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OSCILLATIONS OF SOLUTIONS TO PARABOLIC
EQUATIONS WITH DEVIATING ARGUMENTS

SATOSHI TANAKA AND NORIO YOSHIDA

Abstract. Nonlinear parabolic equations with deviating arguments are studied and sufficient
conditions are derived for every solution of boundary value problems to be oscillatory in a
cylindrical domain. Two kinds of boundary conditions are considered. Our approach is to
reduce the multi-dimensional problem to a one-dimensional problem for differential inequalities
of neutral type.

1. Introduction

We shall be concerned with the forced oscillations of the parabolic equation with
deviating arguments

¢ k
gt (U(m, t) + ; hi(t)u(z, Ti(t))) — a(t)Au(z,t) - Z bi(t) Au(z, pi(t))

g=1

+e(Ed, ulemB)N2 ) =flal (@ieli=Gx (0, c0), (1)

where G is a bounded domain of R™ with piecewise smooth boundary G and A is the
Laplacian in R™. We assume throughout this paper that:

(Hi1) hi(t) € C*([0,00);[0,0)) (i = 1,2,...,£), 7i(t) € C1([0,0);RY) (i=1,2,...,8),
Ui(t) € C([0,00),R]) (7’ =1,2,... am)a tl_lglo Ti(t) = 00, tli)ngo ai(t) = 093

(Hz) a(t),bi(t) € C([0,00);[0,00)) (i = 1,2,..., k), pi(t) €C([0,00); RY) (i = 1,2, . .. k),
Jlim p;(t) = oo, f(z,t) € C(GR');

(H3) c(z, ¢, (&)iZ1) € C(Q x R™;RY),
(:(fL',t, (f?):,';l) = Zpi(t)wi(fi) in ) x (ano)m7

gl

o(z,1, (&)i%1) < D pi(t)ps(&:) in @ x (~00,0)™,

ge=1
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170 SATOSHI TANAKA AND NORIO YOSHIDA

where (0, )7 = (0, 00) x (0,00)7" 1, (~00,0)9 = (—00,0) x (—00,0)7 7 (5 =1,2,...
pi(t) € C([0,00);[0,00)) (¢ =1,2,... ,m), pi(€) € C(RI;RI)(i =1,2,...,m), pi(— ) =
—i(£), i(€) > 0 for £ > 0, and ¢;(€) is nondecreasing and convex in (0, 0o).

We consider two kinds of boundary conditions:

u=1% on IG x (0,00), (By)
e + pu=1 on OG x (0,00), (Bs)

where 9, ¥ € C(8G x (0,00),]R1),u € C(8G x (0,00);[0,00)) and v denotes the unit
exterior normal vector to 0G.

There has been much current interest in studying the oscillations of parabolic equa-
tions with deviating arguments. We refer the reader to [1-5, 7, 10-13] for parabolic
equations (or systems) without forcing term, and to [8, 9, 14-16] for the forced oscil-
lations. In particular, the case where the coefficients h;(t) are positive in [0, c0) was
considered in the papers [4, 9-11].

By a solution of the boundary value problems (1), (B;) (¢ = 1,2) we mean a function
u(z,t) € C?(G x[t-1,00); RYNCH(G x [t_1,00); RN)NC(G x [T_1, 00); R!) which satisfies
(1), (B;) (i=1,2), where

im0} ).
= ze{P:lzmm }Eop‘

t_i1=min { min { inf 7 ( ,O},
{1,243 L £20
T_1= min {inf oi(t }
: i€{1,2,....m} Lt>0 2( )

A solution u of the boundary value problems (1), (B;) (i=1,2) is said to be oscillatory in
2 if u has a zero in G x (t,00) for any t > 0.

In this paper we derive sufficient conditions for every solution of the boundary value
problems (1), (B;) (i=1,2) to be oscillatory. In Section 2 we reduce the multi-dimensional
oscillation problem to a one-dimensional problems for neutral differential inequalities.
Various sufficient conditions are given in Section 3 that a neutral differential inequality
has no eventually positive solution. In Section 4 we establish the oscillation results for
the boundary value problems for (1), (B;) (z=1,2) by combining the results obtained in
Sections 2 and 3.

