TAMKANG JOURNAL OF MATHEMATICS Volume 28, Number 2, Summer 1997

A CLASS OF FUNCTIONS AND THEIR DEGREE OF APPROXIMATION BY ALMOST (N, p, α) METHOD

RAJIV SINHA AND HEMANT KUMAR

Abstract. Qureshi [6] proved a theorem for the degree of approximation of a periodic function \overline{f} , conjugate to a 2π -periodic function f and belonging to the class Lip θ , by almost matrix mean of its conjugate series. The above theorem was further generalized by Qureshi and Nema [8] for a function belonging to the class $W(L^p, \Psi_1(t))$ by almost matrix mean. In the present paper we have discussed degree of approximation of above class of functions by almost (N, p, α) method.

1. Let f(x) be periodic with period 2π and integrable in the sense of Lebesgue. The Fourier series associated with f(x), is given by

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$
 (1.1)

then

$$\overline{f}(x) \sim \sum_{n=1}^{\infty} (b_n \cos nx - a_n \sin nx), \qquad (1.2)$$

is called the conjugate series of f(x).

A function $f \in \operatorname{Lip} \theta$ if

$$f(x+h) - f(x) = O(|h|^{\theta}) \text{ for } 0 < \theta \le 1,$$
 (1.3)

We define the norm $|| \cdot ||_p$ by

$$||f||_p = (\int_0^{2\pi} |f(x)|^p dx)^{1/p}, \quad p \ge 1$$

and the degree of approximation $E_n(f)$ by

$$E_n(f) = \min_{T_n} ||f - T_n||_p \qquad \text{(see Zygmund [7])}$$

where T_n is a trigonometrical polynomial of degree n. We say

$$f(x) \in \operatorname{Lip}(\theta, q) \quad \text{for} \quad a \le x \le b$$
 (1.4)

Received November 15, 1995.

Key words and phrases. Fourier series, almost matrix means, almost (N, p, α) mean, almost Nörlund means.

if

$$\left(\int_{a}^{b} |f(x+h) - f(x)|^{q} dx\right)^{1/q} \leq A|h|^{\theta}, \quad 0 \leq \theta < 1, q \geq 1,$$

where A is some constant. (see def. 5.38 of McFadden [2])

Given a positive increasing function $\Psi_1(t)$ and an integer p > 1, we notice (see Qureshi [4]) $f(x) \in \text{Lip}(\Psi_1(t), p)$ if

$$\left(\int_{0}^{2\pi} |f(x+t) - f(x)|^{p} dx\right)^{1/p} = O(\Psi_{1}(t))$$
(1.5)

and that $f(x) \in W(L^p, \Psi_1(t))$ if

$$\left(\int_{0}^{2\pi} |f(x+t) - f(x)|^{p} \sin^{\beta p} x \, dx\right)^{\frac{1}{p}} = O(\Psi_{1}(t)), \quad \beta \ge 0.$$
(1.6)

In case $\beta = 0$, we find that our newly defined class $W(L^p, \Psi_1(t))$ coincides with the class $Lip(\Psi_1(t), p)$.

Lorentz [1] has defined:

Definition 1. A sequence $\{S_n\}$ is said to be almost convergent to a limit S, if

$$\lim_{n \to \infty} \frac{1}{n+1} \sum_{k=p}^{n+p} S_k = S$$
(1.7)

uniformly with respect to p.

An almost convergence is a generalization of ordinary convergence. Qureshi [5] defined almost Nörlund means. Qureshi [3] have also defined almost triangular matrix means as:

Definition 2. If $(a_{n,k})$ (n = 0, 1, ..., K = 0, 1, ..., n); $a_{n,0} = 1$ be a triangular matrix with real or complex elements, then a series $\sum_{n=0}^{\infty} u_n$ with the sequence of partial sums $\{S_n\}$ is said to be almost triangular matrix summable to S, provided

$$\sigma_{n,p} = \sum_{k=0}^{n} a_{n,k} S_{k,p} \to S \quad \text{as} \quad n \to \infty$$
(1.8)

uniformly with respect to p, where

$$S_{k,p} = \frac{1}{K+1} \sum_{\mu=p}^{k+p} S\mu.$$

Definition 3. In above definition almost matrix summability reduces to almost (N, p, α) summability if

$$a_{n,k} = \frac{a_k p_{n-k}}{(p \times \alpha)_n} = \frac{a_k p_{n-k}}{r_n}$$

80

where

$$r_n = (p \times \alpha)_n = p_0 \alpha_n + p_1 \alpha_{n-1} + \dots + p_n \alpha_0$$
$$= \sum_{k=0}^n \alpha_k p_{n-k}.$$

