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INEQUALITIES RELATED TO A CERTAIN INEQUALITY USED
IN THE THEORY OF DIFFERENTIAL EQUATIONS

B. G. PACHPATTE

Abstract. In this paper we establish some new integral and finite difference inequalities related
to a certain integral inequality used in the theory of differential equations. The inequalities
obtained here can be used as handy tools in the theory of some new classes of integral and
sum-difference equations.

1. Introduction

Recently, in [11-14] the present author has established a number of new inequalities
related to the following inequality.

Theorm A. Lety and f be real-valued nonnegative continuous functions defined for
te iy =[0,00). I}

t
'!2 2 y J(LS
yA(t) < c +2/0 £()y(s)ds,

fort € Ry, where ¢ > 0 is a constant, then

vy e+ | g
. 0

f07‘ t e R+.

In the literature there are many papers which make use of this inequality very fre-
quently to study the different properties of the solutions of various nonlinear differential
equations, see [1,3-8,11-15] and the references given therein. The importance of this in-
equality lies in its successful utilization to the situations for which the other available
inequalities do not apply directly. The aim of the present paper is to establish some new
integral and sum-difference inequalities which claim their origin to the inequality given in
Theorem A. The inequalities established here can be used as tools in the study of certain

Received Auguest 23, 1995.

1991 Mathematics Subject Classification. Primary 26D15, Secondary 26D20.

Key words and phrases. Inequalities, theory of differential equations, sum-difference equa-
tions, submultiplicative, bounds on the solutions.

1
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new classes of integral and sum-difference equations. We aslo present some immediate
applications to convey usefulness of our results to the literature.

2. Statement of Results

In what [ollows, we use the following definitions and notations for simplification of
details of presentation. Let I? denotes the set of real numbers, Iy = [0,00) and Ny =
{0,1,2,...}. For any function u(n) defined for n € Ny, we define the operator A by
Au(n) = u(n + 1) —u(n). For m > n, m, n € Ny and any function p(n) defined for
n € Np, we use the usual conventions

n

S pe) =0, [ s(s) =1

g=m

- For some suitable functions a, b,y and t € R;, n € Ny, we set :
o t t
Lita,bal = ([ (@W(o)da)( [ W(o)u(o)do)
n—1 n—1
Mn,a,b,9) = (D a®y()(O_ b(t)y(t)).
t=0 t=0

Our main results are given in the following theorem.

Theorem 1. Lety, a, b, h be real-valued nonegative continuous functions defined for
t € Iy and c be a nonnegative real constant.
(a1) Let f : R% — R+ be a continuous function which satisfies the condition

0< f(t,wm) — F{t,ua) S k(Eug)(us —uz), (2.1)

Jort e Ry and uy > uy > 0, where k : Rﬁ_ — %y is a conlinuous function. If

y2(t) < ¢ + 2L{t,a,b,y] + 2 /0 u()/ (5, y(s))ds, (2.2)
fort e Ry, then
{ { l
u(t) < Q)[c + /0 £(5,¢Q(s)) exp( / K(0,cQ(0)Q(0)dor)ds), (2.3)
fort € Ry, where i
Q(t) = exp( /0 [a(s)( / b(o)dor) + b(s) /0 a(0)do))ds), (2.4)

forte R,.
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(a2) Let W(y) be a real-valued continuous, nondecreasing and submultiplicative function
defined on the interval I = [yy, 00) and W(y) > 0 on (yo,), yo > 0 is a real constant,
W(yo) = 0. If

y2(t) < + 2L[t,a,b,y) + 2/¢ h(s)y(s)W (y(s))ds, (2.5)
: 0

Jorte Ry, then for0 <t < &4,

y(t) < Q27 Q(e) +/0 h(s)W (Q(s))ds], (2.6)

where Q(t) is defined by (2.4) and ‘
Q(r)—/r i T 2> 19 with 79 > 1 (2.7)
- - I/V(S), Z 170 0 Yo, ]
Q7! is the inverse of  and t, € R be chosen so that

Qe) + /t h(s)W(Q(s))ds € Dom(27}),

v0

for 0<t<t,.
(as) Let w(t,r) be a real-valued nonnegative continuous function defined for t € R,,
0 <7 < oo, and monotone nondecreasing with respect to r for any fized t € R,.. If

y3(t) < + 2L[t,a,b,y] + 2/0. y(s)w(s,y((s))ds, (2.8)

fort € Ry, then
y(t) < Q(B)r(b),t € Ry, (2.9)

where Q(t) is defined by (2.4) and r(t) is a mazimal solution of
r'(t) = w(t.Q(t)r(2), 7(0) =¢, (2.10)
forte R,.

