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ON THE EXTENSOIN OF BERNOULLI, EULER
AND EULERIAN POLYNOMIALS

S. N. SINGH AND S. S. MISHRA

Abstract. Here an attempt has been made to extend the Bernoulli, Euler and
Eulerian polynomials in multiplication theorem and finite difference formula have

been established.

1. Introduction

The study of Bernoulli, Euler and Eulerian polynomials has contributed much to our
knowledge of the theory of numbers. These polynomials are of basic importance in several
parts of Analysis and Calculus of Finite Differences and have application in various fields
such as Statistics, Numerical Analysis etc. In recent years, the Eulerian numbers and
Certain generalizations have been encountered in a number of Combinatorial problems
(vide (1), (3), (4), (5), (6) for example). Of late, Singh and Rai (7) studied the extended
polynomial set B(n, h, a, k, z). This polynomial set was subjected to further investigation
and Singh and Rai (8) succeeded in presenting novel two-variable extension of the same.
A study of above polynomial set motivated us for consideration of following multi-variate
extension (3.1) of the Bernoulli, Euler and Eulerian Polynomials and numbers as well as
in the unified form from the point of view just described.

2. Preliminary Results

In 1964, Carlitz [2] extended the Bernoulli, Euler and Eulerian numbers and corre-
sponding polynomials as

logG(s) = B(n) ,
g(S)—l—Z = (2.1)

n=1
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(G(s))* log G(s) ﬁ(n z)
T e -1 Z (22)
1-X &= H(n))
OB} _n§=1 ——  A#1 (2.3)
(1-XG(s)* _ Z°° H(n,\, z)"
g(S) - /\ _n:I n? , /\ # ' (24)

When 8(n), B(n, z), H(n,\) and H(n, A, z) are the extended Bernoulli and Eulerian
numbers as well as corresponding polynomials. In the same paper, Carlitz considered
a slightly more general situation, namely, the polynomials 3(n,h,z) and H(n,h, A, 2)
generated by

h(G(s))"* log G(s [;’(n h, 2)
(S - 1) Z | (%:5)
and,
(A_ 1)(9(‘9))’” _ - H(Tb,h, A,Z)
TEOP N T e AFOARI (26)

It may be of interest to note that
é(n,h,z)=H(n,h,-1,2) (2.7)

where €(n, h, z) are extended Eulerian polynomials defined as

Goren =S 28
It is familar that the formula
= Zf(d), (n=1.2,3,...) (2.9)
d/n
f(n) = ; u(c)g(d), (n=1,2,3...) (2.10)

where p(n) is Mobius function, are equivalent. If in (2.9) and (2.10), we take n =
p1P2 . . . pr where p, are distinct primes, it is easily verified that (2.9) and (2.10) reduce

to
i r
U= f;i (r=0,1,2..) (2.11)
>(;)
. =Z(~1)f-i(§)gj; (r=0,1,2,..) (2.12)

=0
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respectively, where, for brevity, we put

fr = f(p1pap3---pr), gr = (p1P2p3 - Dr)

The equivalence of (2.11) and (2.12) is, of course, well known. The fact that the
second equivalence is implied by first is perhaps not quite so familiar. It should be
emphasized that f(n) and g(n) are arbitrary arithmetic functions subject only to (2.9)
or equivalently (2.10), similar remark applies to f, and g,.

Given a sequence

fr (r=0,1,2,..) (2.13)
we define an extended sequence
f(n), (n=0,1,2,...) (2.14)
such that
f(pip2ps,---pr) = fr, where p; are distinct prime; (2.15)

Clearly, the extended sequence (2.14) is not uniquely determined by means of (2.15). If
the sequence g, is related to f. by means of (2.11), the sequence g(n) defined by means
of (2.9) furnishes an extension of the sequence g,.

