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ON A GENERALIZATION OF CLOSE-TO-CONVEXITY
OF COMPLEX ORDER

KHALIDA INAYAT NOOR

Abstract. The class Vi of bounded boundary rotation is used to generalize the concept of
close-to-convexity of complex order. A function f: f(z) = z + 2:"_2 anz™, analytic in the unit
disc E, belongs to Tk (b), b # 0 (complex) if and only if there exists a function g € Vi such that

Re{1+%(;:8 —1)}>0, z€E.

Some basic properties, rate growth of Hankel determinant and radii problems for the functions
in T (b) are studied.

1. Introduction

Let ‘A denote the class of functions f given by

o0
f(2) :Z+Zanz", (1.1)
n=2
which are analytic in the unit disc E = {2z : |z| < 1}. By S, K, S* and C, we denote the

subclasses of A which are respectively univalent, close-to-convex, starlike and convex in
E. Let P be the class of analytic functions h given by

h(z) =1+ i Sl (1.2)
n=1

with Re h(z) > 0 for z € E.
Let Vi, k > 2 be the class of functions of bounded boundary rotation and let Py be
the class of functions p analytic in E and have the representation

1 7 14z
p(z) = 3 / —————du(t),

o 1 — 28"
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74 KHALIDA INAYAT NOOR

where p(t) is a function with bounded variation on [—, 7] which satisfies the conditions

[ =2 [ auwr <

) = 1

We note that P, = P. -
It is known [13] that Py is a convex set. Also f, given by (1.1), belongs to V; if and
only if LA € Py It is clear that p € P if and only if

)p2(z)a (13)

LN
D] =

p:) = (5 + 3)m(2) — (

where p;,ps € P.
We define the class P(b) as follows.

Difinition 1.1. Let b # 0 be a complex number. Then an analytic function A, given
by (1.2), is said to belong to P(b), if and only if, there exists a function p € P such that

h(z) = bp(z) + (1 = b). (1.4)

We note that, for 0 < b < 1,
p(b) C P

and P(1) = P.
In the following we define a generalized concept of close-to-convexity of complex order.

Definition 1.2. Let f be analytic in E and be given by (1.1). Then f € Ty (b), k > 2,

b # 0 (complex), if and only if, there exists a function g € V} such that ﬁ#é% € P(b) for
z€ B.

We note that Ty(1) = T, a class of analytic functions introduced and studited in
[9] and T»(1) is the class K of close-to-convex functions. Also T5(b) = K(b) consists
entirely of close-to-convex functions of complex order introduced in [1] by Al-Amiri and
Fernando.

2. Some Basic Properties of T} (b)

Theorem 2.1. f € Ti(b) if and only if

(Ki(2))+
)

(K3(2)

s afe
W= N

fl(z) =

where Ky and K, are close-to-convez functions of complex order b.
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Proof. From definition 1.2, we have

f'(z) = g'(2)h(2), g € Vi,h € P(b)

IOV .

= (32(2)/z)§‘%h( ), 81,82 € S*, see[3].
(K1 () 5+

- K
(KQ(z))T_%, 1, Ko € K(b)

Theorem 2.2 Let 0 < by < by. Then Ty(b1) C Tk(be).

Proof. Let f € Ty(b1). Then there exists a function g € Vi such that

£18) _ bl + (=5, BER

g9'(2)
Now L (o) : : ;
1+ E[g'(z) -1] = h() + (1- é)

Since 0- < b; < by, we have 0 < %J; < 1 and this means 0 < (1 — %21) = a; < 1. Hence
Re[l + f;{f—lifl —1}] > oy > 0. This implies that f € Tx(b2), and this completes the

9'(2)
proof.

