TAMKANG JOURNAL OF MATHEMATICS Volume 27, Number 2, Summer 1996

ON THE NEIGHBOURHOODS OF STRONGLY CONVEX FUNCTIONS

R. PARVATHAM AND MILLICENT PREMABAI

Abstract. In this paper neighbourhoods of strongly convex and strongly starlike function are determined.

1. Introduction

Let H(E) denote the class of all functions f holomorphic in the open unit disc E in \mathbb{C} and A be the class of all functions $f \in H(E)$ with the normalizations f(0) = 0 = f'(0) - 1. Any $f \in A$ has the Taylor's expansion $f(z) = z + a_2 z^2 + \ldots$ in E. The convolution or Hadamard product of $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$ and $g(z) = z + \sum_{k=2}^{\infty} b_k z^k$ is defined as $(f * g)(z) = z + \sum_{k=2}^{\infty} a_k b_k z^k$. Clearly $f(z) = f(z) * f_1(z)$ and $zf'(z) = f(z) * f_2(z)$ where

$$f_1(z) = \frac{z}{1-z}$$
 and $f_2(z) = \frac{z}{(1-z)^2}$

In this paper let us investigate the neighbourhoods of functions which are Strongly Starlike or Strongly Convex. These functions were introduced and discussed by D. A. Brannan and W. E. Kirwan [1] and also by J. Stankiewicz [5] and [6].

Definition 1. A function $f \in A$ is said to be Strongly Starlike of order α , $0 < \alpha \leq 1$ in E if for all $z \in E$, $\left| \arg \frac{zf'(z)}{f(z)} \right| < \frac{\alpha \pi}{2}$. The set of all such functions is denoted by $S^*(\alpha)$.

Clearly $S^*(1) = S^*$ (the class of all starlike functions).

 $f \in S^*(\alpha)$ means that the image of E under $\frac{zf'(z)}{f(z)}$ lies in the region

$$\Omega = \{ z \in \mathbb{C} : |\arg z| < \frac{\alpha \pi}{2}, \ 0 < \alpha \le 1 \}.$$
(1)

Received August 22, 1994.

¹⁹⁹¹ Mathematics Subject Classification. 30C45

Key words and phrases. Stronly starlike, strongly convex function.

Equivalently $\frac{zf'(z)}{f(z)} \neq te^{\pm i\alpha\pi/2}, t \in \mathbb{R}^+$

Definition 2. Any function $f \in A$ is said to be Strongly Convex of order α in E if for all $z \in E$,

$$\left|\arg(1+\frac{zf''(z)}{f'(z)})\right| < \frac{\alpha\pi}{2}, \quad 0 < \alpha \le 1.$$

Let $K(\alpha)$ be the class of all strongly convex functions of order α .

Note. (i) K(1) = K- the class of all convex functions. (ii) $f \in K(\alpha) \iff zf'(z) \in S^*(\alpha)$.

First let us state two lemmas (without proofs) which we need to establish our results in the sequel.

Lemma A.[2] Let $\beta', \tau' \in \mathbb{C}$, $h \in H(E)$ be convex univalent in E with h(0) = 1and $Re(\beta'h(z) + \tau') > 0$, $z \in E$ and let $p(z) = 1 + p_1 z + \cdots \in H(E)$. Then

$$p(z) + \frac{zp'(z)}{\beta p(z) + \tau} \prec h(z) \Longrightarrow p(z) \prec h(z)$$

where the symbol \prec denotes subordination.

Lemma B.[4] If ϕ is a convex univalent function with $\phi(0) = 0 = \phi'(0) - 1$ in the unit disk E and g is starlike univalent in E, then for each analytic function F in E, the image of E under $\frac{(\phi * Fg)(z)}{(\phi * g)(z)}$ is a subset of the convex hull of F(E).

First let us establish an inclusion relation.

Theorem 1. Let $f \in K(\alpha)$. Then $f \in S^*(\alpha)$.

Proof. Let $p(z) = \frac{zf'(z)}{f(z)}$. Then since $f \in K(\alpha)$, $p(z) + \frac{zp'(z)}{p(z)} = 1 + \frac{zf''(z)}{f'(z)} \subset \Omega$, defined in (1). Since Ω is a convex domain, an application of Lemma A gives $\left[\frac{zf'(z)}{f(z)}\right]_{z \in E} = p(z)_{z \in E} \subset \Omega$, which shows that $f \in S^*(\alpha)$.