If we associate with the sequence f, the (formal) power series
oC t.,.
F=) f5 (2.16)
=0

then (2.11) is equivalent to

tT
!

o
Gy = €e'F;, where G(t) = Zgr
r=0

We associate with the sequence f(n) the (formal) Dirichlet series

F(s)=Y_ £ﬁ (2.18)
n=1
Then (2.9) is equivalent to
G(S) = G(s)F(s) (2.19)

where

Go=y2  gg=31
n=1

n=1
It is well known that generating functions play an important role in the study of
various useful properties of the polynomial sets which they generate. More systematic
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attacks have been made in this direction by Srivastava and Manocha [9]. The generating

function concept led to the study of the following general class of polynomials.

3. Extended Polynomial Set

We define the polynomial set P(n,h1,hs, ..., e, 01,02, .. ,0k, M, 1,02, .., ik, Z1,
Za,...,7x) by the following generating relation.

mz(% IOg g(s))tl (%LZ IOg g(s))iz T (’_7'"1: lOg g(s))ik % (g(s))h1xl+h2x2+“~+hk1k

(G = an)((G(s)P —az) - (GGEN™ — ax)

- i P(Tb,hl,hz,. ..,hk,al,ag, s ® .ak,m,il,ig,. ..,ik,xlxg,...xk) (3 1)
n=1 n?
Where aj,as,...,a,, m are non-zero real numbers, i;,%2,...,% are non-negative
integers and (R, ha, ..., ) # 0 and G(s) = Sooe; =
We, now, notice following conditions
l.iz=tg4=...56n=0
2. h3 = h4 = hk =1 (Since, hl,hz‘...,hk :/—‘ 0)
3. a3=a4=...ar =0 and
4. under the stated conditions, G(s) = 1, only when G(1) =1,n=1.
If we apply above substitutions to the polynomial set P(n, h1, ko, ..., hk, a1, 02,. . . ak,
m, 41,92, .-, 4k, T1,T2,- .., Tx) this polynomial set reduces to polynomial set P(n,h,k,a,

b,m,i,j,z, y) defined by Singh and Rai [8]. Here, it is interesting to note that all the
properties established for the polynomial set given by Singh and Rai [8] will spontaneously
hold good for (3.1). In addition to these properties, some striking new properties will be
set up. Categorically speaking, there will appear a plenty of properties in comparison to
earlier.

The two-fold advantages of this may be explained: firstly, it is a generalized polyno-
mial set in the sense that it unifies Bernoulli, Euler and Eulerian polynomials which, in
turn, are obtainable from it on specializing various parameters involved therein; secondly,
some striking new properties of these polynomials follow as direct consequences of itself.

We state the following relationships between our polynomial set and other polyno-
mials
1. Extended Bernoulli Polynomials

Taking

we arrive at

P(’n,hl,hg,hg,...,hk,l.l,...,1,1,...,1,IE1,I2,...,:l?k)
:B(nshltha"-7hk;$17I27'-‘3$k) (32)
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(I1) Extended Bernoulli numbers

a1=a2=...=ak:m:i1:izz"'=’ik:1&nd$1:$2:"'=ﬂ?k:0
Substituting, we get

(n,hl,hz.}hz,...,hk,l,...,1;1,...,1,0,0,...)

=B(n,h1,h2,...,hk) (33)
(III) Extended Euler polynomials
whena; =as=---=ar=—1lji1 =12 =--- =% =0and m =2
we are led to
P(n,hl,hz,hQ,...,hk,——l,—l,...,—l.Z,O,...,O,:vl,acg,...a:k}
=e(n,hi,ha,. ... he; T1, T2, .. . Tk) {3.4)
(IV) Extended Euler numbers
Putting
ay :a2=~~-=ak=—1,i1=i2:...z’k:0
m=2 and z;=20=---=2,=0
we get .
Pl iy b, oo oligs 1, =L o — 1, 2,0y s 5 0405 o, 0) ;
:e(n,hl,hz,...,hk) (35)

