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OSCILLATION OF SOLUTIONS OF PARABOLIC EQUATIONS

OF NEUTRAL TYPE

WEI NIAN LI AND BAO TONG CUI

Abstract. Some sufficient conditions for oscillation of solutions of parabolic differential equa
tions of neutral type arc obtained. These results are illustrated by some examples

1. Introduction

Recently, the oscillation problem for the partial functional differential equation has
been studied by many authors. We refer the reader to (1, 2, 3] for parabolic equations
and to (4, 5, 6] for hyperbolic equations.

In this paper, we study the oscillation of parabolic differential equations of neutral
type of the form

a d

沅 (b(t)u(x, t) - 芝,\9(t)u(x, t 一 Ts)] = a(t)~u(x, t) +L研）~u(x, Pi(t))
s=l j=l

l

－芝叭x, t)u(x, ah(t)), (x, t) En x (0, oo) = G,
h=l

(1)

where n is a bounded domain in杞 with a piecewise smooth boundary an, and~u(x, t) =
立=1严 ．ax,.

Suppose that the following conditions hold:
(Hl) a, aj E C([O, oo); (0, oo)), j = l, 2, ... , d;
(H2) Qh E C(G; (0, oo)), Qh(t) = minxEn°qh(x, t), h = l, 2, ... , l;
(H3) Pi,uh E C([O,oo);[O,oo)), limt-tooPj(t) = limt-toouh(t) = oo, Ts =const.> O,j =

1, 2, ... , d; s = l, 2, ... , r; h = I, 2, ... , l;
(H4) bE C1([0,oo);(O,oo)), As E C1([0,oo);R), b(t) is bounded, b(t)-立=1 入s(t) 2: 0,

s=l,2, ... ,r.
We consider two kinds of boundary conditions:

ou(x, t)
8N + g(x, t)u(x, t) = 0, (x, t) E·an x [O, oo), (2)
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where N is the unit exterior normal vector to an and g(x, t) is a nonnegative continuous
function on an X [O, oo), and

u(x, t) = 0, (x, t) E 80 X (0, oo). (3)

Definition 1.1. A function u E C2 (G) n C1 (G) is called a solution of the problem
(1), (2) (or (1), (3)) if it satisfies (1) in the domain G along with the corresponding
boundary condition.

Definition 1.2. The solution u(x, t) of the problem (1), (2) (or (1), (3)) is said to
be oscillatory in the domain G = n x [O, oo) if for any positive numberµthere exists a
point (x0,t0) En x [µ,oo) such that u(xo,to) = 0 holds.

In the following two sections sufficient conditions are obtained for the oscillation of the
solutions of the problem (1), (2) and (1), (3) in the domain G. We note that conditions
for the oscillation of the solutions for b(t) = 1 have been obtained in the works of Mishev
and Bainov[l] and Cui[3].

2. Oscillation of the problem (1), {2)

Theorem 2.1. If the neutral differential inequality

[b(t)V(t) - 芷.\5(t)V(t 一 T5)]'+ Lqh(t)V(<7h(t))::; O,t~0, (4)
s=l h=l

has no eventually positive solutions. Then every solution u(x, t) of the problem (1), (2)
is oscillatory in G.

Proof. Suppose to the contrary that there is a nonoscillatory solution u(x, t) of the
problem (1), (2) which has no zero in Ox [to, oo) for some to~0. Without loss of gener
ality we may assume that u(x, t) > 0, u(x, t - T5) > 0, u(x, Pi(t)) > 0 and·u(x, crh(t)) > 0
in f! X [t 1, 00), t1~ 柘 ，s = 1, 2, ... , r; j = 1, 2, ... , d; h = 1, 2, ... , l.

Integrating (1) with respect to x over the domain 0, we have

d記b(t)丨~u(x,t)dx -户(t)丨~u(x, t - r,)dx] = a(t)丨t.u(x, t)dx
n

臺j (t)丨~"1u(x, p;(t))dx - t. L qh(x, t)u(x, "" (t))dx, t 2: t1. (5)

Green's formula and (2) yield

k 6u(x, t)dx = ho 0~」; t) dS = - 丨:0 g(x, t)u(x, t)dS :S 0,
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and

丨~u(x,pj(t))dx =丨Bu(x, Pj (t))_ _ _ dS
n an

＝－丨 g(x, Pj (t))u(x, Pj (t))dS :S 0, t 2: t1, j = 1, 2, .. ·, d,
an

where dS is the surface element on an. Therefore,

羞 [:(t) i。u(x, t)dx -t >.,(t) 丨。u(x,t-可dx]

s-芷 qh(t)丨~u(x, <7h(t))dx, t::, t,. (6)

Set V(t) = fn u(x, t)dx, t~t1, from (6) we have

[b(t)V(t) - 立叩V(t - Ts)]' 十立 h(t)V(CJh(t))'.S 0, t 2: 苟 ， (7)
s=l h=l

which contradicts the assumption that (4) has no eventually positive solution. This
completes the proof of Theorem 2.1.