We now discuss a geometrical property for the class T%(b). Here we investigate the

behaviour of the inclination of the tangent at a point w(8) = f(re) to the image I, of

the circle C, = {2z : |z| = r}, 0 < r < 1, and 0 is any number of interval (0,27) under

the mapping by means of a function f from the class T%(b).
We have

T T N i i0
#(6) = 2+0+arg f(re¥) =arg aef(re %
and for 6, > 60,,0,,65 € [0,27!'],

¢(62) — ¢(61) = 02 + arg f'(Teiaz) —-0; — argf'(rewl).

Now, since
8 +arg f'(re’) = 8 + Re{—iln f'(re¥)},
then - .
0 e re'® f(re*®)
%(9 + arg f (re )) = Re{l + W—}
Therefore

,,.ew fll (rew )

/:2 (%(0 + arg f’(rew)) = /902 Re{l + ——W)—}de.

1
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On the other hand

62 .
_55{9 + arg f'(re®)}dd = 6, + arg f'(re*?) — 6; — arg f'(re*")

= 4(6) - $(61).

So, the integral on the left hand side of the last equality characterizes the increment
of the angle of the inclination of the tangent to the curve I, between the points w(fs)
and w(91) for .02 =3 91.

We now have the following.

01

Theorem 2.3. If f € Ti(b) and 0 < r < 1, |2b — 1| < 1, then for 6 > 61,
61,04 € [0,271'],

02 ret f!!(ret) k 2|b|r
R it ) B PN P ... LA
/,,1 Re{ T (e }9> " TS T T h— 1

Proof. From definition 1.2, we can write

R G _ p 0@ | p @) oL b,

e E
f'(z) 9'(2) h(z) ’
With z =re®? 0 <r < 1,0 € [0,27],0; < 65, we have

[0z i0 £11(,. ,if i0 1(.. 0 62 i0p1 (0 re'l
Re{1+ T Yo = [ R[4 T gy [ pere MO g
01

'(retf) g'(re?) 0, h(reif)
(2.1)
It is known [3] that, for g € V4,
02 160 1t 10
BT (re’”) k
/01 Re{1+ = (re®) jdo > - (5 -1)m. (2.2)

Now in the second integral we observe that

e arg h(re*) = 0 Re{ —ilnh(re®)}

o6
reze R (7‘619)
= 408 { h(rei) }
Consequently
02 i1 i0
re*’h'(re*?) . i &
/91 Re{——Wg—)——}dG = arg h(re**?) — arg h(re*).

Hence

92 0 31 60
LT h'(re ) i6o 0,
heP(b) ’/ h(re®) d0} = hlélg(x | arg h(re*2) — arg h(re'’).
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Also, from (1.4), we have

1
1+ 2(h(z) =1) =p(z), pEP
and, for |z| = r < 1, it is well-known that

2r

14172
& .
“‘ 1—172

lp(Z)

From this, we have
1+ (2b - 1)r? 2|b|r
< .
lh( 2)= -2 —1-172

Thus the values of h(z) are contained in the circle of Apallonius whose diameter is the

line segment from 1+(12j’_r1)’" to 1= (ff Tl)r The circle is centered at the point 5“112%;;1—&—

and has the radius lll_%’; So | arg h(z)| attains its maximum at points where a ray from
the origin is tangent to the circle, that is, when '

1 2b|r

arg h(z) = £sin™ T @b-D (2.3)
From the above observations, we see that
02 i6 31 16 2
hEP(b) I/ Te h (’"e )de‘ < 2sin” 1 |2|bb|r 1jr®
61 — |40 —
2|b|r
— ~1_ 4o

=m — 2cos b1 (2.4)

Using (2.2) and (2.4) in (2.1), we obtain the required result.

Remark 2.1. If f € Ti(b) and b is real, then it can easily be shown that, for
0y > 01,z = re'?

[ refr+ T Y ap > — (- 14 ).