The discrete analogues of the results given in Therorem 1 are established in the
following theorem.

Theorem 2. Let y,a,b, h be real-valued nonnegative functions defined for n € Ny
and ¢ be a nonnegative real constant.

(b1) Let g: No x Ry — Ry be a function which satisfies the condition

0 < g(n,u) — g(n,us) < g(n,uy) (v — wy), (2.11)
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forn € Ny and u; > uy > 0, where q(n,7) is a real-valued nonegative functzon defined
forn € Ny, re R,. If

y*(n) < c? +2M[n,a,b,y] + 2 :Vj] y(t)g(t,y(t)), (2.12)
1=0
for n € Ny, then
y(n) < P(n)[c + Zg(s cP(s)) H (1 + q(t, cP(8) P(1)]], (2.13)
t=st1
for n. € Ny, where
P(n) = Hou + a(s)( Zb(t)) + b s)(Za(t))] (2.14)
for n € Ny. s
(b2) Let W, 62,071 be as in (az) in Theorem 1. If
yi(n) <c* + 2M[n a,b,y] + 2’1\;:11;@ Y)W (y(1)), (2.15)
P |
for n € No, then for 0 <n <ny,
y(n) < P(n)Q~1[0(c) + Z h(s W(P(s))] | (2.16)

where P(n) is defined by (2.14) and ny, € Ny be chosen so that

n-1

Qc) + > h(s)W(P(s)) € Dom(271),

8=0

Jorné€ Ng and 0 <n < n;.
(b3) Let w(n,r) be a real-valued nonncgative funciton defined for n € Ng, r € IRy, and
monotone nondecrcasing with respect to v for any fited n € N,. If

n—|]
y?(n) S +2M[n,a,b,)+ 2 y()w(t, (1)), (2.17)
t=0 h
for n € Ny, then .
y(n) < P(n)r(n),n € No, (2.18)

where P(n) is defined by (2.14) and r(n) is a solution of

Ar(n) = w(n, P(n)r(n)), r(0) =c (2.19)
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for n € Ny.

3. Proof of Theorem 1

(a1) We first assume that ¢ > 0 and define a functlon z(t) by the right side of (2.2).
Now differentiating z(t) and using the fact that y(t) < /z(t) we observe that

2'(t) < 2/ z(t)[a(t) b(o)\/z(o)do) + b(t)( [ a(o)/z(o)do) + f(t, ()] (38.1)
0 0

Differentiating \/z(t), and then using (3.1) we have . = .. . . _

d Z'(t)
Z{E(Vz(t)) 2(\/2(7

<[a(t) / b(0)/2(0)do) + b(t)( / (0)V/Z(0)do) + (t, /20))]. (3.2)

By setting ¢t = s in (3.2) and integrating it from 0 to ¢t we have

ot s F '
z(t) < m(t) +/0 [a(s)(/o b(o)\/2(c)do) + b(s)(/0 a(o)\/z(o)da)]ds, 3.3

where ) ‘
mt) = c+/0 f(s,/z(s))ds. o B (3.4)

Since m(t) is positive and monotone nondecreasing for t € Ry, from (3.3) we observe

that
(t) l’r/[a(s)(] z( d)+b (/

Define a function v(t) by the right side of (3.5). Differentiating v(t) and then using (3.5)
and the fact that v(t) is monotone nondecreasing for t € R, we observe that

d ))ds. (3.5)

t t
V() < [a(t)( /0 b(0)dr) + b(t)( /0 ey, (3.6)
The inequality (3.6) implies the estimate

u(t) < QM), te Ry (3.7)

where Q(t) is defined by (2.4). From (3.5) and (3.7) we have

V() < QM)m(t), t€ Ry, (3.8)
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Define a function u(t) by

t
u(t) :/0 S (s, 2(s))ds. (3.9)

From (3.9), (3.8) and using the fact that m(t) = ¢ -+ u(t) from (3.4) and the condition
(2.1) we observe that :
u'(t) < £(t, Q(t)(c + u(t))) .
= [(t,cQ(t) + Q)u(t)) - [(t,cQ(1)) + f(t,cQ(t))
< k(t, cQ(8)QB)ult) + f(t, cQ(2)). (3.10)

The inequality (3.10) implies the estimate

ot t
u(t) 5/0 f(5,¢cQ(s)) exp(/ k(o,cQ(0))Q(0)do)ds. (3.11)

Using (3.11) in m(t) = ¢ + u(t) we have

m(t) <c +/O f(s,cQ(s))exp(/ k(o,cQ(0))Q(o)do)ds. (3.12)

Now the required inequality in (2.3) follows by using (3.12) in (3.8) and then using the

fact that y(t) < /z(t).