Definition 3. For $f \in S^*(\alpha)$ define $S^{*'}(\alpha)$ as a class of all functions

$$h(z) = \frac{f_2(z) - te^{\pm i\alpha\pi/2} f_1(z)}{1 - te^{\pm i\alpha\pi/2}};$$

 $t \in \mathbb{R}^+$ where $f_1(z) = \frac{z}{1-z}$ and $f_2(z) = \frac{z}{(1-z)^2}$.

Now let us give a characterization for a function $f \in A$ to be in $S^*(\alpha)$ be means of convolution.

Theorem 2. $f \in S^*(\alpha)$ if and only if $\frac{(f^*H)(z)}{z} \neq 0$, $z \in E$ and for all $H(z) \in S^{*'}(\alpha)$.

104

Proof. First let us assume that $\frac{(f*H)(z)}{z} \neq 0$ for all $H \in S^{*'}(\alpha)$ and $z \in E$. Hence

$$\frac{(f*H)(z)}{z} = \frac{f(z)*\frac{z}{(1-z)^2} - te^{\pm i\alpha\pi/2}f(z)*\frac{z}{1-z}}{z(1-te^{\pm i\alpha\pi/2})}, \quad t \in \mathbb{R}^+ \neq 0.$$

Equivalently $\frac{zf'(z)}{f(z)} + te^{\pm i\alpha\pi/2}$, $t \in \mathbb{R}^+$. As $t \in \mathbb{R}^+$, $te^{\pm i\alpha\pi/2}$ covers the straight line arg $w = \pm \alpha \pi/2$ and $\frac{zf'(z)}{f(z)} = 1$ at z = 0, Hence

$$\frac{zf'(z)}{f(z)} \in \Omega = \left[z \in \mathbb{C} : \left| arg \frac{zf'(z)}{f(z)} \right| < \frac{\alpha \pi}{2} \right] \text{ or } f \in S^*(\alpha).$$

Conversely let $f \in S^*(\alpha)$. Then

$$\frac{zf'(z)}{f(z)} \neq t e^{\pm i\alpha\pi/2}, \ t \in \mathbb{R}^+$$
(2)

Now

$$\frac{(f*H)(z)}{z} = \frac{f(z)*f_2(z) - te^{\pm i\alpha\pi/2}f_1(z)}{z(1 - te^{\pm i\alpha\pi/2})};$$
$$= \frac{\frac{zf'(z)}{f(z)} - te^{\pm i\alpha\pi/2}}{(1 - te^{\pm i\alpha\pi/2})} \Big[\frac{f(z)}{z}\Big].$$

(2) gives $\frac{(f*H)(z)}{z} \neq 0$ in E which completes the proof of the theorem. The notion of δ -neighbourhood was first introduced by St. Ruscheweyh [3].

Definition 4. For $\delta \geq 0$ the δ -neighbourhood of $f(z) = z + \sum_{k=2}^{\infty} a_k z^k \in A$ is defined by

$$N_{\delta}(f) = \left[g(z) = z + \sum_{k=2}^{\infty} b_k z^k : \sum_{k=2}^{\infty} k |a_k - b_k| \le \delta\right].$$

Lemma 1. Let $H(z) = z + \sum_{k=2}^{\infty} h_n z^n \in S^{*'}(\alpha)$. Then

$$|h_n| \le \frac{n}{\sin \frac{\alpha \pi}{2}}$$

Proof. Since $H(z) \in S^{*'}(\alpha)$, we have

$$H(z) = \frac{1}{1 - te^{\pm i\alpha\pi/2}} \left[\frac{z}{(1 - z)^2} - te^{\pm i\alpha\pi/2} \frac{z}{1 - z} \right]$$
$$= z + \sum_{k=2}^{\infty} h_n z^n.$$

Then comparing the coefficients on either sides we get,

$$\begin{aligned} |h_n| &= \left|\frac{n - te^{\pm i\alpha\pi/2}}{1 - te^{\pm i\alpha\pi/2}}\right|. \text{ Hence} \\ |h_n|^2 &= \frac{(n - t\cos(\alpha\pi/2))^2 + t^2\sin^2(\alpha\pi/2)}{(1 - t\cos(\alpha\pi/2))^2 + t^2\sin^2(\alpha\pi/2)}; \\ &= \frac{n^2 - 2nt\cos(\alpha\pi/2) + t^2}{1 - 2t\cos(\alpha\pi/2) + t^2} \\ |h_n|^2 &= 1 + \frac{n^2 - 1 - 2t(n - 1)\cos(\alpha\pi/2)}{1 - 2t\cos(\alpha\pi/2) + t^2} \\ &\leq 1 + \frac{n^2 - 1}{1 - 2t\cos(\alpha\pi/2) + t^2} \quad \text{since } t \ge 0; \\ &\leq \max_t \left[1 + \frac{n^2 - 1}{1 - 2t\cos(\alpha\pi/2) + t^2}\right] \\ &\leq 1 + \frac{n^2 - 1}{\sin^2(\alpha\pi/2)} = \frac{n^2 - \cos^2(\alpha\pi/2)}{\sin^2(\alpha\pi/2)}. \end{aligned}$$

