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INEQUALITIES OF THE COMPLETE ELLIPTIC INTEGRALS

FENG QI AND ZHENG HUANG

Abstract. In this article, using Tchebycheff’s integral inequality, the authors establish some
estimates and inequalities for three kinds of the complete elliptic integrals.

1. Introduction

It is well-known that the elliptic integrals can not be represented by elementary
functions, it is also called as Abel’s integral. The complete elliptic integrals are classed
into three kinds, they are defined as and denoted by
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where 0 < k < 1.
The first kind and second kind of the complete elliptic integral can be expanded into
power-series as follows,

s = (2n—2)!(2n)! "
BiR=gil- X 24'(‘“1(n 2 e+ @
Fk) =5 Z 2431(17)1")4 L ©)

The first kind of the complete elliptic integral was estimated in [2, 3] by
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where 0 < k < 1, k = Va2 — b%/a.

Recently, the upper bound of (6) was improved in [1] for a > 7b by a better constant
(a + 2b)7/6.

Another inequality for the complete elliptic integral was estimated in [2, 12] by the
following inequality
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The first author improved (8) in [9, 10] and got
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Tn this article, by using Tchebycheff’s integral inequality, we get some estimates and

inequalities of three kinds of the complete elliptic integrals. The main results are as

follows
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For 0 < 2h < k2, the inequality (12) is reversed; for h > k?/(2 — 3k?) > 0, inequality
(13) is reversed.

For our own conveniences, we state the Tchebycheff’s integral inequality in [2, 4, 5],
which we will use throughout this article repeatedly, as follows

Lemma. Let f,g : [a,b] = R be integrable functions, both increasing or both decreas-
ing. Furthermore, let p: [a,b] = R be a positive, integrable function. Then

b b b b
/ p(2)f(2)dz / p(z)g(x)dz < / p(z)dz / p(2) f(z)g(z)dz. (15)

If one of the functions f or g is nonincreasing and the other nondecreasing, then the
inequality in (15) is reversed.
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2. Proofs of Inequalities for Elliptic Integrals

2.1. Let p(z) =1, f(z) = (1 — k?sin®z)~1/2, g(z) = cosz or sinz, [a,b] = [0,7/2] in
(15), then we could get
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< dz G o e i sin zdx
/ / sin zdz < / dz
0 1—k2sin®z Jo 0 0 1—k2sin’z

By direct calculation one gets the inequality (10), which is the estimates of the second
kind of the complete elliptic integral F(k).

or

2.2. Letting

p(z) = (1 + k®sin® £/2)(1 — k*sin® z),
g(z) = (1 — k?sin’ z)™?,

fz) = [(1 + k%sin? 2/2)V'1 — k2 sin? m]_l

for z € [0,7/2] in (15), then
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0 0
w/2 w/2
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0 0

By direct computation one can obtain inequality (11).

2.3. Set g(z) = (1 + hsin®? z)v/1 — k2sin® z, x € [0,7/2], then
_ sinz cosz[(2h — k?) — 3hk? sin® 7]
V1-k?sin’z

while 0 < 2h < k2, we have ¢'(z) < 0, g(z) decreases; while h > k%/(2 — 3k?) > 0, we
have g'(z) > 0, g(z) increases; while —1 < h < 0, it is clear that g(z) decreases.
If-1<h<0,orh>k%/(2—3Kk% >0, let

g'(z)

p(z) = (1 — k?sin’z)"Y2,  f(z) = (1 + hsin’z)?

and [a,b] = [0,7/2], from (15) one has
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0 0
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As a result, inequality (12) holds. If 0 < 2h < k2, inequality (12) is reversed.

2.4. Assume
1
f(z) = V1-k2sin’z, g(z)= [(1 + hsin® 2)V1 — k2 sin® x] 2
and p(z) = 1,z € [0,7/2] in (15). For —2 < 2h < k? we obtain

db B w2
1+ hsin?8  4V/1+h

For h > k%/(2 — 3k?) > 0, since g(z) is increasing, the reversed inequality of (13) is
obtained.

II(k,h) - F(k) > g / "
0

2.5. For h = k*/(2 — 3k?) > 0, let
p(z) = (1 + hsin® z)(1 — k*sin® z),
i) = [(1 + hsin®£)V1 - ® sinzw]—l,
g(z) = (1 — k?sin’ z)™!

for z € [0,7/2], the inequality (15) implies (14).

Remark 1. As concrete examples we have the following estimates of the complete
elliptic integrals

w2 i sin? z\ —1/2 rin(1 +/?2)
— < 1- dr < —————— 16
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0 2 B "/2 2 2 )

These results are better than those in [2, p. 607].

Remark 2. Using Tchebycheff’s integral inequality, we can refine Conte’s inequal-
ity and some other inequalities relating to the incomplete gamma and the probability
functions [8], obtain more particular inequalities [8], and verify the monotonicities of the
generalized weighted mean values [6, 7, 11].

Remark 3. It is clear that, by the similar arguments, we can get inequalities of the
incomplete elliptic integrals.
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