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LOCAL AND UNIFORM NEAR SMOOTHNESS
OF SOME BANACH SPACES

LESZEK OLSZOWY

Abstract. In this paper we give an estimate of the modulus of near smoothness of the space
co(E:). In the case of the space co (Ip:) the exact formula for this modulus is derived. Moreover,
we show that the properties of near uniform smoothness and local near uniform smoothness are
hereditary with respect to the product space co(E:).

In the last years the notions being fundamental in the classical geometry of Banach
spaces, such as smoothness and uniform smoothness have been translated in terms of
the measure of noncompactness. This way came into existence a branch of the geometry
of Banach spaces involving compactness conditions (cf. [1, 3, 8, 9, 10] and references
therein).

The aim of this paper is to study a few concepts of the theory mentioned above. At
the beginning we start with some notation.

Let E be an infinite dimensional real Banach space with the dual E*. Denote by B,
B*, S, S* the unit balls and the unit spheres in E and E*, respectively. For a bounded
subset X of E let xg(X) denote the Hausdorff measure of noncompactness of X defined
as the infimum of all numbers r > 0 such that X can be covered by a finite family of
balls with radii 7.

Recall [1] that the modulus of near smoothness of the space E is the function Xg : [0,1] —
[0,1] defined by the formula

Sp(e) = sup{xe- (F"(z,€)) : z € S},

where F*(z,€) = {f € B*: f(z) > 1 — €}

Roughly speaking the modulus of near smoothness inform us about the noncompact-
ness of the set of all hyperplanes supporting the unit sphere S at an arbitrary point.

A space E is called nearly uniformly smooth (NUS) [1] whenever c}lrﬂ) Eale) =0. 8
s said to be nearly smooth (NS) if Xg(0) = 0. Moreover, a space E is referred to as
locally nearly uniformly smooth (LNUS) [2] if }:i—I)I})XE* (F*(z,€)) = 0 for every z € e

Let us pay attention to some results obtained before.
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In the case of the classical sequence spaces ¢o and [,(1 <p < o) the following formulas
can be derived [3] for € € [0,1]:
B (e) =8

S (e) = (1— (1— €))7,

where £ +1 =1.

Thus both cp and I, are NUS spaces.

The example of the space ¢y shows simultaneously that a NUS space has not to be
reflexive. The other facts in this direction can be found in [1,2], for example.

The next concept which turns out to be connected with the properties defined above,
is the property H*. We say [2] that the norm ||-|| in a Banach space E has the property

H* whenever for any sequence (fn) C E* converging weakly star to f € E* and such
that lim ||fnlle- = ||fllE+ we have that frn — f in the norm of E*.
n-%00
Further, Let (E;, || -||:;) be a sequence of Banach spaces. Then co(E;) = co(Er, B, .- .)
is the Banach space of all sequences z = (z;), ©; € E; for i = 1,2,... such that
le ||lz:|l; = 0, furnished with the norm
n— oo

||lzol| = max{||z:ll; : i € N}.

In the similar way we define the space Ip(E;) = lp(E1, Es,...)(1 < p < o) under the

norim T
ll=ll, = (}: ll-’Ein) :
=1

Let us mention that in [2, 3, 5, 6] it was shown that both the properties related to
convexity such as NSC, NUC, LNUC, H and the properties connected with smoothness
as NUS, LNUS, NS, H* are hereditary with respect to the space l,(E;). On the other
hand it is easily seen that the space co(E;) is no longer NSC, NUC, LNUC and it has
no the property H. Nevertheless, if we assume that E; is NS(i = 1,2,...) then the space
co(E;) has also this property (cf. [4])-

In the sequel we prove similar results for the “smothness” properties such as NUS,
LNUS and H*.
We start with the following theorem.

Theorem 1. Let 7(¢) = sup{Zk; (€) :1 € N} fore € [0,1]. Then
Beo(E) (€) S T(VE) +2v/E + 2. (1)

Proof. For convenience denote by B, B*, S, S* the unit balls and the unit spheres
in the spaces co(E:) and (co(Ex))* = li(EY), respectively. The norms in E; and Ej will
be denoted by || - ||; while || - ||+ stands for the norm in [, (E}). -

Now, fix a number £ € (0,1] and take a number n > 0 small enough. Choose
¢ = (z;) € S and a number 7 in such a way that

xiy(82) (F*(2,€)) > 7 > o gy (€) — 1. (2)

/
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Then there exists a sequence (fn) C B* satisfying the inequalities 1 — & < f(z) and
v < |If* = f™ll; for n,m € N, n # m. Writting f* = (f7*), where f[* € B for every
i€ N (n=1,2...) we can write the last inequalities in the form

1-e<) f@:) and y<) I - flk (3)
i=1 i=1

Applying the same argumentation as in [8] we may assume without loss of generality
that
Il — e, fP(@) — b, I - Al — e (4)

whenn — oo, m,n — o0 (2 =1,2,...).