Therefore

$$|h_n| \leq \frac{\sqrt{n^2 - \cos^2(\alpha \pi/2)}}{\sin(\alpha \pi/2)} < \frac{n}{\sin(\alpha \pi/2)}.$$

Lemma 2. For $f \in A$ and for every $\epsilon \in \mathbb{C}$ such that $|\epsilon| < \delta$, if $F_{\epsilon}(z) = \frac{f(z)+\epsilon z}{1+\epsilon} \in S^*(\alpha)$ then for every $H \in S^{*'}(\alpha)$, $\left|\frac{(f*H)(z)}{z}\right| \ge \delta$, $z \in E$.

Proof. Let $F_{\epsilon} \in S^*(\alpha)$. Then by Theorem 2, $\frac{(F_{\epsilon}*H)(z)}{z} \neq 0$, for all $H \in S^{*'}(\alpha)$, $z \in E$. Equivalently

$$\frac{(f*H)(z) + \epsilon z}{(1+\epsilon)z} \neq 0 \quad \text{in } E \text{ or } \quad \frac{(f*H)(z)}{z} \neq -\epsilon$$

which shows that $\left|\frac{(f*H)(z)}{z}\right| \geq \delta$.

Theorem 3. For $f \in A$ and $\epsilon \in \mathbb{C}$, $|\epsilon| < \delta < 1$ assume $F_{\epsilon}(z) \in S^*(\alpha)$. Then $N_{\delta \sin(\alpha \pi/2)}(f) \subset S^*(\alpha)$.

106

Proof. Let $H \in S^{*'}(\alpha)$ and $g(z) = z + \sum_{k=2}^{\infty} b_k z^k$ is in $N_{\delta'}(f)$. Then

$$\left|\frac{(g*H)(z)}{z}\right| = \left|\frac{(f*H)(z)}{z} + \frac{((g-f)*H)(z)}{z}\right|$$
$$\geq \left|\frac{(f*H)(z)}{z}\right| - \left|\frac{(g-f)(z)*H(z)}{z}\right|$$
$$\geq \delta - \left|\sum_{k=2}^{\infty} \frac{(b_k - a_k)h_k z^k}{z}\right| \quad \text{by Lemma 2;}$$

thus

$$\left|\frac{(g*H)(z)}{z}\right| \ge \delta - |z| \sum_{k=2}^{\infty} |h_k| |b_k - a_k|;$$

> $\delta - \frac{1}{\sin(\alpha \pi/2)} \sum_{k=2}^{\infty} |b_k - a_k| k$ by Lemma 1
> $\delta - \frac{\delta'}{\sin(\alpha \pi/2)} = 0$ for $\delta' = \delta \sin(\alpha \pi/2).$

Thus $\frac{(g*H)(z)}{z} \neq 0$ in E for all $H \in S^{*'}(\alpha)$ which means by Theorem 2, $g \in S^{*}(\alpha)$; in otherwords $N_{\delta \sin(\alpha \pi/2)}(f) \subset S^{*}(\alpha)$.

Next let us show that the class $S^*(\alpha)$ is closed under convolution with functions f which are convex univalent in E, that is $(f * g)(z) \in S^*(\alpha)$ whenever $f \in K$ and $g \in S^*(\alpha)$.

Theorem 4. Let $f(z) \in K$, $g(z) \in S^*(\alpha)$. Then $(f * g)(z) \in S^*(\alpha)$.

Proof. Since $g \in S^*(\alpha) \subset S^*$ the class of starlike functions and $f \in K$ and Ω defined by (1) is a convex domain, an application of Lemma B gives

$$\frac{z(f*g)'(z)}{(f*g)(z)} = \frac{f*\left[\frac{zg'(z)}{g(z)}\right]g(z)}{(f*g)(z)}$$
$$\subset \bar{c}_0 \frac{zg'(z)}{g'(z)} = \Omega, \quad z \in E.$$

This shows that $(f * g)(z) \in S^*(\alpha)$.

Theorem 5. If $f \in K(\alpha)$, then $\frac{f(z)+\epsilon z}{1+\epsilon} \in S^*(\alpha)$ for $|\epsilon| < \frac{1}{4}$.