If ¢ is nonnegative, we can carry out the above procedure with ¢+ € instead of ¢,
where €> 0 is an arbitrary small constant, and subsequently pass to the limit €= 0 to
obtain (2.3). This completes the proof of (a1).

(a2) Assuming that c is positive and defining a function 2(t) by the right side of (2.5)
and the function m(t) by

t
m(t) =c+ / h(s)W (\/ z(s))ds, (3.13)
0
and following the same steps as in the proof of (a;) we have

Vz(t) < Q(t)ym(t), t € Ry, (3.14)

where Q(t) is defined by (2.4). From (3.13),(3.14) and using the conditions on W we
observe that

m'(t) < h(OW(Q(8)W (m(t)). (3.15)
From (2.7) and (3.15) we observe that

Lagm(v) < hOWQ). (3.16)

Integrating both sides of (3.16) from 0 to ¢t we have

Q(m(t)) SQ(C2+/O h(s)W (Q(s))ds. (3.17)
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From (3.17) we have

m(t) < Q7HQ(e) +/0 h(s)W (Q(s))ds]. (3.18)

Using (3.18) in (3.14) and then the fact that y(t) < \/z(t) we get the required inequality
in (2.6). The subdomain for ¢ € R, is obvious. The proof of the case when c is
nonnegative can be completed as mentioned in the proof of (a,).

(a3) Assuming that c is positive and defining a function z(t) by the right side of (2.8)
and the function m(¢t) by

t
m(t) =c+ / w(s, \/z(s))ds, (3.19)
0
and following the same steps as in the proof of (a;) we have
. CVz() <Q()m(t), te Ry, . .. (3.20)
where Q(t) is defined by (2.4). From (3.19) and (3.20) we observe that
m!(t) < w(t,Q(t)m(t)). (3.21)

Now a suitable application of the basic comparison theorem due to Conti (see [2, p.35]
or [16] to (3.21) and (2.10) yieds

m(t) <r(t), t € Ry, (3.22)
where 7(t) is a maximal solution of (2.10). Using (3.22) in (3.20) and theu the fact that
y(t) < /z(t), we get the desired inequality in (2.9). The proof of the case when c is
nonnegative can be completed as mentioned in the proof of (a,).

4. Proof of Theorem 2

(b1) Assume that ¢ > 0 and define a function z(n) by the right side of (2.12). From
the definition of z(n) and making use of the formula

Alu(n)v(n)] = u(n)Av(n) + v(n + 1)Au(n),

and the fact that y(n) < \/z(n) we observe that

Az(n) < 2v/z(n) [a(n)(z b(t)\/z(t)) + b(n)(Za )Vz(t) + g(n, Vz(n)].  (4.1)
It is easy to observe that

. z(n+'1) — z(n) Az(n)
A\ z(1 ¢
PR = Vzn+1) +/z(n) . 2\/2(n) L
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Here in the last step we have used the fact that Vvz(n) < /z(n 4 1). By using (4.1) in
(4.2) we have ’

n—1 n
A(V2(n)) < [am) (Y- b V(D) + b)Y at)Vz0) + g(n, Va()).  (4.3)
4 =0 =0

By taking n = s in (4.3) and summing both sides of (4.3) from s = 0 to n — 1 we have

n-1 s—1 8
V2(n) <m(n) + 3 [a(s) (3 b(t)V/2(0) + b(s)(3 a(t) V2D, (4.4)
i=0 0

8=0 {==

where "
m(n) =c+ Y _ g(s, Vz(s)). (4.5)
§=0

Since m(n) is positive and monotone nondecreasing for n € Ny, from (4.4) we observe
that

m(n) — m(l)

n—i s—1 Y S /
Vz(n) <14 Z[a(s)(z b(t)?z(gi)-) + b(s)(za(t)_itl)], (4.6)
§=0 t=0 t=0

