) is satisfied. Further, according to (2.4a) we obtain
:Y(O) = P<0""’0> § 1,b(mp+1, S ,17n) =1- ’(/)(.’L'p+1, i id ,a:n) = @b(ch_|_1, o ,.’En).

The solution is unique with the given initial coditions. This is proved analogously to [7].
Let us consider the following nonlinear system of PDEs

8y/0zu+ Y. fninu(®yiyE Y =0, u=1L...,p (p<n) (2.7)
i]_,...‘imEZ

with the initial condition

¥(0,...,0,Zpt1,- .- Zn) = Y(Tpt1s-- > Zn);s (2.8)

where £ ...i_w = (flig.imus - - - » fmiy--imu) ar€ analytical functions and suppose that there
exists a neighbourhood U of (0, ...,0,zp+1,- - ., 2,) such that all functions fri,. i,.u are
regular in U. Let W be such that the Laurent series in (2.7) converge for y € W and
% € U, analogously as in Section 1. We define the quantities Rapuy in the same way as
in Section 1 and now we have the following theorem.

Theorem 2.2. (i) The compatibility conditions for the system (2.7). for arbitrary
initial conditions (2.8) are 4
Rapuw =0, ie. Riyguw =0, u,v= ) C— (2.9)

(ii) If the compatibility conditions (2.9) are satisfied, then there ezist functions

<wWi,... Wp>
il"'i:-njl .;.J.jm (X),

in a neighbourhood of (0,...,0,2pt1,...,2n) such that

wl,...,waNo, il,...im,jl,...,ijZ,

0,...,0> _
Pil...imjl-ujm - 5i1j1 5i2.‘i2 s 6imjm’ (2'103’)
P<w1,...,wu+1,...,wp> _ 6 LAY vy wp>
e e = —axu 1y g

3 < ----- >
+ Z (Z’sfs(tx-i1)---(t,—z‘s+1)-(tm—im)u)Ptl?ftmj:‘f.’fjm. (2.10b)
g=1
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If ¥(Zpy1,---,Zn) € W, then the solution of (2.7) and (2.8) in a neighbourhood of
(0, .05 0y o5 < » 12n) 48 given by

_ml wi S Wy yoily ] j )
we Y [CRRLEEmT S vt o] e
E— b= S W

This solution is unique with the given initial conditions in a neighborhood of (0, .. .,0,

Zp4ly - ,Zn).
If we introduce the variables
Yo = Yigigosion = Y1* 43U, (1,...,im € Z),

then the nonlinear system (2.7) is transformed into an infinitely dimensional linear system
of PDEs with unknown functions y., @ € Z™. The proof of Theorem 2.2 is analogous to
the proof of Theorem 2.1 (see also [7, Theorem 3.2]).

3. Reduction of a System of Partial Differential Equations

In this section we return to [6], considering the algorithm for reduction of PDEs and
the problem about the compatibility conditions for the derived system of PDEs with
linear homogeneous algebraic constraints (see Theorem 1.1 and Proposition 1.2}

f(x,y) =F(x)-vy.
Let us consider the following homogeneous linear system of PDEs

Oy
8:31-

+ G-y =0, i=1,...,p{P<n) (3.1)

Let fo(x,y) = Fo(x) -y for a matrix function Fo(x) be the vector function obtained by
uniting the given algebraic constraints and algebraic constraints concerning the compat-
ibility conditions:

0G; oG
R T P G--G-]- =0 (1<ij<il
[axj i~ gz T G G| ¥ (1<4,5<p)
By applying the reduction algorithm (see Section 1) we obtain sucessively the functions

fo(x,y) =Fo(x) -y, f(xy)=Fi(x)y,....f(xy) =Fu(x)y.

Let us partition the functions F; as

=5t eS|
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where the rows of F; are linearly independent, and the rows of F; are linearly dependent
on the rows of F;. According to the definition of the final index k there exist matrix
functions V; such that ~

oF, - o
—-F; - G; =V, -Fg. 3.2
6.’171' k : G o ( )

Thus by differentiating the following equation
fi(x,y) =Fr(x) - y=0

with respect to z; we do not obtain new constraints. The last equality can be written in
the following form:

[FI"H] y' ) TR .y =0 _ y'
kT k] y'| = Y ¥,y =0, y= y" |’

where F, is a nonsingular matrix. Hence,
1 =1 g "
y — _Fk : F : y .