(V) Extended Eulerian polynomials
Yet another interesting special case of the polynomial set would occur when we let

i17=%3=...=4,=0 and m=1. Thus we obtain
P(n,hl,hg,hg.‘.,hk,al,ag,...,a;c,l,(),...,0,$1,x2,...,$k)
1 .
= H(n,hi,ha,....hg, 01,02, .. .,0k,Z1,T2,...,1
A a)x(—a2) - (A=ar) (n, h1, he k> @1,02, .- -k, T1, T2, Tk)
(3.6)
(VI) Extended Eulerian numbers
Letting
t1=13=...=1,=0 and m=1 and 1 =%2 =...2¢¢ =0, we have
P(n,hl,hg,...,hk,al,aQ,...,ak,l,O,...,O,O,O,O,...,O)
1
= ><H(n,hl,hg,...,hk‘al,ag,.‘.,ak) (37)

(1-a1)(1—az) - (1—ax)
the above extended Bernoulli, Euler and Eulerian polynomials and their corresponding
numbers are due to Carlitz [2]. ,

In the present paper, we obtain numerous properties of the polynomials and num-
bers defined above. These properties are of an algebraic nature and for the most parts
are generalizations of the corresponding properties of the Bernoulli, Euler and Eulerian
polynomials and numbers.
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4. Addition Theorems

Zz(il +i2+--'+ik)

4.1)
m2 (

X E P(c,hl,hg,.,.,hk,al,aQ,...,ak,m,il,z’r_;,...,ik,2z1,2z2,...,2xk)

cd=n

X § P(d~h17h2$"'shk\_als—a'2)~-'vakvmaileizs'--vik72y1a2y21~-'52yk)
cd=n

:P(n,2h1,2h2,..‘,2h,k,af,a,%,...,ai,2i2,...,2ik,z1 +v1.22 +Y2,...,Tk +yk)

Proof. Since

m*(% log G(s))" (22 log G(s))™ - - - (2% log G(s) )™

((G(s)Pt — a1)((G(s))*2 — az) - ((G(s))"* — ax)
y m? (2 log G(s))" (22 1og G(s))™2 - - - (2 log G(s))*
((G(s)M + a1)((G(8))h2 + az) - - - ((G(s)* + ax)
,m* (B log G(s))* (22 1og G(5))?* - - - (2 log 9(8))2”

((G(8))?h — a?)((G(s))?h2 — a2)--- ((G(s))2h+ —

In the light of (3.1), after little simplification, we get

((g(s))2h1 z1+2haza2+ - +2hpx),

((g(s))2h’lyl +2h2y2+-+2hpy

(g(s))Zhl (z1+ya)+-+2hi(zr+yr)

E P(c,hl,hg,...,hk,al,ag,...,ak,m,il,iz,...,ik,2m1,2x2,...2:vk)

n=1

=)
X ZP(d,hl,hg,...hk,—al,—ag,.,.,—ak,m,il,z’Q,...,ik,2y1,2y2,...,2yk)
n=1

m2

2241 +2i0 4 +21p

ZP(C,2h1,2h2,...,th,af,ag,...,ai,2i1,2i2,...,2ik,a:1 +Y1,T2 +Y2,..., Tk +yk)

n=1

whcih completes the proof.

22(11+12+ ‘1)
E P(c,hq,ho,.. ,hk,al,az,...,ak,m,zl,m,...,zk,2x1,2x2,...,2xk)
cd=n

X Z P(dﬁhlthM-'wh’ksa'lvaZa"'7mvi11i2$"',ikiylvy2v'--ayk—1$0)

cd=n

=P(n,2hy,2ha, ..., 2hk,a},a}, ... a2, 201, 2, ..., 2, T1 41, Ta+Y2, ..., Tk +0)  (4.2)

Proof is similar to the proof of (4.1)
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5. Multiplication Theorems

p1—1p2—1 pr—1

)IDIERP I

71=0 r2=0 =0

X P(n’h‘lnulv"

k
ay'ay’ ...

.. . T1 Tk
K1 &
.,h,k,,uk,al ,...,O,Z ,m,tl,’bg,...,lk,.’lfl+-———,...,£L‘k+~——)
551
"'k
Hz )
H1— 1 p2—1 ;u,-—-l
a’l ) O

X P(nvhlah21'- '7h'k»alza21'"sak\m1i17i21'"7ik’l“'1x17u2z2""7“}6:1;)(2) (51)

where and throughout this investigation, p1, 2, - - -, ftx are positive integers.