Theorem 2.2. Suppose that there exists a positive constant a and some ho E
{1, 2, ... , l} such that Qh。(t)~a,ah0(t)~0 andah0(t)~t. If.Xs(t)~O,s = 1,2, ... ,r,
and

亡p((t) b(~:。『;J/s > 1,

then every solution u(x, t) of the problem (1), (2) is oscillatory in G.

Proof. Suppose to the contrary that there is a nonoscillatory solution u(x, t) of the
problem (1), (2) which has no zero inn x [to, oo) for some to 2: 0. Without loss of gener
ality we may assume that u(x,t) > O,u(x,t-Ts) > 0,u(x,p1(t)) > 0 and u(x,ah(t)) > 0
in O X [t I , 00) , ti 乏 柘，s = 1,2, ... ,r; j = 1,2, ... ,d; h = 1,2, ... ,l.

(8)

As in the proof of Theorem 2.1 we obtain (7). Set

，．

T = max { T5 } , y (t) = b (t) V (t) - 芷).5(t)V(t - Ts), t~ 仂 十 T.
1$s$r

s=l

From (12) and A5(t)~0, s = l, 2, ... , r, it follows that

y'(t) < 0, y(t)~b(t)V(t) for t~ 苟 十 T.

Since y(t) is ultimately strictly decreasing, then

t~閎 y(t) = L(finite or - oo).

(9)

(10)
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We will prove that y(t) is bounded from below. Assume that limt-+= y(t) = -oo, then
from the definition of y(t) and (H4), we obtain that the function V(t) is not bounded.
Hence there exists a number t2~t1 + T satisfying

V(t2) = max V(t), y(t2) < 0.
t1 +rs;ts;t2

(11)

On the other hand, by (H4) we obtain

y(t2) = b(t2)V(t2) - L).5(t2)V(t2 - 司 ：：：：V(t2)[b(t2) - 芷 入心 ）] ::::0,
s=I s=l

which contradicts the inequality (11). Hence L > -oo.
Integrating (7) over the interval [t2, t], t > t2, we have

0 <al V(a,,(s))ds :St.l q,(s)V(a,(s))ds :S - 「y'(s)ds = y(t2) -y(t)
t2

Since y(t2) - y(t) :S y(t2) - L < oo, then V(t) E L1 (to, oo). From condition (H4) we
obtain that y(t) E L1(to,oo), and hence limt-tooY(t) = 0, therefore,

y(t) > 0 for t 2:: t趴

where t3 2 t2 is a sufficiently large number.
Using (7) and (9), we obtain

l 1
y'(t) 十芝 Qh(t) y(ah(t)) ::; 0, t 2:: 互

h=l
b(ah(t))

It follows that

(12)

(13)

Qh0(t)Y 1 (t) + y (erho (t))~0, t 2'. 互
b(Clh0 (t))

Integrating (14) from crho (t) tot, we have

y (t) - Y (erho (t)) +「 恥(s) y(crh0(s))ds~0, t 2: t4 > t3. (15)
uho(t) b(crho(s))

(14)

Noting that y'(t) < 0, ah。(t)~t and 卟。(t) 2: 0, from (15) we get

y(t) -y(ah0(t)) + y(ah0(t)) ft Qho(s) ds~0, t 2'. 互 (16)
uho(t) b(ah0(s))

Therefore, 「 歸(s) ds~l- y(t) <l
,ho(t) b(uh0(s)) y(ah0(t))
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And hence
limsup qh0(s)
H= 1.:, (t) b(uh, (s)) ds'.o 1'

which violates the condition (8). This completes the proof of Theorem 2.2.

Theorem 2.3. Suppose that there exists a positive constant a and some ho E
{1, 2, ... , l} such that Qho (t) 2: a, C!ho (t) 2: 0 and C!ho (t) :S t. If As(t) 2: 0, s = 1, 2, ... , r,
and

曰rft Qho(s) ds> 上
uho(t) b(CJho(s)) e

then every solution u(x, t) of the problem (1), (2) is oscillatory in G

Proof. As in the proof of Theorem 2.2 we have the inequality (14). On the other
hand, by Lemma 1 of [7} we obtain that (14) has no eventually positive solution. This is
a contradiction.