Now the series $\sum_{n=0}^{\infty} u_n$ with the sequence of partial sums $\{S_n\}$ is said to be almost (N, p, α) summable to S, provided

$$\tau_{n,p} = \sum_{k=0}^{n} \frac{\alpha_k \, p_{n-k} \, S_{k,p}}{(p \times \alpha)_k} = \frac{1}{(p \times \alpha)_n} \, \sum_{k=0}^{n} \, \alpha_k \, p_{n-k} \, S_{k,p}$$

uniformly with respect to p, where

$$S_{k,p} = \frac{1}{K+1} \sum_{\mu=p}^{k+p} S_{\mu}.$$

2. Qureshi [6] proved the following theorems.

Theorem A. The degree of approximation of a periodic function \overline{f} , conjugate to a 2π periodic function f and belonging to the class of Lip θ by almost Nörlund means of its conjugate series, is given by

$$\left|\overline{f}(x) - \overline{t}_{n,p}(x)\right| = \begin{cases} O[(\frac{1}{n})^{\theta}]; & 0 < \theta < 1\\ \\ O[(\frac{1}{n}\log n)]; & \theta = 1 \end{cases}$$
(2.1)

where $\bar{t}_{n,p}(x)$ are the almost Nörlund means of the series (1.2) and the sequence $\{p_n\}$ is non-negative and non-increasing such that

$$\sum_{k=0}^{n} \frac{p_{n-k}}{K+1} = O(\frac{P_n}{n}).$$

Theorem B. If a function $\overline{f(x)}$ is conjugate to a 2π periodic function f(x) belonging to the class of Lip θ for $0 < \theta \leq 1$, then

$$\left|\overline{\sigma}_{n,p} - \overline{f(x)}\right| = \begin{cases} O[(\frac{1}{n})^{\theta - 1} \sum_{k=0}^{n} \frac{a_{n,k}}{K+1}]; \ 0 < \theta < 1\\ O[(\log n) \sum_{k=0}^{n} \frac{a_{n,k}}{K+1}]; \ \theta = 1 \end{cases}$$
(2.2)

where $\overline{\sigma}_{n,p}$ are the almost triangular matrix means of the series (1.2).

The above theorems were further generalized by Qureshi and Nema [8] for a periodic function f(x) and belonging to the class $W(L^p, \Psi_1(t))$.

However our theorem is as follows:

Theorem. If f(x) is periodic and belongs to the class $W(L^p, \Psi_1(t))$, then

$$\left|\left|\overline{\tau}_{n,p} - \overline{f}\right|\right| = O\left[\frac{\Psi_{1}\left(\frac{1}{n}\right)(n)^{\beta+1+\left(\frac{1}{p}\right)}}{(p \times \alpha)_{n}} \sum_{k=0}^{n} \frac{\alpha_{k} p_{n-k}}{K+1}\right]$$
(2.3)

provided $\Psi_1(t)$ satisfies the following conditions:

(a)
$$\left(\int_{0}^{\pi/n} \left(\frac{t|\Psi(t)|^{p}}{\Psi_{1(t)}}\right)^{p} \sin^{\beta p} t \, dt\right)^{1/p} = O\left(\frac{1}{n}\right)$$

(b) $\left(\int_{\frac{\pi}{n}}^{\pi} \left(\frac{t^{-\delta}|\Psi(t)|}{\Psi_{1(t)}}\right)^{p} dt\right)^{1/p} = O(n^{\delta})$

where δ is an arbitrary number such that $q(1-\delta) - 1 > 0$, condition (a) and (b) hold uniformly in x,

$$\Psi(t) = f(x+t) - f(x-t),$$

 $\overline{f(x)}$ is a function conjugate to f, $\overline{\tau}_{n,p}$ are almost (N, p, α) means of the series (1.2) and $\{\frac{\alpha_k p_{n-k}}{r_n}\}_{k=0}^n$ is a non-negative sequence with respect to K.

