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ON ABSOLUTE NORLUND SUMMABILITY OF ORTHOGONAL SERIES

ABDULCABBAR SONMEZ

Abstract. The purpose of this paper is to give a general theorem on the IN, pn; 6l summability
of orthogonal series, which generalizes a theorem due to Okuyama [1] related to summability of
orthogonal series.

1. Introduction

Let > a, be a given infinite series with (sn) as its n-th partial sum. If (p,) is a
sequence of positive numbers such that

n
Po=) p,>o0asn—oo, (Poy=p_;=0,i>1).

v=0

The sequence-to-sequence transformation

1, .
T, = -P— an—usv = F vaan—'v’ (Pn # 0) (1'1)
™ y=0 " v=0

defines the sequence (T7,) of the (IV,p,) means of the sequence (s,) generated by the
sequence of coefficients (py,).
The series ) ay, is said to be summable |N, p,|x, k > 1, if (see [2])
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Z(P—)’C NTn — Thea|* < 0. (1.2)
n 4

n=]
The case k = 1 is reduced to the Norlund summability |V, p,| and further, in the special
case in which p, = A% = ("+1‘:_1) and p, = ;L%, the summability |V, p,| is the same
as the summability |C, §| and the absolute harmonic summability, respectively
The series ) ap is said to be summable |N, p,; 8|, k£ > 1, § > 0, if (see [2])
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Let {®,(z)} be an orthonormal system defined in the interval (a,b). For a function
f(z) € L*(a,b) such that

f@) =D an®n(z), (1.3)
n=0

We denote by E® (f) the best approximation to f(z) in the metric of L? by means of
polynomials of ®q(z),...,Pn—1(z). It is well known that

BD(f) = (i 7).

We put AX, = A, — An—1 for any sequence {\,}. A is a positive constant necessarily
the same at each occurrence.

2. Preliminary Result

Dealing with the absolute Nérlund summability of orthogonal series, Okuyama [1]
proved the following theorem.

Theorem A. Let 1 < k < 2 and {\,} be a positive sequence. If {pn} is a positive
sequence and the series
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R DI A E e L
= pnpk_, ; "pn pay )
converges, then the orthogonal series
> Ann®n(z) (1.4)

is summable |N,pp|r almost everywhere.
In this paper we shall prove the following theorem.

Theorem. Let 1 <k<2and0< 6k <1 If {pn} and {A,} are positive sequences
and the series
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converges, then the orthogonal series > Anan®n(z) is summable |N,pn;d0|r almost ev-
erywhere.
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Proof of the Theorem. Let T,(z) be the n-th Nérlund mean of the series (1.4).
Then we have by (1.1)

AT(z) = Ta(@) = Tas (@) = o 3" po_y( 22 - Lo

PPy =1 p_n - Pn—j

)Xia;@;(z)

Using the Hélder’s inequality and the orthogonality

b b 2
/ |AT, (z)|*dz < A {/ |ATn(x)|2dx}
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which is convergent by the assumption and from the Beppo-Lévi lemma we complete the
proof.

In this theorem, if we take § = 0, then we get Theorem A.
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