Further, for § > 0 consider the sets Ss,Ts and Ws defined below:
Ss={ie€N: |zl >6 and a; >0},
Ty = {’L eN: “:I?,,“z >4 and a;= 0},
Ws = {i € N: ||z;||: < é}.

Obiously N = S5 U T5 U Ws in which T; is finite set. For m € N large enough we
have 3. fM™(z;) < 6 and ), f"(z:) < 0. This inequalities together with (3) yields

i€T; iEWs
1—e—26< Y, f(z:) for m € N sufficiently large.
i€Ss
Hence, putting S = {i € N: z; # 6 and a; > 0} and keeping in mind that blisailSs = 8,
for m — oo and § — 0 we get
1-e< ) b (5)
i€S

Further, observe that

1-e< > )+ Y, M) <é Yy I+ (1 —> ||fz“||i) :

i€EWs ieN\Ww; i€Ws 1€EWs

This implies Y. ||f*|l: € 155 Hence, in view of (3) we obtain

1-8°
1€Ws
v < SN A Y U= A+ DN = A <
1€eWs i1€ESs 1€T;s
2e
< sk DN APl D = A

1€Ss i€Ts

Using (4) and taking into account that ¢; =0 for 7 € Ts we derive that
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for n,m — oco. Hence, letting 6 — 0 we get

7—2£_<_Zc,-. | (7)

€S

Now, let usput P={i € S: bi__ ~ 1 — /€}. Then the inequality (5) gives

a;i-|lzils
b
1—-8%< zbi = Zbi + Z a—-llm—-ll-’ai”xi“i
i€S icP GED e T A
<Y b+ (1-Ve) Z ail|zill:
icP ieS\P
< b+ (1-Ve) (Z aillzilli — sz>
ieP ieS ieP
<) b+ (1-+e) (I—Zbi) :
i€eP ieP

Hence, after simple calculation we obtain 1 — /€ < Y b;. Since b; < a; we have
icP
1— & < Y a; and consequently

i€P
> ai=> 8-y ai<l-(1-ve)=Ve

i€S\P icS icP

what together with ¢; < 2a; implies Y ¢ <24/
i€S\P
Further observe that by the inequality (7) we obtain

Zcizz:ci'— Z CiZ")’—-2€——2\/—6_ 1.€.

icP i€S i€S\P

> ei>y-2-2/e (8)
ieP
Notice, that the following two cases are possible:
(1) 7—25_2\/5301
(ii) v — 26 — 2y > 0.
In the case of (i) by (2) we get Tz, (€) <n+7v=<n+ 2¢ + 24/€ which as n — 0 gives
{1)
Now suppose that the case (ii) is satisfied and take 6 > 0 small enough. Then, there
exists 2 € P such that .
: 2 >qp—Ffe—8320 (9)

Indeed, if not then ¢; < a; - (v — 26 — 2¢/6 — 6) for every 1€ P.
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This yields
L (y—2—2/E—8)> ai<y—2—2/—4
i€P i€P
but this contradicts (8).
Thus let us take i € P satisfying (9) and put T = 15> P = l—ff,;l—l— By the definition

1

of the set P and (4) we have that l'l)m g"(z) = —ir > 1— /e what means that
n—r0oo

F*(%,/€) D {g" : n > k} for some k € N.
Further using (4) and (9) we obtain

c.
||g”—gml|f;——%j2'y,—2s—2\/_—6 when n,m — 0

These facts imply
i
r(VE) > xg: (F*(%,v8) = x5; ({g" : n 2 k}) 2 — >y —2—-2VE—§
i.e. v < 8 + 2€ + 2¢/€ + r(y/€). Combining the last inequality and (2) we infer

Bmnle) € o h S q+0+ 2% + 2/ + r(v/€),

‘and the arbitrariness of n and § allows us to obtain (1).
Thus the proof is complete.
Corollary. The space co(E;) is NUS if and only if 121(1) r(e) = 0.

Indeed, in view of the inequalities
EE_; (E) S T(E) .<_ Z"C()(E';')(E) fOT' .7 = 1723 dinse

we infer that if co(E;) is UNS then li_r}t% r(e) = 0. The converse implication is a conse-
3

quence of Theorem 1.
Theorem 2. The space co(E;) is LNUS if and only if E; is LNUS fori=1,2,...