2. Reduction to a One-dimensional Problem

The object of this section is to reduce the boundary value problems (1), (B;) (i=1,2)
to neutral differential inequalities with deviating arguments.
It is known that the first eigenvalue A; of the eivenvalue problem

-Aw=Mw in G,
w=0 on O0G
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is positive and the corresponding eigenfunction ®(z) may be chosen so that ®(z) > 0 in

G.
The following notation will be used:

F(t) = /G f(a, ®(a)dz - /(, @(x)dx)"l,

9% =
() = 6G¢(:z:,t)6—y(:n)dS-( /G 3(z)dz) |
Flt) = - z,t)dz
Fo) = o /,f( 0)dz,
1
50 = g [ Fans,

where |G| = [ dz.
Theorem 1. Assume that (Hy)-(H3) hold. If the differential inequalities

dt (?j(t) G Z h ))) + Ala(t + /\1 Zb

=1

+ _Zpi(t)soi (u(04(1))) < £G (1) (Is)

have no eventually positive solutions, then every solution u of the problem (1), (B;) is
oscillatory in ), where

G(t) = F(t) —a()¥(t) — Zb(t)\ll pi(t

Proof. Assume to the contrary that there is a nonoscillatory solution u(z,t) of the
problem (1), (By), that is, there exists a number ¢ > 0 such that u(z,¢) has no zero in
G x[tg, 00). We may assume that u(z,t) > 0 in G x[to, 00) since the case where u(z,t) < 0
can be treated similarly. The hypotheses (H;) and (Hs) imply that u(z,7;(¢)) > 0
(¢ = 1,2,...,8), u(z,pi(t)) >0 (i = 1,2,...,k), u(z,0:(t)) >0 (i = 1,2,...,m) in
G x [t1,00) for some #; > to. Multiplying (1) by ®(z)( [, ®(x)dz)~!, integrating over G
and using the hypothesis (H3), we obtain

(Z < )+ z hi(t) U(Tz(t))) —a(t)Le /('; Au(z,t)®(z)dx

=1

—Zbi(t)l@/GA“(-T,Pi(t))‘I’(.’IJ)dx

+ Zpi(t)Lq) /G vi(u(z,0:(t)))®(x)dz < F(t), t > 1, (2)
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where Lg = ([, ®(z)dz)™" and
U(t) = Ls /c u(z,t)®(z)dx.
It follows trom Green’s formula that
By L Au(z, 8(z)dz = —U(t) = MU(L), t > 4. (3)
Analogously we obtain
L /C Au(z, pi(t))@(z)dz = =¥ (pi(t)) — MU (pi(2)), t = t. (4)

Application of Jensen’s inequality shows that
ch/ ei(u(z,04(t)) ®(z)dr > ¢i(U(oi(t))), t > t. (5)
G

Combining (2)-(5) yields

( t)+2h(t n(t)ﬂlat)v +,\12b YU (pi(2)

+3 Bit)pi(U(0i(2) < G), ¢ > t.

=1

Hence, U(t) is an eventually positive solution of (I.). This is a contradiction and the
proof is complete.

Theorem 2. Assume that (Hy)-(Hs) hold. If the differential inequalities

£ m
L (v(t) +3oh (t)y(n(t))) + 3 pOp (o) < 26 (L)

t=1

have no eventually positive solutions, then every solution u of the problem (1), (Bs) is
oscillatory in ), where

k
G(t) = F(t) +a®T(t) + ) i) T (pi(2)).
=1

Proof. The proof is quite similar to that of Theorem 1 and hence will be omitted
(cf. [3, 16)).
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3. Neutral Differential Inequalities

In this section we consider the neutral differential inequalities of the form

m

(y(t th(t Jy(Ti(t)) ) b sz )i (1 ((Tl ))) < q(t), t > to, (6)

where tg is some positive number. We assume throughout this section that:

(Hy) pi(t) € C([to, );[0,00)) (i =1,2,...,m), §:i(§) € CRY;RY) (i =1,2,...,m),
Pi(—&) = —3;(€),2:(€) > 0 for € > 0,;(£) is nondecreasing in (0,00) and ¢(t) €
C([to,OO);RI).