The system (3.1) decomposes into

!
gZ. +G ¥y +G{-y" =0, (3.3)
dy" U -V TN
am—kGi-y +G;-y'=0, (3.4)
Now we prove that the equation (3.3) is a consequence of (3.4). First note that
- g B s i o —; 1 OFY
et YIRS TS FalS T il

= F (Vi Y+ By -Gl Bl B 4 BN (Ve B4 B GY)
=F; - Fy- (G -G} -F;71 - FY),

where we have used the partitioned identity (3.2), i.e.

%ii“ ~-Fi-Gi=V; 'F;c,
%“;k CFe G = Vi,
Further, for (3.3) we obtain
L Gy + Gy
S T IR Yl T AR CTR S Yl IR

ayu
(‘3zi

=B Fe (G -G BBy - BB L (GE-G By
IR
=By B (G + (G -GG B -y) =0
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under the condition (3.4), i.e.

ayll

5o+ (GY - G, FLFY) -y =0. (3.5)

Thus we obtain a new system of PDEs with the same form as the former one but with
a smaller dimension. Now we are ready to prove the main theorem.

Theorem 3.1. The compatibility conditions for the system of PDEs (3.5) are iden-
tically satisfied.

Proof. By the definition of F¢ there exist matrices V;; such that

8G; G, B _
5o, ~ Ba. ~ GiGi+ GiGi=Vy Fu.

This equality decomposes into the following two equalities

8G, OG) _
3331 - 3.’E] —-GiG; +GjGi- ZV,'J' -F;C,
. j i

"8G
%_% axl - G GII + G GH - Vz] FII

By elimination of V;; we obtain

0G{ 0G; =1 zu Sm1
Oz ; 8z Py Fy - Gi(Gj - Gj By «Fg)
8G! 8G, _ . o
Using the identity
0 . . oG/ 8G " ” s =
Gn Gl_ -FI,—I Fu s . ) F/ 1 Fu G’~ 2 Fl—l N n__ ', =1 .
axj ( 1 k l\,) 6:1,'_7 (917_7‘ % k k (GJ GJ 'Fk Fk)

from (3.6) we obtain

ai‘c'" G} By F) + G- Fy - Fu- (G - G- F - Fy)
~C5(@f — ol B B
= 52:(G = G By B+ G By Bu (G - G- BB
-G;(G{ - G} -F|7' - F}),
a

3—%(6"2’ -G F, 1 -F)) - (Gi -G} -F7' - F})) - (G} - G} - F[7 - FY)
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- aii (G} — Gj FL R — (G — G- F-lLFY) (G - G;-ch‘l )
5%,((;;-’ -G -F! ..‘%) ~ o —a . e - F (G;’ B G; LR
B ai (G} -G -FiT* - F) - (G} -G - F," - FY) - (GY - Gi - Fi7"-Fp),  (37)
because

Gi- G} Fy! By =[G} - G} - F,Fy, G — G} Fy - FY] = [0,6¢ - G} - F! )

Decomposing the equality (3.7) into two equalities like (3.3) and (3.4), we obtain

D (@ -Gl F R - (G - 6B R (6 - 6B
J
0 - > - 2 _

(& - & By FY) - (G - G BB (G - G FTFD

= 6.’172

i.e. the compatibility conditions for the system (3.5) are identically satisfied.

Next we discuss the usefulness of the previous result. Indeed, if a linear system (3.1)
with some linear homogeneous algebraic constraints is given, then using the algorithm
from [6] we reduce it to a system of dimension less than the former one without any
constraints and the compatibility conditions are identically satisfied. Then using Theo-
rem 2.1, we can expand the solution as a convergent functional series. Specially, let us
consider the system (3.1) and let the compatibility conditions be not identically satisfied
for all initial conditions. In [8] the necessary and sufficient conditions are given for the
existence of a solution for given initial conditions. These conditions are algebraic con-
straints. Now applying the algorithm in [6], we reduce the given system to a system of
dimension less than the former one and the compatibility conditions are identically sat-
isfied for all initial conditions. Then Theorem 2.1 can be applied to obtain the required
solution.

Remark. Finally note that if we consider a system of nonlinear equations instead of
(3.1), then a theorem like Theorem 3.1 holds for that system because as it is shown in [7],
the nonlinear systems can be considered as linear systems of infinitely many equations
and infinitely many unknown functions y,. The above discussion considering the initial
conditions is still valid for nonlinear systems of PDEs.