Proof. Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$. Then

$$\frac{f(z) + \epsilon z}{1 + \epsilon} = \frac{z(1 + \epsilon) + \sum_{n=2}^{\infty} a_n z^n}{1 + \epsilon}$$
$$= \frac{f(z) * \left[z(1 + \epsilon) + \sum_{n=2}^{\infty} z^n \right]}{1 + \epsilon}$$
$$= f(z) * \frac{\left[z - \frac{\epsilon}{1 + \epsilon} z^2 \right]}{1 - z} = f(z) * h(z)$$

where $h(z) = \frac{\left[z - \frac{\epsilon}{1+\epsilon}z^2\right]}{1-z}$. Now

$$\frac{zh'(z)}{h(z)} = \frac{\left[z - \frac{2\epsilon}{1+\epsilon}z^2\right]}{\left[z - \frac{\epsilon}{1+\epsilon}z^2\right]} + \frac{z}{1-z} = \frac{-\rho z}{1-\rho z} + \frac{1}{1-z},$$

where $\rho = \frac{\epsilon}{1+\epsilon}$. Hence $|\rho| < \frac{\epsilon}{1-|\epsilon|} < \frac{1}{3}$ gives $|\epsilon| < \frac{1}{4}$. Thus $Re\left[\frac{zh'(z)}{h(z)}\right] \ge \frac{1-2|\rho|}{(1-|\rho||z|)(1+|z|)} > 0$ if $|\rho| < |z|^2 + 2|z|) - 1 < 0$. This inequality holds for all $\rho < 1/3$. and |z| < 1, which is true for $|\epsilon| < 1/4$. Therefore *h* is starlike in the unit disk and so $\int_0^z \frac{h(t)}{t} dt$ is convex.

But $h(z) * \log[\frac{1}{1-z}] = \int_0^z \frac{h(t)}{t} dt$ and so $h(z) * \log[\frac{1}{1-z}]$ is convex in E and

$$(f * h)(z) = (h * f)(z) = h(z) * \left[zf'(z) * \log\left[\frac{1}{1-z}\right] \right]$$
$$= zf'(z) * \left[(h(z) * \log\left[\frac{1}{1-z}\right] \right]$$

$$\begin{split} f(z) &\in K(\alpha) \implies zf'(z) \in S^*(\alpha) \text{ and } h(z) * \log\left[\frac{1}{1-z}\right] \right] \in K. \text{ Now by Theorem 4} \\ h(z) * \left[zf'(z) * \log\left[\frac{1}{1-z}\right]\right] \text{ is in } S^*(\alpha). \text{ Thus } (f*h)(z) = \frac{f(z)+\epsilon z}{1+\epsilon} \in S^*(\alpha) \text{ for } |\epsilon| < 1/4. \end{split}$$

Theorem 6. Let $f \in K(\alpha)$. Then $N_{1/4 \sin(\alpha \pi/2)}(f) \subset S^*(\alpha)$.

Proof. Let $f \in K(\alpha)$. Then from Theorem 5 we have $\frac{f(z)+\epsilon}{1+\epsilon} \in S^*(\alpha)$ for $|\epsilon| < 1/4$. Then an application of Theorem 3 gives $N_{1/4 - \sin(\alpha \pi/2)}(f) \subset S^*(\alpha)$.

When $\alpha = 1$ we get a result of St. Ruscheweyh [3] as a special case.

Refercence

- D. A. Brannan and W. E. Kirwan, "On some classes of bounded univalent functions," J. London Math. Soc. 1(2)(1969), 431-443.
- [2] P. Eenigenburg, S. S. Miller, P. T. Mocanu and M. O. Reade, "On a Briot-Bouquet Differential Subordination," *General Inequalities* 3, Birkhauser Verlag-Basel, 339-348.

108

- [3] St. Ruscheweyh, "Neighbourhoods of univalent functions," Proc. Amer. Math. Soc., 81(1981), 521-527.
- [4] St. Ruscheweyh and T. Sheil-Small, "Hadamard Products of Schilicht functions and the Polya-Schoenberg Conjecture," Comment. Math. Helvi, 48(1973), 119-135.
- [5] J. Stankiewicz, "Quelques problems extremanx dans des classes de functions α-angulairement etoilees," Ann. Univ. M. Curie-Sklodowska, Section A, 20(1966), 59-75.
- [6] J. Stankiewicz, "Some remarks concerning Starlike functions," Bull. Acad. Polon. Sci. Ser. Sci. Math., 18(1970), 143-146.

Ramanujan Institute, University of Madras, Madras-600 005, India.

Anna Adarsh College, (Affiliated to the University of Madras), Anna Nagar, Madras-600 040, India.