We derive sufficient conditions for no solution of (6) to be eventually positive.

Theorem 3. Assume that (H1) and (Hy4) hold, and that the following hypotheses
hold:

L
(Hs) 3 helt) £ 1nll) 280 =12 . sl

(Hg) there exists a function Q(t) € C*([to, 00); R ) such that Q(t) is not eventually positive
and Q'(t) > q(t).

Assume, moreover, that

/ " pil sm( [(1WZh 20) ) [Q(0(s)))- +.H<oj<s>)} )ds= 00
to , o

for some j € {1,2,...,m}, where

Then (6) has no eventually positive solution.

Proof. Suppose that y(t) is an eventually positive solution of (6). The hypothesis
(H;) implies that there exists a number t; > to such that y(¢) > 0, y(r(£)) > 0 (i =
1,2,...,¢) and y(oi(t)) >0 (i =1,2,...,m) for t > ;. We let

£
20 =y(t) + 3 by () - Q). (7)
=1
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It follows from (6) and (Hg) that
2'(t) < —pi()@;(y(o;(2))) <0, t >t (8)

Therefore, z(t) is eventually positive or eventually nonpositive. If z(¢) is eventually
nonpositive, then Q(t) is eventually positive by (7). This contradicts the hypothesis
(He). Hence, we must have z(¢) > 0 in [t3, 00) for some ¢y > t;. Since z(t) > —Q(t) for
t > t1, we find that z(t) > [Q(t)]- for ¢ > ¢5. In view of the inequality y(t) < z(¢) + Q(t)
and the fact that z(t) is nonincreasing, we observe that

£
y(t)==2(t) — Z hi(t)y(7:(t)) + Q(2)
£
>z(t) - Z hi(8)[z(7:(8) + Q(7:(8)] + Q(2)
¥4
> (1 -3 hi(t))z(t) + H(t)
=1

L
> (1= Y m®) QW) +H(), t> 1.

Since y(t) > 0 for t > t;, we have

/o
y(t) > [(1 -3 n() Q)] + H(t)] >t

-+

Since o;(t) > t» in [t3,00) for some t3 > t5 and @;(€) is nondecreasing ,we see from (8)
that

£
2(t) + ps ()5 ( (1= halos ) @eos @) + H(aj(t»L) <0, t> 1t

Integrating the above inequality over [ts, t] yields

/tpj ([(1 - Zh (o5(s) ) ai(8))]- +H(aj(t))]+) ds

S —Z(t) + Z(t3) S Z(tg), t Z t3.

This contradicts the hypothesis and the proof is complete.

Theorem 4. Assume that (Hy), (Hy) and (Hs) hold. Assume, moreover, that

¢
llm 1nf/ g(s)ds < oo, A 9)
to

t—o00

| pi(6)s Ul(o (o)) s = o0
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for some j € {1,2,...,m}, where

Ti(t)
I{q|(t) = a s)ds.
[q](2) ie{rf,’zf.,e}/t q(s)ds
Then (6) has no eventually positive solution.

Proof. Let y(t) be an eventually positive solution of the differential inequality (6).
Then y(t) > 0, y(={E)) >0 (i = 1,2;...,£) and y(oy(t)) >0 (¢ = 1,2,...,m) in [t1,00)
for some t; > tg. There is a function 7*(¢) for which

y(r*(t) = o 1?}y(n(t))-

Integration of (6) over [¢t, 7*(t)] yields

T*(¢)
Tlg)(t) > / g(s)ds

>y(r*(t)) + Z hi(m* (@®))y(r(7*(t))) — y(t) — Z hi(®)y(7:(t))

>y(r* (1) ~ () - (Z ha(t) )u(r* (2)
—y(t), t > t. )

Since 2(t) > 0 in [¢t1,00), we have y(t) > [I[¢q](¢)]- in [t1,00). We see from (6) that

(4
2 (v + 3 hu ) + 302 Ulal(03 D)) < a0, ¢2 12

for some ¢5 > t;. An integration of the above inequality over [t2,] implies that

t

/ pi(5)%; (la)(03 ()] )ds < / a(e)ds +¢, £3 &,

to to

¢
where ¢ = y(t2) + > hi(t2)y(7i(t2)). Hence,
=1

t

| m8sUlaloso) s < mint [ as)ds + < oo,

to to

This contradicts the hypothesis and completes the proof.