(17)

3. Oscillation of the Problem (1), (3)

The following fact will be used.
The smallest eigenvalue a:。of the Dirichlet problem

{~w(x) + a:w(x) = 0 inn,
w(x) = 0 on an,

where a: is a constant, is positive and the corresponding eigenfunction <p(x) is positive in
n.
Theorem 訌 If the differential inequality (4) has no eventually positive solutions,

then every solution of the problem (1), (3) is oscillatory in G.

Proof. Suppose to the contrary that there is a nonoscillatory solution u(x, t) of the
problem (1), (3) which has no zero inn x [to, oo) for some to 2 0. Without loss of gener
ality we may assume that u(x, t) > 0, u(x, t - 司>O,u(x,p1(t)) > 0 and u(工，ah(t))>O
in f2 X [t I , 00), t 1 2 柘 ，s = 1, 2, ... , r; j = 1, 2, ... , d; h = 1, 2, ... , l.

Multiplying both sides of (1) by cp(x) and integrating with respect to x over the
domain n, we have

d
一 [b(t) J u(x, t)cp(x)dx -立 (t) u(x,t-r心(x)dx]
dt 。

= ll(t) lo Llu(x,t)<p(x)dx + 1;,:,(t)fLlu(x,p,(t)沖(x)dx

-t 丨。%(X, t)u(x, ah(t))西 ）dx, t? t1. (18)



336 WEI NIAN LI AND BAO TONG CUI

Green's formula and (3) yield

l~u(x, t)cp(x)dx = l u(x, t)~cp(x)dx = -a。丨u(x, t)cp(x)dx ::; 0,
n

and

j~ ~u(x,pj(t))cp(x)dx =丨u(x, Pi(t))~cp(x)dx

= -<>o J u(x,p;(t))<P(x)dx~。0, t 乏 t口= 1,2,···,d.
n

Therefore,

羞 [:(t)丨~u(x, t坪(x)dx - t, A,(t)丨~u(x, t - T心(X)dx]

s-芷 佯(t) L u(x, u,(t))外x)dx, t ::> t,. (19)

Set V(t) =~。u(x, t沖(x)dx, t~t1, from (19) we obtain

l

[b(t)V(t) - L A5(t)V(t - 司]' +芷叫t)V(CJh(t))~0, t 2: 苟 ，
s=l h=l

which contradicts the assumption that (4) has no eventually positive solution. This
completes the proof of Theorem 3.1.

It is not difficult to see that the following theorems are true.

Theorem 3.2. If all conditions of Theorem 2.2 hold, then every solution u(x, t) of
the problem (1), (3) is oscillatory in G.

Theorem 3.3. If all cond山ons of Theorem 2.3 hold, then every solution u(x, t) of
the problem (1), (3) is oscillatory in G.

4. Examples

Following are illustrative examples.

Example 4.1. Consider the parabolic equation

8 37f
at [(1 + e-t)u(x, t) - u(x, t - 21r)] = 2e-t .6.u(x, t) + (2 - e-t).6.u(x, t - —)

2
7f-e-tu(x, t 一 1r) - 2u(x, t - -), (x, t) E (0, 1r) x [O, oo),
2

(20)
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with boundary condition

8 8
-u(O, t) =—u(n, t) = 0, t 2: 0.Bx Bx . (21)

Here n = l, r = 1, d = l, l = 2, b(t) = 1 + e-t, ,\1(t) = 1, Ti = 21r, a(t) = 2e-t,
a1(t) = 2 - e-t, pi(t) = t - 芽，qi (x, t) = e-t, q2(x, t) = 2, CJ1 (t) = t - 兀呤(t) = t -~.
It is easy to see that

亡p丨互(t) b(~;『; ）) ds = Ii:",悶PL可2 I + e:/2-, ds =" > I

Thus all the conditions of Theorem 2.2 are fulfilled. Then every solution of the problem
(20), (21) is oscillatory in (0, 1r) x [O, oo). In fact, such a solution is u(x, t) = cos x sin t.

------.:. E~ample 4.2. Consider the parabolic equation

a 31r
at ((1 + e-t)u(x, t) - u(x, t - 21r)] = (1 + 2e-t)~u(x, t) + (2 - e-t)~u(x, t - —)

2
一 (1 + e-t)u(x, t - 司- 2u(x, t - i), (x, t) E (0,司x [O, oo), (22)

with boundary condition
u(O, t) = u(1r, t) = 0, t 2: 0. (23)

It is easy to see that all conditions of Theorem 3.2 are fulfilled. Thus all solutions
of the problem (22),(23) are oscillatory in (0, 1r) x (0, oo). In fact, such a solution is
u(x, t) = sin x sin t.
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