Define a function v(n) by the right side of (4.6). I'rom the definition of v(n) and using
(4.6) and the fact that v(n) is monotone nondecreasing for n € Ny, we observe that

n—1 n
o Av(n) < [a()(D b(t)) +0(n)(D_ a(t)Ju(n). . (4.7)
1=0 t=0

The incquality (4.7) implies the estimate (see [10])
v(n) < P(n), n € Ny, (4.8)
where P(n) is defined by (2.14). From (4.6) and (4.8) we obtain
Vz(n) < P(n)m(n), n € Ny | (4.9)

Define a function u(n) by
n—1 ) '
uin) = Zg(s, VvV z(s)). . (4.10)
§=0

From (4.10), (4.9) and using the fact that m(n) = ¢ + u(n) from (4.5) and the condition
(2.11) we observe that

Au(n) < g(n, P(n)(c + u(n)))
= g(n,cP(n) + P(n)u(n)) — g(n,cP(n)) + g(n, cP(n))
< g(n,cP(n))P(n)u(n) + g(n, cP(n)). (4.11)
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The inequality (4.11) implies the estimate (see [10])

n—1 n—1
u(n) < Y g(s,eP(s)) ] [+ alt,cP () P(t)). (4.12)
s=0 t=s+1
Using (4.12) in m(n) = ¢ + u(n) we have
N ) n—1 n-—1 ; el s SN
m(n) < e+ g(s,cP(s)) [ [+ alt,cP())P(1)]. (4.13)
=0 t=s+1

Now the required inequality in (2.13) follows by using (4.13) in (4.9) and then using the
fact that y(n) < v/(n). The proof of the case when ¢ is nonnegative can be completed
as mentioned in the proof of (a,),

The proofs of (b2) and (b3) can be completed by following the proof of (b;) and closely
looking at the proofs of (az) and (a3). We note that in the proof of (bs), we will have to
use the basic comparison theorem given by the present author in [9, Theorem 2]. Here
we omit the details of (b2) and (b3).

5. Some Applications

In this section we indicate in brief applications of some of our results to obtain bounds
on the solutions of certain sum-difference and integrodifferential equations. For example,
consider the following sum-difference equation

n-—1 n—1
Ale®(n) - 20 F(t, (1)) Gt, (1)) = 22(n)H(n,z(n)), z(0) =10,  (5.1)
t=0 t=0
where F', GG, H are real-valued functions defined on Ny x R. We assume that
|F(n,z(n))]| < a(n)|z(n)], (5.2)
|G(n, z(n))] < b(n)|z(n)], (5.3)
- |H(n,z(n))] < wln, fe@)), . . (5.4)

where a, b, w are as defined in Theorem 2. It is easy to observe that if z(n) is a solution
of (5.1), then it is also a solution of the equivalent sum-difference equation

n-—1 n-~1 n—1
2 (n) =25+ 203 F(t,z())(Y_ Gt =(1) + 2 (6 H(t, 2(t)). (5.5)
t=0 t=0 t=0

Using (5.2)-(5.4) in (5.5) we have

n—1 n-1 n-—1

l2(m)* < lzol* + 203 a@)=()(O_ b)) +2 3 [z()lwt, l2(B)]).  (5.6)

(=0 t=0 t=0
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Now an application of Theorem 2 (b3) yields
|z(n)] < P(n)r(n), n € Ny, (5.7)

where P(n) is defined by (2.14) and r(n) is a solution of the difference equation (2.19)
with ¢ = |zo|. The inequality (5.7) gives the bound on the solution x(n) of equation (5.1)
in terms of the known functions and the solution r(n) of (2.19). If the solution r(n) of
(2.19) is bounded and P(n) is finite, then (5.7) implies that the solution x(n) of (5.1) is
bounded for n € Ny.

We also note that the inequality given in Theorem 1 (a3) can be used to obtain bound
on the solution of the following integrodifferential equation

; t
%[mz(t) — 2(/0 F(s,a:(s))ds)(/o G(s,z(s))ds)] = 2x(1)H(t,z(t)), =(0) =z, (5.8)

under some suitable conditions on the fuctions involved in (5.8) similar to that of given
in (5.2)-(5.4). For incqualities similar to that of given in Theorems 1 and 2 and their
applications, see [11-14].
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