Remark 1. Suppose that the hypothesis (Hg) holds. Since liminf; ., Q(t) < 0, we
obtain

t
lim inf/ q(s)ds < llm 1nf/ Q'(s)ds = llmlan(t) — Q(to) < —Q(o) < o0.
to

t—o0 t—00
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Hence, (9) holds. Conversely, let (9) hold. Setting

Qt) = {ft; q(s)ds, a <0,

fi,4(8)ds —a—1, 0< a < oo,

where o = lim inf ]itn q(s)ds, we see that Q'(¢) = ¢(t) and Q(t) is not eventually positive,
-
and therefore (Ilg) holds. Hence, the hypothesis (Ig) holds if and only if (9) holds.

Remark 2. In the case h;(t) =0 (i = 1,2,...,£), we see that

£
[(1 = 2 hi(o3 () Qs ())- + H(@s(s))| = [@(a5(s))]s-

+

Hence, Theorem 3 is a generalization of the result of Yoshida, [17, Theorem 2].
We assume that the following hypothesis (H7) holds:
(H7) hi(t) > 0 and 7,(¢) is strictly increasing for some x € {152 £
We introduce the following notation:

g () i=x
th == K_ ) ' )
( ) {Tn I(Ti(t))a ? # K,
Gi(t) =715 (0s(t) =1,2,...,m),
hi(t) {’('1"(0)’ =
Wlt) =< "=V,
i hi(t) .
he (7 L (0)))* Gl

where 71(t) is the inverse function of 7, (t). Let y(t) be an eventually positive solution
of the differential inequality (6). We set w(t) = b (t)y(7x(t)). Then we find that w(t) is
an eventually positive solution of the differential inequality

4 m
< (w(t) +3 E‘(t)W(ﬂ(t))) + 2 nO7: (i O)w(E:(1) < g9 (10)
7=]; i=1

Therefore, if the differential inequality (10) has no eventually positive solution, then the
differential inequality (6) has also no eventually positive solution. By the same arguments
as were used in the proofs of Theorems 3 and 4, we can obtain the following two theorems.

Theorem 5. Assume that (H;), (Hy), (Hg) and (H7) hold, and that the following
hypothesis (Hg) holds:

L
=1

Assume, moreover, that

[ e (Hn(aj(s» [(1- gﬁm(s))) Q@) +H(,(6))] +) P
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for some j € {1,2,...,m}, where

¥ 4
H(t) = Q@) — ZE(t)Q(ﬁ(t»-

Then (6) has no eventually positive solution.

Theorem 6. Assume that (Hy), (Hs), (H7), (Hs) and (9) hold, Assume, moreover,
that

| 2161 (el (N Tl @) s = oo

to
for some j € {1,2,...,m}, where
Ti(t)

T[q](t)=ie{§ng7§_ g, Ae)ds

Then (6) has no eventually positive solution.

¢
Remark 3. If (Hg) holds, then we see that > h;(¢) > 1, and 7, (¢) < ¢ in the case of
=1
=1L

4. Oscillation of Parabolic Equations

In this section we obtain sufficient conditions for every solution u of the problems (1),
(B:) (i = 1,2) to be oscillatory in 0.

Theorem 7. Assume that (Hy)-(Hs3) and {Hs) hold, and that the following hypothesis
(Hg) holds:

(Ho) there exists a function Q(t) € C*([to, 00); R!) such that Q(t) is oscillatory and
Q'(t) = G(?).