0, i)
For 8; > 0, the class K (B:) has been introduced in [5]. We notice that, if b is real,

(i) Tw(b) C K(%£ + ] - 1)
(ii) Tk(b) consists of univalent functions for k +2|b| < 4 whilst f € T (b) for k+2|b| > 4
need not be finitely-valent.
(iii) It can easily be seen that Ti(b) forms a subset of a linear-invariant family of order

(5 + [8D)-
From (2.3) and the well-known result

arg g’ (2)| < ksin™'r
|argg'(2)| <
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for g € Vi, we have the following.
Theorem 2.4. Let f € Ty (b), [2b— 1| < 1. Then

2|b|r

| .. |

'a.rgf’(z)' S kSln T + sin m
Next we prove a distortion theorem for T} (b).

Theorem 2.5. Let f € Ty(b). Then

(1—126—1Jr)(1 - 7)1 (L+7)5"1(1+ |26 1)
(1+47r)%+2 (1—r)5+2

The equality is attained for the function fo € Ti(b) defined by

<If'(2)l <

(14 6;2)51
(1 - 8y2)5+2

fo(2) = (1+ (20— 1)612), |61] = |62] = 1.

The proof is immediate when we use the distortion theorems for g € V4, see [18] and for
h € P(b),
1—12b—1|

¥ 1+]2b-1]r
<|h <L —
L < Ih)I <

L
Speical Cases.

(i) For k = 2, f is close-to-convex of complex order b and we have

1-[26—1r _ ., 1+ [2b—1|r
This reult is proved in [1].

(ii) For b =1, we obtain the sharp bounds for f € T} established in [9)].

Theorem 2.6.(Covering theorem). The image of E under functions in Ty (b) contains
the schlicht disc
o] < B L1121
k(k+2)

Proof. Let d, denote the radius of the largest schlicht disc centered at the origin
contained in the image of |z| < r under f (2). Then-there is a point 2o, |z| = 7 such
that |f(20)| = d,.. The ray from 0 to f(20) lies entirely in the image of E and the inverse
image of this way is a curve in |z| < 7.

Thus

B g U A
4= 1ol = [ Il > [T GO (1t S
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where b; = |2b — 1].
Let i—i—t = é Then (—m’)-gdt df
So

1—7r l1—7

1 [T k 1 [+ k
Sz -3 [T a-mgtae- g [T s betas

L) Grh oy Aot (),

Now, by letting r — 1, we obtain the required result.

3. Hankel Determinant Problem for T (b)

Hankel determinant of f € A and given by (1.1) is defined, for ¢ > 1, n > 1, by

a/n an+1...‘ an+q_1

an+1 ..
hq(n) =

Qn4q—1 """ An+2g—2

For f € §*, Pommerenke [16] solved this problem completely. He showed that, if f € S*,
H,(n) = 0(1)n®~7 and the exponent (2 — g) is best possible.
We shall investigate the rate of growth of Hy(n) for f € Ty(b). We first prove the
following.

" Theorem 3.1. Let f € Ty(b),k > 3 and be given by (1.1). Then, form =0,1,2,...,

there are numbers Ym and cmu(u =0,...,m) that satisfy |cmo| = |cmm| =1, and
- 2
< 3 < < — 3.1
such that

Z Cmplntp = O(l)-”7m+%_2a (n — 00).

mu=0

The bounds (3.1) are best possible.

Proof. Since f € Ti(b), there exists g € Vi such that, for z € E and h € P(b), we
have

f'(2) = ¢'(2)h(2). (3.2)
Let K (8) be the class of strongly close-to-convex functions of order 8 in the sense of

Pommerenke [14]. It is known [4] that, for all & > 2, V; is properly contained in K(p)
and 8 = (5 —1). From this it follows that, if g € Vi, k > 2, then

29'(z) = s(2)p¥ 1 (2),
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for some s € S*, p € P.
Thus we can write (3.2) as

2f'(2) = s(2)p? 1 (2)h(2) (3.3)

Now s can be represented as

27 1
s(z) = 2 exp[/o log 7= du(?)],

where p(t) is an increasing function and pu(2m) — pu(0) = 2.