3. Proof of the Theorem.

Let \overline{S}_k be the k-th partial sum of the conjugate series (1.2). Then we have

$$\overline{S}_k(x) - \overline{f}(x) = -\frac{1}{\pi} \int_0^\pi \Psi(t) \frac{\cos(K + \frac{1}{2})t}{2\sin\frac{t}{2}} dt$$

and

$$\overline{S}_{k,p} - f(x) = \frac{1}{K+1} \sum_{\mu=p}^{k+p} (\overline{S}_{\mu}(x) - \overline{f}(x))$$
$$= -\frac{1}{2\pi(K+1)} \int_{0}^{\pi} \Psi(t) \sum_{\mu=p}^{k+p} \frac{\cos(\mu + \frac{1}{2})^{t}}{\sin\frac{t}{2}} dt$$
$$= \frac{1}{2\pi(K+1)} \int_{0}^{\pi} \Psi(t) \frac{\sin pt - \sin(K+p+1)t}{2\sin^{2}\frac{t}{2}} dt$$

Now we have :

$$\overline{\tau}_{n,p} - \overline{f}(x) = \sum_{k=0}^{n} \frac{\alpha_k p_{n-k}}{(p \times \alpha)_k} \left(\overline{S}_{k,p}(x) - \overline{f}(x) \right)$$

$$\begin{split} &= \frac{1}{(p \times \alpha)_n} \sum_{k=0}^n \dot{\alpha}_k \, p_{n-k} \left(\overline{S}_{k,p}(x) - \overline{f}(x) \right) \\ &= \frac{1}{2\pi} \int_0^\pi \frac{\Psi(t)}{(p \times \alpha)_n} \sum_{K=0}^n \frac{\alpha_k p_{n-k}}{(K+1)} \frac{\cos(K+2p+1)t/2\sin(K+1)t/2}{\sin^2 t/2} \, dt \\ &= \frac{1}{2\pi} \Big[\int_0^{\pi/n} + \int_{\pi/n}^\pi \Big] \frac{\Psi(t)}{(p \times \alpha)_n} \sum_{k=0}^n \frac{\alpha_k p_{n-k}}{(K+1)} \frac{\cos(K+2p+1)t/2\sin(K+1)t/2}{\sin^2 t/2} \, dt \\ &= I_1 + I_2, \quad \text{say.} \end{split}$$

Now

$$I_1 = \frac{1}{2\pi} \int_0^{\pi/n} \frac{\Psi(t)}{(p \times \alpha)_n} \sum_{k=0}^n \frac{\alpha_k p_{n-k}}{(k+1)} \frac{\cos((K+2p+1)t/2)(K+1)t/2}{\sin^2 t/2} dt$$

Applying Holder's inequality and the fact $\Psi(t) \in W(L^p, \Psi_1(t))$, we have

$$\begin{split} I_{1} &\leq \frac{1}{2\pi} \Big(\int_{0}^{\pi/n} ((\frac{t|\Psi(t)}{\Psi_{1}(t)}) \sin^{\beta} t)^{p} dt \Big)^{1/p} \\ &\times \Big(\int_{0}^{\pi/n} \left(\frac{\Psi_{1}(t)}{(p \times \alpha)_{n} t} \Big| \sum_{k=0}^{n} \frac{\alpha_{k} p_{n-k}}{(K+1)} \frac{\cos(K+2p+1)t/2\sin(K+1)t/2}{\sin^{2} t/2\sin^{\beta} t} \Big| \Big)^{q} dt \Big)^{1/q} \\ &= O[(\frac{1}{n})] O\Big[\Big(\Big(\int_{0}^{\pi/n} \frac{\Psi_{1}(t)}{(p \times \alpha)_{n} t} \sum_{k=0}^{n} \frac{\alpha_{k} p_{n-k}}{(K+1)} \frac{(K+1)|\sin t/2|}{\sin^{2} t/2\sin^{\beta} t} \Big)^{q} dt \Big)^{1/q} \Big] \text{ by condition (a).} \\ &= O[(\frac{1}{n})] O\Big[\frac{1}{(p \times \alpha)_{n}} \sum_{k=0}^{n} \alpha_{k} p_{n-k} \Big(\int_{0}^{\pi/n} (\frac{\Psi_{1}(t)}{t^{\beta+2}})^{q} dt \Big)^{1/q} \Big], \end{split}$$