Proof. The implication = is obvious. For the proof of the converse implica-
tion suppose contrary, i.e., there exists a number v > 0 and z = (z;) € S such that
Iin'%) y(F*(z,€)) > v > 0, where x = Xxu,(g;)-

{ e &
Let us fix 6 > 0 such that

y 2¢

s <ST 13

for €€ [0,4). (10)

Take g, € (0, 6] with &, monotone decreasing to zero. Repeating the argumentation in the
proof of Theorem 1 we may assurne that there exists a sequence (f™) C B*, f* = (fI")

o0 o
such that 1 —en < 3 fP(@), v < X I1fP = s and ||If2 )l — as, f(zi) — bi,
=1 =1
\f* - f™lli — ¢ when m,n — st =10 .)
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Lemma 1. If z; # 0 and a; > 0 the xE; (F* ( “’i" : —zim—)) >4, m=12,...
Proof. Observe that if n > m then

) 2 NP lwilli —em for i€ N. (11)

Indeed, suppose the contrary, i.e., there exists j € N such that fH(z5) < 75 Nl5ll —€m-
Then

1—em <1—en < fR(@) + 3 fP@) < —em+ D IFPN - llaslli €1 —em
i#J ieN
which gives a contradiction.
Let z; # 6 and a; > 0. Put g" = ”f,,“ From (11) we have g (”m I > >1- HFIIEEIVTI‘
and for each large enough positive integer n we have g (“z ”‘) >1- 2|f":|| On the

other hand ||g" — ¢g™|| — & when n,m — oco. These yield xg: (F* (m’ a;ZT:Z:Ii )) =

xe:({g" :n€N}) > 2 o , and the proof of Lemma 1 is complete.

For what follows let us observe that (6) and (10) imply 2 < > c;. From the last
i€Ss
inequality we obtain that there exists j € S5 such that L 5 < Ci where p denotes the

cardinality of the set S5. For this j we derive from Lemma 1 that

P T; 2Em Cj Y
3 llz;ll;" aj - llz;ll 2" 4p

and by taking m — oo we get

Tj =y 2e y
lim XE"‘ (F* (——]‘“,E)) = lim XE‘ (F* ( z ) = )) Z — > 0.
e—0 ;115 m—+00 llzill; " aj - llz;ll; 4p

But this contradicts to the assumption that the spaces E; have the property LNUS and
completes the proof.

Theorem 3. The space co(E:) has property H* if and only if the spaces E; have this
property (i =1,2,...).

Proof. Suppose that E; has property H* for ¢ = 1,2,... Take arbitrary sequence
(f™) = (f7") C L(E7) whichis weakly star convergent to some f (f;) € l1(E}) and such
that 11m l/™|l. = || f]l.. We have to prove that hm Z lf* — filli = 0. Let (g") be an
a.rbltrary subsequence of (f™). By the diagonal procedure we m-ay select a subsequence
(k™) = (h?) of (g") such that

|h}P|li — @i when n — oo. (12)
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Obviously ll)ngo lIA]i1 = || fll» what means
o0 oo
3 n 3 Jum_ . .
lim ;nm = z_;||fz||z. (13)

J 0 -
If we fix j € N we have Y [|h7]li < X2 ||h?|l;, and when n —> oo we get from (12) and
3=1 i=1

Jj 0
(13) that > a; < Y || filli- This implies
=1 1=1

S ai <) lifills (14)
) =

‘On the other hand, because h™ = (h7, ..) converges weakly star to f = (f1, f2,.--) we
infer that (h?) converges weakly star to f, for i=1,2,...which gives || fil|; < hm 1nf 13417

i.e. ||filli € @i The last inequality together with (14) yields [|filli = a: = llm ||h”“z for
i=1,2,...and from the property H" for E; we obtain

J_l_)ngo ”h:" == fi”i =0 for i= 1,2, S (15)

Further, let us fix £ > 0 and take k € N so large that

Z | fill: <

%. (16)
i=k+1
Keepping in mind (15) and (13) we may choose m € N so large that
. €
doIIRE = filli < 5, (17)
i=1

and Z A1l — Z | f:ll: < § for n > m.
The last 1nequd11ty gives

}:(WH A+ 3D Rl 5 < 5.
i=k-+41
Hence, by the inequalities (17) and (16) we obtain
S Unpl< o idl+ thnu, WAl + 5 < %
i=k—+1 i=k+1

+leh" filli +

€
=-5— for n>m,

cﬂlm
Cﬂlm
+
ol m
ol m
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Linking the last inequality, (17) and (16) we derive

o0 k 00
STRR = fills < SO = filli+ Y (AT = 11fills)
i=1 i=1 i=k+1

3e
< = = +
)

M
il ™

=g for n=2m,

which means that (h™) converges to f in the norm of the space Iy (E}). The arbitrariness
of the subsequence (g") implies the same for (f™).