Proof. By virtue of generating relation (3.1), we have
2 P(n,hy,ha,... ki a1,02,...,6k,m, 41,12, - ..
)3 pr

n=1

=m2(%1ogg(3))“(%flog g(s))‘i2 (—Llogg(s)) (g( ))h1u1x1+h2u2uzz2+ FhrprTr
((G(s)r — a1)((G(s))"2 — az) - ((9(s))™ — ax)

Jiky B1Z1, P22, - - 5 METk)

_ gt el m2(8 1og G(5))" (22 log G(s))™ . . . (2 log G(s))™
S ((G(s))rr#r —af™) - ((G(s))Per — ar*)
3 e S i

T
.

r1=0 r.=0

gt gt M4 log ()" (32 1og G(s))" .. (34 log O(s))*
1 % ) (@) — o) - ((G(s))P e — af)

st pr—1 B
X Z (g( ))($1+—L)“1h1 L. Z (g(s))($k+;‘b)l‘khk
r1=0

ri. =0
By an appeal to (3.1), the result would follow immediatedly.
Theorem 5.2.

p1—1 pr—1

[N R s I E: E:
a; ag ay Dy Py "'1P1 ‘rzm_ TiPk
a; "Gy Ty
r1=0 7. =0
; . . X3 T1D1 Ty | TkDk
K1 B
x P(n,hyp1, ... hepe,af™, .. .ap* ,m,iy, . tk, — + —— — +

sy
231 231 1223 Pk
p1—1 pr—1 1
01,02 ix ,P1 P2 PL
=y He - Hy Gy A7 E : E : #161 e
e1=0 eL—O
] . . ZT1, € Tk ELlk
P P
x P(n,prhi, ..., pche,al’, ... ak%,m,41,. .., 0k, — + R )
Y41 Y41 Pk Pk
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proof is similar to the proof of (5.1)

6. Finite Difference Formula

Norlund’s operator is defined by the relation

Uz +w) - U(z)

w

AU(z) =
w
This symbol has the advantage that
d
Lim AU(z) = DU(z),D = —
w— 0w

The definition of the operator V is given
w

VU(2) = 2[U(s) + Uz + w)]
w 2

(6.1)

(6.2)

If w = 1, it is convenient to write A instead of A and V instead \7 Again, consider

f(z,y), where z and y are regarded as mdependent variables. We then define partial

difference quotients with respect to X and Y by

and
I%f(fc, y) = [f(z,y +h) — f(z,9)]/h

These symbols have the advantage that

Lim A f(@,y) = D.f(@,9)

and
Lim Af(a: y) = Dy f(z,y)
Likewise 1
Vymf(x,y) = 5lf(@,y) + f(z +w,y)]
and

Y (,0) = 3((5,9) + fl,y + b

Similarly, the above operators can be defined for multivariate function f(zq,zo,...

as under

WAml flzr, 2o, xx) = [f(z1 + w1, 22, ..., 2%) — fz1, 22, ..., 2k)] /W1

(6.3)

(6.4)
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Az f(xlaa:Z»' oo 7zk) :[f(x17$2 +'LU2,$3, oo '7$k) - f(x17m2>' 2:l® ,.'L'k)]]./WQ (68)
W]

and similarly

W‘Amk flzr,m2, . ze) = [f(z1, 22, 2k +wi) — f(z1, %2, -, 2k)]/ Wk (6.9)

These symbols have advantage that
Lim A f(z1,%2,...,%k) = D, f(z1,%2,...,7k)
Wy —0 W;’Z

Lim A f(z1,%2,...,%k) = Dy, F1; T3 ¢ 1 Bi)
Wz—vOWZ"Z

and
Lim A f(21,%2,....2k) = D., f(z1,22,...,%k)
W —0 VVZ"»‘

As above, we can define the V for f(z1,z2,...,2k)