Let a; > az > --- be the jumps of x(t) and t = 61,62, ... be the values at which these
jumps occur. We may assume that 6; = 0. Then a1tag+:-- < 2and oy +az+- - +ay =2
for some ¢ if and only if s is of the form

q

s(z) =z [J(1 = e 2)=2/1. (3.4)
g=1
We define ¢,, by
¢m(z) = [] (1 - e¥#2).
p=1

We consider three cases as in [16] and define 7,,, for each case respectively, as fol-
lows. '

() 0oy £1 and gy =amag (m=0,1.2,..)
i) 1<y < % and 1o = ay,m = max(a; — 1,a3),m0 = max(a; — 1,23),7m = oy, for
m 2 3.

(i) $ <oy <2andn = o, = max(o; — 1,@2), Nm = am(m > 2).

Then the first part, that is the the bounds (3.1), follows similarly as in [16]. For the rest,
we need the following.

Lemma 3.1. [16] Let 6; <6y < --- <0, <6+ 27 and let Ay v Ay DEvRal, A5 1,
A2 NG =1,...,q). If

Piz) = H(l - e_iefz)“Af = anz”, (3.5)
g=1 =1

then
b =0(1)-n*! asn — oco.

We now complete the proof of theorem 3.1. We write .

m
m(z) = Z cmuzm—l.l.

u=0
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and
Om(2) - 2f'(2) = 3 branz™ ™ 4 3 (0 + m)amn2™ T, (3.6)
n=1 n=1
where

n
bmn — Z(n + V)cm—uan—u,

v=0
Amn = Zcmuan+u7 Icmol = |,Cmm| = 1.

muy

First let s in (3.3) be not of the form (3.4). Then a; +as + -+ o <2 for k> 1 and
in particular @; < 2. Hence the number 7,, defined as before satisfy

NMm < w1 g+ L &
For m > 0, let
1. 2 1 =
Om = Emm{m+1 = Tims om (3_;_0"")}’
and

Tm = Qm + 20pm.

Then é,, > 0 and v, < mLH,'yo + v + -+ < 3. Now, it can easily be shown [15] that in
each case (i), (i1), (i),

max|gm(2)g(2)] = O(1) - (1= 1)~ =% (3.7)
Thus, from (3.6), (3.3) and Cauchy integral fromula, we have

i 27
(n + m)|amnl| < ;;1—";(’2%/0 |¢m(z)s(2)p!2°‘—1(Z)h(z)lde)

k

masx| s (2)s(2) ([ 7 ph=h(2)10)

= 2@rntm

1 1 P ‘P 2.9\ %
<mmaxlbn@s@)l (5= [ 192 @N8) (5 [ InIPaR)” (39)
We shall need the following two lemmas.

Lemma 3.2. [6] Let p € P for z € E. Then, for A > 1,

27 ) 1
A Ip(rew)l)‘de < c()\)(l———'l—‘)’\——T
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Lemma 3.3. [12] Let h € P(b) in E and be given by (1.2). Then

27 ) 4b2_1 2
i lh(,’.ezGIng S dofr ( I | )7’ ;
2w Jo

1-—1r2
Using these lemmas in (3.8), we have for k& > 3
(n+ m)|amn| = OQ) - (1 =) =8m~(5-1) (4 1),

which implies X
amn = 0(1)n"™ %272 (n 5 o0).

We now consider the case when s in (3.3) has the form (3.4), that is, a; +ag+- - g =2
with v, = n,,. It follows that

')’m< 7')’0+"/1+"'S3,

“—m+1

and

Ym = implies that m =¢ -1,y = --- = q,.