Assume, moreover, that any one of the following conditions holds:

£

/000 a(s) [(1 - Zhi(s))[Q(s)h s H(s)} R

1=1 4

[o%s} l
/0 b;i(s) [(1 -3 h,-(ﬂj(S))) [Q(pi ()] £ H(/)j(-"‘))} ds = 00
=1 e
Jor some j € {1,2,...,k};

[ pitsres ([(1 - ghi@j(s)))m(@(s»h £ H(05(5))] +)ds =00 (1)
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for some j € {1,2,...,m}. Then every solution u of the problem (1), (B1) is oscillatory
in (.

Proof. Theorem 3 implies that the differential inequalities (I1.) have no eventually
positive solutions. Hence, the conclusion follows from Theorem 1.
By combining Theorem 1 with Theorems 4-6, we obtain the following results.

Theorem 8. Assume that (H,)-(H3) and (Hs) hold, and that

t
lim sup/ G(s)ds > —o0, (12)
t—o0 0
t
liminf/ G(s)ds < oo. (13)
t— o0 0

Assume, moreover, that any one of the following conditions holds:

/0 " el TG ()] ds =0
/OOO b;i(s)[I[£G](p;(s))]-ds = oo for some j € {1,2,...,k};

/Ooopj(s)cpj ([I[:i:G](aj(s))]“)ds = oa for some § € {1,2,...,k}. (14)

Then every solution u of the problem (1), (B;) is oscillatory in 0.

Theorem 9. Assume that (H1)-(Hs), (H7)-(Ho) hold. Assume, moreover, that any
one of the following conditions holds:

o £
| e [ (1= S Falmuls)) ) Q(a(N) + F(a(s»} ds = o0;
,+~

1=1

o £
JACIIC) [(1 = 2o hi(p;(s)) Q@ ()} = H (7, (s»] ds = oo
i=1 =
for some j € {1,2,...,k}, where p;(t) = 77" (p;(2));

0o !/
| e (En(aj(s»[(l—Zﬁi(ﬁj(s)))[maj(s)n;iﬁ@-(s»] )ds=oo (15)
i=1 +

for some j € {1,2,...,m}. Then every solution u of the problem (1), (B;) is oscillatory
in (.

Theorem 10. Assume that (Hy)-(Hz), (Hy), (Hg), (12) and (13) hold. Assume,
moreover, that any one of the following conditions holds: '

/Ooo a(8) b (8)[T[£G)(Tx(5))]-ds = oo;
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/000 bj(s)ﬁn(pj(s))[T[:i:G](ﬁj(s))]_ds =00 for somej € {1,2,...,k};

/ " sl B oG s = far some Fe 1,3, ... B}

Then every solution u of the problem (1), (B1) is oscillatory in ().
Theorem 2 combined with Theorems 3-6 yields the following theorems.

Theorem 11. Assume that (H;), (Hs) and (Hs) hold, and that the following hypoth-
esis (Hyg) holds:
(Hio) there ezists a function Q(t) € C*([0,00); R!) such that Q(t) is oscillatory and
Q'(t) = G(2).
Assume, moreover, that (11) holds for some j € {1,2,...,m}. Then every solution u of
the problem (1), (B2) is oscillatory in Q.

Theorem 12. Assume that (H;)-(Hs) and (Hs) hold, and that

t

lim sup/ G(s)ds > —o0, (16)
t—o0 0 "

lim inf / G(s)ds < oo. (17)
t—o00 0

Assume, moreover, that

/om pi()p; (I11G)(o3 ()] ) ds = oo

for some j € {1,2,...,m}. Then every solution u of the problem (1), (Bs) is oscillatory
in .

Theorem 13. Assume that (H;)-(H3), (Hy), (Hs) and (Hyo) hold. Assume, moreover,
that (15) holds for some j € {1,2,...,m}. Then every solution u of the problem (1), (Bsy)
is oscillatory in ().

Theorem 14. Assume that (H;)-(Hs), (H7), (Hs), (16) and (17) hold. Assume,
moreover, that

[ pstoYes (Rutos N T-CE (1) ) ds = o0 (18)

for some j € {1,2,...,m}. Then every solution u of the problem (1), (By) is oscillatory
in .