applying mean-value theorem, we have

$$\begin{split} I_1 &= O[(\frac{1}{n})] O\Big[\frac{1}{(p \times \alpha)_n} \sum_{k=0}^n \alpha_k p_{n-k} \Big(\Psi_1^2 (\frac{\pi}{n}) \int_1^{\pi/n} \frac{dt}{t^{(2+\beta)q}} \Big)^{1/q} \Big] \\ &= O[(\frac{1}{n})] O\Big[\frac{1}{(p \times \alpha)_n} \sum_{k=0}^n \alpha_k p_{n-k} \Big((\Psi_1 (\frac{\pi}{n})^q \frac{t^{-(2+\beta)q+1}}{-(2+\beta)q+1} \Big)_1^{\pi/n} \Big)^{1/q} \Big] \\ &= O[(\frac{1}{n})] O\Big[\frac{1}{(p \times \alpha)_n} \sum_{k=0}^n \alpha_k p_{n-k} \Psi_1 (\frac{\pi}{n}) (n)^{\beta+1+(1/p)} \Big] \\ &= O\Big[\frac{\Psi_1 (\frac{1}{n}) (n)^{\beta+1+(1/p)}}{(p \times \alpha)_n} \sum_{k=0}^n \frac{\alpha_k p_{n-k}}{(K+1)} \Big]. \end{split}$$

Since we have:

$$\frac{\Psi_1(\frac{1}{n})(n)^{\beta+1+(1/p)}}{n(p\times\alpha)_n}\sum_{k=0}^n \alpha_k p_{n-k} < \frac{\Psi_1(\frac{1}{n})(n)^{\beta+1+(1/p)}}{(p\times\alpha)_n}\sum_{k=0}^n \frac{\alpha_k p_{n-k}}{(K+1)}$$

where $\frac{1}{p} + \frac{1}{q} = 1$ such that $1 \le p \le \infty$. Also, similarly as above

$$\begin{split} I_{2} &\leq \Big(\int_{\pi/n}^{\pi} \Big| \frac{t^{-\delta} \sin^{\beta} t\Psi(t)}{\Psi_{1}(t)} \Big|^{p} dt \Big)^{1/p} \\ &\times \Big(\int_{\pi/n}^{\pi} \Big| \frac{1}{(p \times n)_{n}} \sum_{k=0}^{n} \frac{\alpha_{k} p_{n-k}}{(K+1)} \cdot \frac{\cos(K+2p+1)t/2\sin(K+1)t/2\Psi_{1}(t)}{t^{-\delta+2}\sin^{\beta}t} \Big|^{q} dt \Big)^{1/q} \\ &= O\Big[\Big(\int_{\pi/n}^{\pi} \Big(t^{-\delta} \frac{|\Psi(t)|}{\Psi_{1}(t)} \Big) dt \Big)^{1/p} \Big] O\Big[\frac{1}{\sin^{\beta}(\frac{1}{n})} \Big] \\ &\times O\Big[\frac{1}{(p \times \alpha)_{n}} \sum_{k=0}^{n} \frac{\alpha_{k} p_{n-k}}{(K+1)} \Big(\int_{\pi/n}^{\pi} \Big(\frac{\Psi_{1}(t)}{t^{-\delta+2}} \Big)^{q} dt \Big)^{1/q} \Big] \\ &= O[(n)^{\delta}] O\Big[\frac{1}{(\frac{1}{n})^{\beta}} \Big] O\Big[\frac{1}{(p \times \alpha)_{n}} \sum_{k=0}^{n} \frac{\alpha_{k} p_{n-k}}{(K+1)} \Big(\int_{1}^{n} \Big(\frac{\Psi_{1}(1/y)}{y^{\delta-2}} \Big) \frac{dy}{y^{2}} \Big)^{1/q} \Big] \text{ by condition (b)} \\ &= O[(n)^{\delta}] O[(n)^{\beta}] O\Big[\frac{\Psi_{1}(\frac{1}{n})}{(p \times \alpha)_{n}} \sum_{k=0}^{n} \frac{\alpha_{k} p_{n-k}}{(K+1)} \Big(\int_{1}^{n} \frac{dy}{y^{\delta q-2q+2}} \Big)^{1/q} \Big] \\ &= O[(n)^{\delta}] O[(n)^{\beta}] O\Big[\frac{\Psi_{1}(\frac{1}{n})}{(p \times \alpha)_{n}} \sum_{k=0}^{n} \frac{\alpha_{k} p_{n-k}(n)^{-\delta+2-(1/q)}}{(K+1)} \Big] \\ &= O\Big[\frac{\Psi_{1}(\frac{1}{n})(n)^{\beta+2-(1/q)}}{(p \times \alpha)_{n}} \sum_{k=0}^{n} \frac{\alpha_{k} p_{n-k}}{(K+1)} \Big]. \end{split}$$