This completes the proof as the converse implication is obvious.
Example. Let us take the spaces I, p; > 1,71 =1,2,... and put § = sup{q; : 1 € N},
where 51{ + al—, = 1. We prove that if § < oo then

Eco(l,p‘.)(E) = (1 - (1 - E)E) # (18)
In the case § = co we show that

-

0 fore =0,
Zeo(ty) (€) = { 1fore € (0,1)]. W)
Proof. In what follows we will use the inequality

(z—) + (zt;ﬁ) < (z@mk)f:) 20)
k=1 k=1 k=1

where 1 < wp < w and sg,tx > 0 for k = 1,2,..., which is a consequence of a reasoning
similar to the proof of Minkowski inequality.

We will also need the following Lemma.

Lemma 2. [5]. Let E be a space with Schauder basis (en) and let R, be the n-
(oo o0
remainder operator Rn( 3 aiei) = 3. wiei
i=1 i=nt1
Denote by ||Ry,|| the norm of the operator Ry. If |Ral| =1 forn=1,2,... then

x(X) = limsup(sup{|| Rnzl| : z € X}) for X CE.

n—*00

(21)

In what follows denote by || - |1 the norm of the space (eolls )™ = b {ls)-
Let f € l1(lg;). We describe f = (f?) = (f}), where f* € l,, f; € R. Denote by e the
natural basis in 15 (ly,), i.e.,

(enr)t = lfori=nandj=%k
nkli = Y0fori #nor j#k.

Further, let h denotes one-to-one mapping between N and N x N.



LOCAL AND UNIFORM NEAR SMOOTHNESS 261

Put
en = €p(n)- (22)
It is easy to check that (ey) is the Schauder basis in I1(I;) and ||R,|| = 1.
We prove now the following Lemma.

Lemma 3. If § < 0o and (e,,) is the basis in l;(ly;) defined in (22) then

IRAFIT + 117 = Ra)FIT < IAUE (23)
for f € l1(lg;) and n € N.
Proof. Fix n € Nand f = (ff) = (f}) € l(lg). Put Jr = {i € N: (ki) €

h({1,2,...,n})}. Applying the inequality (20)f0rsk—(2 If’“l"") —( 3 Ifl“l"k),

i€Jp ieN\Jy

o0
wr = qr, w = G, and keeping in the mind that [|[Rnflls = Y, ( >, |fi’°|q’°), (I —
k=1 iEN\Jk
. [
00 9k 00 o) 'qlf
rofls = (£ 17 ) " ana s = £ (S 15H10) ™ we derive (28), which
k=1 \i€Jx k=1 \i=1
finishes the proof of our lemma.
Now, let u suppose that § < oo. Take § > 0, z = (z%) = (z%) € Seoq,,) and
= (f*) =(F; ) € F*(z,€). Choose ng € N which satisfies max{||zi||i : ¢ > no + 1} < 4.

Further observe that there exists mg € N such that

s \T 5
PO Eitis £ = for i=1,2,...,n0. (24)

j=mo+1

This implies

1

1—6<f(w)<Zf’m)+ Z [Pl Ilm’llz<z (ZIf}I"") :

i=ng+1

(Z I”') +Z( ¥ If}l"*) 4

=1 j=mo+1

I/\

ZO (Z f‘lq) +26 ie.

1—5—2552 (Zujw
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Let us find n, € N such that h({1,2,...,n1}) D {1,...,n0} x{1,...,mo}. This inclusion
and the previous inequality yield

9z

no mo
1-e-20<> | DIF1% ] <N -Ra)fll for n>my.

i=1 \j=1

W =

Hence, in the light of (23) we obtain |R,f|l1 < (1 — (1 —& — 26)7)
and n > n; which by (21) implies

. for f € F*(z,¢)

a -

X1 (tg,) (F* (z,€)) = limsup(sup{||Rnfll : f € F*(z,€)}) < (1 - (1~ ~ 26)7)7.

n—oo

Consequently, in view of the arbitrariness of 6 and z € Sg,(,,) We get Zeo(ty,)(€) <
1-(1- E)E)%’. On the other hand

Seoltp)(€) 2 sup{Zi,, (€) = (1~ (1 - &)%) :i €N} = (1 - (1 - &)D)*

and (18) is proved.
In the case § = oo we derive

1> Sopt,) () 2 sup{Sy,,(€) = (1- (1-€)*)% :ie N} =1,

for € € (0,1]. Because the property NS of space E; is transfered to co(E;) and I, is NS
then co(lp;) is NS i.e. Z¢y(,.)(0) = 0 what gives (19).
This ends the proof.
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