1
WYI f(@1, g, 2k) = 5[]‘(151,732,-.-,%) + f(z1 + w1, 22,23, . -, Tk)) (6.10)
1

1
sz flz1,%2,...,%k) = 5[f($1y$2~~-,$l) + f(z1, 32 + w2, 23, ..., Tk)] (6.11)
2
Similarly,

1
A flz1,z2,....28) = i[f(xl,zz,...,a:k) + f(z1,22, ..., %k + wi)].
Wik

operating on (3.1) with A,, we find that

o0 . . 5
ZA P(n»h11h2)'~'7hk3al,-'-1ak\mazly7'2a-~-1Zlax17x27""xk)
z
s
n=1 i

mZ(%L log G(s))™* (22 1og G(s)) .. (% log G(s))*
((G(s)™M —a1)((G(s))? —az ... ((G(s)™ — ax)
—mz(%nl logg(s))il(%log g(s))iz e (%nL log g(s))ik % (g(s))h111+h212+~.+hkmk
TGP — a)((G(s)F2 — az) -~ ((G(s))™* — ax)
_(Gls)" — ym? (B log G(s))* .. (Gt log G(s)™ ho st ey
GG = a0 = aa) (G —apy * (GEN T

In view of (3.1) and the definition of 7-(n) in [2], the above expression immediately yields

X ((g(s))hl$1+h2$2+“'+hk1k (g(s)hl

Azlp(n’hlvh'Zv'",hkaala"'7a27'--,ak>m1ilai27'"7ikyx11x21~--a$k)

= E Th1(C)P(d>h1yh27"':hkaalaa’2v"'aakvmvilaiZV" 1ik7$13x2)~"a$k)
cd=n

P(n,hl,hg,...,hk,al,ag,...,ak,m,il,ig,...,z’k,ml,xg,...,xk)
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Similarly, operting on (3.1) with A,, we intuitively obtain

AIkP(n7h17h'21"-1hk7alaa'2a'"vak!m!ilgizsu'vikaxl’:v?v"'axk)

= E Thk(C)P(d,hl,hg,...,hk,al,a2,...,ak,m,il,ig,...,ik,xl,.’bg,...,.’ltk)
cd=n

_P(nahl»h2a'--shkaa'l»GZ)‘"7ak)m)i17i27'"vikvxleZ""xk)

Furthermore, operating V,, on the generating relation (3.1) we have

o0 3 3 .

. P(n,hy,hs,...,h,01,a2,...0k,m,81,82,...,4k, %1, T2, ... Tk)
Z #1 ns
n=1

%(g(s)hk + 1)m2(% logG(s))il (% log g(s))ik
(G0N = an)((G(s)) = az) -~ ((G)(s))™ — ax)

=3 ()
n=1

oo . . F
x Z P(nsh’lah2,-"1hk1a1""7a‘k1m72111‘21"'12k1x17x21"'axk)
ns

X ((g(s))h‘lm1+h21’2+'“+hkxk

n=1
In the light of generatin relation (3.1) and Carlitz [2]. Finally, we arrive at
Vg P (0 Ry By o o oy Byl s 5 5065 M5 815885 - 558 B3 T « s 0 TR )

1 - :
=-2— E Thl(c)P(d,hl,hz,...,hk,al,az,.‘.,ak,m,zl,zg,...,zk,zl,xz,...,mk)
cd=n

1 . .
=+ §P(n1hlah27'-‘shkaalx‘--»aksmazly"'?a---)Zkazlam21"'1xlc)

Now finally we obtain the expression for V,, P which is similar to the expression VP
by operating V;, on the generating relation (3.1) as

VIkP(n,hl,hz,...,hk,al,...,ak,m,il,iz,...,ik,xl,xg,...,zk)
1 . .
=3 g Thy () P(d, hy, ha,y ... he, 01,02, .. 4k, m, 31,82, . .. ik, T1, B2, .. ., Tk)
cd=n
1 : & :
+ EP(nshlvhﬁv'-'-hkvala'-~aakamvzl»IZ!'"17‘k7z1yx2)"-yl"k)
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