Thus, for k > 3

m—+1

27
(vt ol < 5 [ lom(2)s(20p4 (I (o)1t

< 2 (E [ Wmstapt ”dﬂ\%(i/%lm JRORED
= pn+tl (% ! ¢Tn(z S(Z p (zll } r L z N 5 B
Now |
1 [ O el % 3
3 i 2 k=249 < _/ ” 4 _/ 2k—440) 2
g Jy V@ P < (5 [ 6m()s@)'90) " (5= [ o) ~4as)
(3.10)
When we write |y, (2)|* in the form (3.5), the exponents (—A;) satisfy \j < 4y,(j =
L,...,¢:m >0). Hence, by using lemma 2.1, we have
27
/ |pm (2)s(2)|*d8 < A1n*™—1  (n = o0). (3.11)
0
Also, since k > 3, we use Lemma 3.2 to have
1 2w
a7 /. Ip(2)|**~*df < Ayn?* 5 (n = 00). (3:12)
Thus, from (3.10), (3.11) and (3.12), we have
2w
|6m (2)s(2)|*[p(2)|*2df < An*mtk=3, (3.13)

27 Jo
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Hence, using (3.13) and Lemma 3.3 in (3.9), we obtain
(n +m)|amn| < Bk, bn™+3"1  (n = o),

and this gives us
Gmn = O(1) - nYm+ 52

The function so : so(z) = z(1 — 29)~% = g (%+:_1)2”‘7+1 shows that the bounds in

v=0

(3.1) are best possible. This completes the proof of theorem 3.1.
We can now easily prove the following result. .

Theorem 3.2. Let.f € Ti(b), k > 3 and f be given by (1.1). Then, forg > 1,n > 1,
H,(n) = O(1) - n2+(z-2)a,

‘The ezponent [2 + (& — 2q] is best possible.
-In particular, for g =1,k > 3

Hi(n) =an=0(1)-n% (n— o0).

Remark 3.1. From remark 2.1, it is clear that, for b real, Ti(b) C K(£ + || — 1).
Thus for f € Tx(b), b real, we can write

2 7] = s(z)p(z)gﬂb'"l,s € S*,pe P.

Following the same techniques of Theorems 3.1 and 3.2 together with the remark 3.1, we
have the following.

Theorem 3.3. Let f € Tk (b), b real , k + 2|b| > 3. Then, forq>1,n>1

H,(n) = O(1) - n?t9(z+161=3)

4. Some Radii Problems
In the following we find the radius of convexity for f € Ty (b).

Theorem 4.1. Let f € T(b). Then f maps |z| < ro onto a convex domain, where
ro 15 the least positive root of the equation

T(r) = (1 + Rep) — (1 + k)(1 + Rep)r — (1 + k)(1 — Rep)r® + (1 — Rep)r® =0, (4.1)

where p = 1—;9 and Re p > 0.
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This results is best possible for b =1 where the extremel function Fy € Ty (1) is given
by

R() = g (D -1).

Also, forb =1, k = 2, ¢ is the radius of convezity for f € K and in this case ro = 2—/3.
Proof. We can write

f'(z) = zg'(2)h(2),9 € Vi, h € P(b)
= zg'(2)[bp(2) + (1 - b)],p € P.

Differentiating logarithmically, we have

(2'(2))" _ (29'(2))’ zp'(2)

= ¥ 1
f'(2) 9'(z)  plz)+ 132
Thus
re 2R o 5 (29'(2)) ' zp (Z) _ (1 —b)
fliz) — 9'(2) b/
It is known [13] that for g € V}
(29'(2)) _r®—kr+1 .4
Re 0z 2 1.2 2 =re”,0 L r<l,
and for p € P, Reu > 0,
/
l 2p |2) 2r , seel[7].

p(z)+pl = (1—r)[1+r+ Reu(l —r))
Hence we have
(2f'(2)) _r®—kr+1 or
TFD 2 T1-m T A-ni+TRea=r)]
_ (1+ Rep) — (k+1)(1 + Rep)r — (1 + k)(1 — Rep)r® + (1 — Reu)r
N (1=72)[1+v+ Reu(l—r)]

This implies that Reiz—lf,;((f)»—l > 0 for |z| < ro where g is the least positive root of T'(r) = 0
give by (4.1). : , '

We note here that T'(0) = 1+ Rep > 0 and T(1) = —2k < 0 which means that
T'(r) = 0 has at least one zero in (0,1).