Hence

$$\left|\overline{\tau}_{n,p}(x) - \overline{f(x)}\right| = O\left[\frac{\Psi_1(\frac{1}{n})(n)^{\beta+1+(1/p)}}{(p \times \alpha)_n} \sum_{k=0}^n \frac{\alpha_k p_{n-k}}{(K+1)}\right]$$

uniformly for x, therefore,

$$\|\overline{\tau}_{n,p}(x) - \overline{f(x)}\| = \sup_{0 \le x \le 2\pi} |\overline{\tau}_{n,p}(x) - \overline{f(x)}| = O\left[\frac{\Psi_1(\frac{1}{n})(n)^{\beta+1+(1/p)}}{(p \times \alpha)_n} \sum_{k=0}^n \frac{\alpha_k p_{n-k}}{(K+1)}\right]$$

This complete the proof of the theorem.

The following Corollaries can be derived from the theorem:

Corollary 1. If $\beta = 0$ and $\Psi_1(t) = t^{\gamma}$, then the degree of approximation of a function f(x), conjugate to a 2π -periodic function f belong to the class $Lip(\gamma, p)$, $0 < \gamma \leq 1$, is given by:

$$\|\overline{\tau}_{n,p}(x) - \overline{f(x)}\| = O\left[\frac{\left(\frac{1}{n}\right)^{\gamma-1-(1/p)}}{(p \times \alpha)_n} \sum_{k=0}^n \frac{\alpha_k p_{n-k}}{(K+1)}\right]$$

where $\overline{\tau}_{n,p}(x)$ are almost (N, p, α) means of the series (1.2) and $\{\frac{\alpha_k p_{n-k}}{(p \times \alpha)_n}\}$ is non-negative sequence with respect to K.

Proof. Since

$$\begin{aligned} |\overline{\tau}_{n,p}(x) - \overline{f(x)}| &= O\left[\frac{\Psi_1(\frac{1}{n})(n)^{\beta+1+(1/p)}}{(p \times \alpha)_n} \sum_{k=0}^n \frac{\alpha_k p_{n-k}}{(K+1)}\right] \\ &= O\left[\frac{(\frac{1}{n})^{\gamma}(n)^{1+(1/p)}}{(p \times \alpha)_n} \sum_{k=0}^n \frac{\alpha_k p_{n-k}}{(K+1)}\right] \\ &= O\left[\frac{(\frac{1}{n})^{\gamma-1-(1/p)}}{(p \times \alpha)_n} \sum_{k=0}^n \frac{\alpha_k p_{n-k}}{(K+1)}\right] \end{aligned}$$

which completes the proof.

Corollary 2. If $p \to \infty$ in Corollary 1, then

$$\|\overline{\tau}_{n,p}(x) - \overline{f(x)}\| = O\left[\frac{(\frac{1}{n})^{\gamma-1}}{(p \times \alpha)_n} \sum_{k=0}^n \frac{\alpha_k p_{n-k}}{(K+1)}\right]$$

and we have theorem B, and if further $\alpha = 1$, we have theorem A for $0 < \alpha < 1$. The proof of Corollary 2 is obvious.

References

- G. G. Lorentz, "A contribution to the theory of divergent series," Acta Match., 80 (1948), 167-190.
- [2] L. Mc Fadden, "Absolute Nörlund summability," Duke Math. J., 9(1942), 163-207.
- [3] K. Qureshi, "On the degree of approximation of functions belonging to the class $Lip(\alpha, q)$, Tamkang Jour. Math., 15(1)(1984), 5-11.
- [4] K. Qureshi, "On the degree of approximation of function belonging to weighted $W(L^p, \Psi_1(t))$ class," Indian J. Pure Appl. Math., 13(4)(1982), 471-475.
- [5] K. Qureshi, "On the degree of approximation of a periodic function f by almost Nörlund means," Tamkang J. Math., 12(1)(1961), 35-36.
- [6] K. Qureshi, "On the degree of approximation of a class of functions by means of a conjugate series," R.U.M.J., 15(1984), 63-68.
- [7] A. Zygmund, Trigonometric series, Vol. 1, 2nd Ed. Cambridge University Press, Cambridge, 1959.
- [8] K. Qureshi and H. K. Nema, "A class of functions and their degree of approximation," The Mathematics Student, 52(1-4)(1984), 33-40.

Department of Mathematics, S.M. College, Chandausi (U.P.), PIN: 202412, INDIA. Department of Physics, S.M. College, Chandausi (U.P.), PIN: 202412, INDIA.