Example 1. Let us consider the problem

0 1 3
5 (u(.z, t) + Eu(:z:,t s 271")) — Ugz(T,t) — Upy(x,t — §7r)
=4
1
+§u(m,t - 571') =sinzsint, (z,t) € (0,7) x (0, c0), (19)

u(0,t) = u(m, ) =0, ¢ > 0. (20)



180 SATOSHI TANAKA AND NORIO YOSHIDA

Heren=1,G=(0,n), =k=m=1, h(@t) =%, n(t) =t+2m a(t) =1, h(t) =1,
pi(t) =t—3m, o1(t) =t—3m, p1(t) = 2, ¢1(8) =¢&, f(z,t) =sinzsint. It is easily seen
that \; = 1, ®(z) = sinz, ¥(¢) = 0 and F(t) = G(¢) = ;wsint. Theorems 8-10 are not
applicable to the problem (19),(20). The hypotheses (H;)-(H3) and (Hs) are fulfilled,
and Q(t) = —imcost satisfies hypothesis (Hg). An easy calculation shows that (11)
holds, and therefore the hypotheses of Theorem 7 are satisfied. Hence, every solution u
of the problem (19), (20) is oscillatory in (0,7) X (0,00). Indeed, u = sinzsint is such a
solution.

Example 2. Let us consider the problem

%(u(m, t) +u(z,t + 71')) — Ugz (2, 1) — Ugz(z,t — %W)

+u(z,t — %w) =sinzsint, (z,t) € (0,7) x (0, 00) (21)

with the boundary condition (20). Heren =1, G = (0,7), £ =k =m =1, hy(t) = 1,
nt)=t+mal)=1,bu@) =1, pt)=t-3m, 01(t) =t - im, @) =1, p1(6) = ¢,
f(z,t) = sinzsint. It is easy to check that G(t) = imsint. Theorems 7,9 and 10 do not
apply to the problem (20), (21). The hypotheses (H;)-(Hs3). and (Hs) are fulfilled. We
easily see that (12)-(14) hold. Therefore, Theorem 8 implies that every solution u of the
problem (20), (21) is oscillatory in (0,7) x (0,00). One such solution is u = sin z sin ¢.

Example 3. We consider the problem

_6_ (’U,((E,t) + 2u(z,t - 27")) - Uz (2, 1) — Usa(2, t — %7()

ot
+4u(z,t — %w) = coszsint, (z,t) € (0, g) x (0, 00), (22)
—ug(0,t) =0, uz(g-,t) = —sint, t > 0. (23)

Heren=1,G=(0,%),{=k=m=1, h(t) =2, n(t) =t —2m, a(t) = 1, b1 (¢) = 1,
p1(t) =t —3m, 01(t) =t — 3m, pi(t) = 4, 1(§) =&, f(z,t) = coswsint. It is readily
verified that ¥(t) = —2sint, F(t) = 2 sint, G(t) = —2 cost. Theorems 11, 12 and 14
are not applicable to the problem (22), (23). The hypotheses (H;)-(Hs), (H7) and (Hs)
are fulfilled, and Q(t) = —% sint satisfies (Hjp). An easy computation shows that (15)
holds. From Theorem 13 it follows that every solution u of the problem (22), (23) is
oscillatory in (0, ) x (0,00). In fact, there exists an oscillatory solution u = cosz sint.

Example 4. We consider the problem

%(u(w, t) + u(x,t - 7r)) — Ugz (T,1) — Uge(z,T — _‘;ﬂ.)

1
+u(z,t — —2—77) = coszsint, (z,t) € (0, g) x (0, 00) (24)
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with the boundary condition (23). Heren =1,G = (0,%), £L=k=m =1, hy(t) =1,
nt)=t—-malt) =1, @) =1, p1(t) =t = -g—w, o1(t) =t — :ﬁ-ﬂ', ai(t) =1, pi(€) =&,
f(z,t) = coszsint. It is easily checked that G(t) = —2 cost. The hypotheses (H;)-(Hs),
(H7) and (Hg) are fulfilled. We easily observe that (16)-(18) hold. Applying Theorem 14,
we conclude that every solution u of the problem (23), (24) is oscillatory in (0, §) x (0, 00).

For
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example, u = cosxsint is such a solution.
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