Theorem 4.2. Let f € Ty,(b) and F be defined, for 0 < a < 1, by

Fe) =257 [ edtp(gae
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Then F is close-to-convez of complex order b for |z| < 1, where

1
Py = E[k -V k2% - 4]. (4.2)
This result is sharp.

Proof. Since f € Tx(b), there exists a function g € Vi such that -g—,lg-)z € P(b). Let

Gz = 5 [ ehr(eras

Then, from a special case of a result proved in [11], we see that G is convex for |z| < r;
and this radius is best possible.

Now
F'(z) _z='f(z) -~ (3 = 1) Jy €= F(€)d¢
G'(2)  za7lg(z) - (L -1) [5 €272g(&)dt
_ J & (©de _ N(z)
Jiea71g'(©de  D(2)’
e NG £
z ez
— P(b).
D)~ g(e) ST O
Since g € V4, we know that g is convex for |z| < r; and so zg' is starlike for |z| < r;.

Now, using a similar technique of Libera [8], we can easily show that %—3 € P(b) for

|z] < r1 where 7, is given by (4.2). This completes the proof.
We have the following special cases.

(i) For k = 2, f is close-to-convex of complex order b. Then F' is also close-to-convex of
complex order b in E.
(ii) For b =1,.f € Tx. Then F is close-to-convex (hence univalent) in |z| < 71.
(iii)-When b= 1, k = 2, % a positive integer, we obtain a result proved by Bernardi [2].
(iv) Libera [8] proved this result with b=1, k=2 and a = 3.

Theorem 4.3. Let f € Ty (b) with respect to h € Vi. Let g € Vi, and for a, positively
real with o+ B =1, let

Fe) = | C(F)* (g () de

and

o) = [ (W (©) (g ()P de.



86 KHALIDA INAYAT NOOR.

Then F € Ty with respect to H for |z| < ro where ry is given by

1
= [lbl + /[0 — 2Reb + 1]' s

Proof. We first note that H € V}, since
(zH'(2)) _ a(zh'(2)) 2 B(zg'(2))'
H'(z) ~—  H(2) g'(2)
= ap1(2) + Bp2(2),p1,p2 € P
= p3(z),ps € Py, as P is a convex set.

Now

Flz) _ (1) @)P _ (&)Y _ e
H'(z) ~ (W(2))*(g'(2))8 ~ (h’(z>) T

Since p € P for [z| < ry where r; is given by (4.3), see [1], it follows that p® € P for
|2| < ro which implies that F' € T}, for 2] < 5.

Theorem 4.4. Let f € Vi, and let
F(z) = b2z f(2)).
Then F € Ty (b) for all |2| < r1 where ry is given by (4.2). This result is sharp.
Proof. Let F'(z) = b[(3 — 1)f'(2) + (2f'(2))']

Then - T
f((j)) = b[(z;,((zz))) + (% ~1)] =bH(2) + (1 - b)

Since H € Py, it follows that H € P for |z| < r1 and the radius r; is best possible,
see [13]. This implies that, for |z| < ry - F € Ty (b).

Remark 4.1. Since r; is the radius of convexity for g € Vi, we can conclude that
f € Ty (b) is close-to-convex of complex order b for |z| < 71 where r; is given by (4.2).

Following essentially the same technique used in [10], we can prove:
Theorem 4.5. Let F € T5(b) and let, for 0 < A < 1,
f(z2) = (1= N)F(2) + A2F'(2).
Then f € T5(b) for |z| < rx, where

_ 1
’*‘[2A+¢m]'

This result is best possible.
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