4. Example

Let the following system of four PDEs be given

Oy _
Bz, a-(y1+y2) =0, (4.1)
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0
—2-’-(231 —3:3)-y1 —(.'L‘l +w2)-y2 =1 (4.2)
6(131
o]
55—1 —B-(y1 —y2) =0, (4.3)
o
xz.aiz—ﬁ'(%'m + 21 - y2) =0, (4.4)
where a@ = —i——0o, B = ;357 If we define
T
Y= [?h] and x= |®3 | ;
Y2 23

then we bring the system (4.1)-(4.4) into the form (3.1), where p = 2 and

- - -1 1
2 G =4. ;
G =, % o] @@=8 |
Hence we obtain
a5 — x4+ x3 -2-at+a- B+ 439
. P— . e . z2 T2
Gl G2 G2 Gl ﬁ [—a'g—:'+$1—:172+2'$3 —a-3§+$2—m3 :

0G; 0G, [Z-ag—ﬂQ 2-a% + 32 ]

8552_6331 1—,32-52- —1_}62.:_;_;__}_:%
Thus
a(}1 an
Fy = - —2_(G,-G2-G3-G
' B2 O (G1- G2 2 - G1)

B 2-af —f*—B (o~ 22 —xp +izy) 2-02+8%-p- (-2 -at+a- L+11+33)
N 1—ﬁ2 . %3—,@ (—a--ﬁ%+$1—m2+2-x3) -—1—,32 - %-I-m%—ﬂ . (—OA . %’;L+$2—:IJ3) ’
- | . . .
It can be verified that det F; = 0, thus F; = 7 where F; and F; are (linearly
1
dependent) vector-rows. It can be verified also that, by further differentiation, new
linearly independent rows cannot be obtained, thus £ = 1. Following the theory in

!
Section 3, we partition the vector function y into y = [Zl] = {3,,} It can be verified
2

that the equation

is equivalent to
r L1 + T2 L

Xy — I3
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The system (4.1)-(4.4) becomes

ayl ! "o
I ' +y") =0, (4.6)
17
Bz, ¥ ($1 = 933) 'yl e (131 =} 132) '?/" =0, (4-7)
oy’ -
5o~ B~y =0, (48)
T2
By" z3 ! T "
-y s A e=i) 4.9
o= B (2R g 2 (49)

According to the theory in Section 3, the equations (4.6) and (4.8) are consequences of
the equations (4.7) and (4.9), respectively. Thus the original system of PDEs (4.1)-(4.4)
is reduced to (3.5), i.e.

ayu

_ 410
W oo, (410
"
<1 . S . (4.11)

0xy T — I3

According to Theorem 3.1, the compatibility conditions for this system are identically
satisfied. Thus, we have reduced the original system of four PDEs with two unknown
functions not satisfying the compatibility conditions identically to the system of two
PDEs with one unknown function satisfying the compatibility conditions identically. For
obtaining the solution, we can apply the theory of Section 2, i.e. the functional expansion
method presented by Theorem 2.1. Suppose the following initial conditions

Y1 (O, 07 $3) = 0: Y2 (OJ 0) III:-}) = (P("E3) (412)

are given, where ¢ is a function. Note that the initial conditions have to satisfy the
equation (4.5) for z; = z, = 0, i.e. F;(0,0,z3) - y(0,0,23) = 0, and they are chosen
to satisfy it. The initial condition for the reduced system (4.10)-(4.11)"is y"(0,0,z3) =
o(z3). '

We have to find (scalar) functions P<%1:%2>(z;, x4, z3) satisfying

P<0,0> = 0,
p<witlws> _ 0 P<wi,w2>
6321 ’
<wy,w2+1> 4 1
P 1,W2 . P<w1,w2> ey " P<w1‘w2>.
0z, Ty — I3

The functions P<¥1%2> = () for w; # 0 and

P<0,w2> = (_1)w2 . ’LUZ!

(2 — z3)w2’
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According to (2.5) the functional expansion for y" is given by
1

(5 L o o)

w1 =0 we=0

oo

o0
_ [=0)"® e - (_"’2 )m
- ( Z w2! i ) (p(I3) - 90(333) Z Ty — I3 .
wo=0 wo=0
For | 22| < 1 this series converges to y" = ~(—’3—2;L3) - p(z3) which means that the
solution of the system (4.1)-(4.4) with Cauchy initial conditions (4.12) is given by
T+ Ty — T3
n =—M'¢($3), Y2 =—Q—)'80($3)-
T3 I3

The present example was included following the referee’s suggestion.
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