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ON INTERNAL GRAVITY WAVES

TIEN-YU SUN AND KAI-HUI CHEN

Abstract. We are concerned with the steady wave motions in a 2-fluid system with constant
densities. This is a free boundary problem in which the lighter fluid is bounded above by a
free surface and is separated from the heavier i.id down below by an interface. By using a
contractive mapping principle type argument. a constructive proof to the existence of some of

these exact periodic internal gravity waves is pruvided.

1. Introduction

In this paper, we consider the steady wave motion of a 2-fluid system of immiscible,
inviscid, incompressible fluids with constant densities. Suppose that the lighter fluid on
the top is bounded above by a free surface and is separated from the heavier one down
below by an interface. For simplicity’s sake, we will assume that the bottom layer is of
infinite depth. The problem is to determine the velocity fields of both layers, the free
“surface on the top and the interface between the two layers of fluids.

Up till now, research on the steady wave motion of an infinite ocean consisting of just
one fluid of constant density has been more fruitful. See Chapter 12 of [7] and also [1]
for the existence proof of the two-dimensional exact steady water waves. Existence of
exact two-dimensional steady water waves resulting from localized pressure disturbances
on the free surface is also established in [1]. See [8] for corresponding results on three-
dimensional exact steady water waves. When the surface tension effect is taken into
account on the free surface, the situation becomes more complicated. For Froude number
close to 1, we may have two different kinds of two-dimensional exact periodic water
waves. See [1] for the details. The resonance of these two kinds of periodic water waves,
so-called the Wilton’s ripples, were discussed in detail in [3]. The existence problem
of these Wilton’s ripples were tormulated and solved by Reeder and Shinbrot in 1981;
see [4] and [5]. Similar results for internal gravity waves are lacking. From Art. 231 in
[2], we see that density stratification can also produce different kinds of lineax periodic
waves. It is the purpose of this paper to look at the linear periodic internal gravity waves
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more closely and analyze when are these linear waves in resonance. On this basis, we
start an investigation on the existence of two-dimensional exact internal gravity waves.
We start by assuming that the internal gravity waves sought are small perturbation of
the uniform horizontal flows. Next, we use the interior equations and the streamline
conditions to form two nonlinear elliptic problems. By solving these boundary value
problems, we are able to express the correction terms to the horizontal flow as functions
of the surface elevations of the free surface on the top and the interface separating the
two fluids. Consequently, we can solve the Bernoulli equations on the free surface and
on the interface as a nonlinear system for the surface elevations.

In Section 2, the governing equations for the periodic internal gravity waves sought
are formulated. Linear approximations to the periodic internal gravity waves are derived
in Section 3. Parameters corresponding to when these linear waves become resonanant
are determined in Section 3 also. In Section 4, we introduce the function spaces used in
the construction of the exact internal gravity waves and two auxiliary elliptic problems
are solved. Finally in Section 5, by assuming that the internal gravity waves considered
are not in resonnance, we provide a constructive proof of the existence of the exact
internal gravity waves by using a contraction mapping principle type argument.

2. Formulation of the problem

In what follows, we assume that the coordinate system (X,Y") is chosen so that the
progressive internal waves sought appear steady, with the Y direction pointing upward.
Let Y = 51(X) and Y = S»(X) be the free surface and the interface which separates the
two fluids. Let (U, V1) and (Uy, V) be the velocity fields in the top and bottom layers.
The problem is to solve the system of equations

Uix+Wiy =0, forS(X)<Y <8, (X), (2.1)
Uy —Vix =0, (2.2)
Usx +Vay =0, for —oo <Y < S5(X), (2.3)
Uy —Vax =0, (2.4)
-8 xU; =0, onY =5(X), (2.5)
Vi—=SxU; =0, on¥ = Sy(X), fori=1,2, (2.6)
Vo230, asy — —00, (2.7)

1
951+§(U12+V12) =(C;, onY =5(X), (2.8)

9 (2= p1) S2 + 22057 + 32

AU+ u =0, on Y =S5(X). (2.9)

2

Here p; and ps are the densities of the top and bottom layers; p; < py. Equations (2.1)
- (2.4) correspond to the assumption that the motion in each layer is incompressible
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and irrotational. (2.5) and (2.6) are the streamline conditions on the free surface and
on the interface. (2.7) is saying that the flow sought is horizontal at infinity; (2.8) and
(2.9) are Bernoulli’s conditions on the free surface and on the interface. The constant
g represents the gravitational acceleration. From now on, quantities with index 1 refer
to the top layer; whereas quantities with index 2 refer to the bottom layer. Note that a
trivial solution of above system is the horizontal flow with

(Ui:‘/i) = (U():O)a (210}
Gi{Xy=h SlX)i=0
where Uy and h are two positive constants.

Since the internal wave motion considered is incompressible and irrotational in each
layer, we can introduce stream function ¥, 12 such that

(Y1, v, =91, x) = (U1, W),
(o, v, —ta, x ) = (U2, Va).
Then (2.1) — (2.4) lead to

Y1, xx +¥1,vy =0, for $3(X) <Y < 51(X), (2.11)
Yo, xx +¥2,yy =0, for —oo< Y < 55(%). (2.12)

Now the streamline conditions (2.5) and (2.6) are equivalent to ¥ and ¢, being constant
on the free surface and on the interface, and 1; = 12 on the interface. Choose ; and
12 so that

1!)1 = Uo h, onY = S]_(X), (213)
P =1 =0, onY = 85(X),
Y2, x » 0 asy = —oo.

In what follows, we will apply the coordinate transformation

(X,Y) a4 (X:’lﬁz(XaY)),

in each layer. We will assume that the horizontal velocity v; v in each layer is positive.
Under above transformations, the top and bottom layers are mapped into the horizontal
strips

{(X,¢1) : 0 <9y <Ugh}, {(X,%2) : —o0 <9 <0}

Let f; be the streamline functions such that

Y = fi(X, ¥1(X, Y)), for S2(X) <Y < S1(X), (2.14)
YZfQ(X, 'I,DQ(X, Y)), for —DO<Y<SQ,(X).
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Let

Y =1, for 53(X) <Y <8 (X),
=1y, for —OO<Y<82()().

In what follows, we will use (X, 9) as our new independent variables. As a result, (2.1)
- (2.9) are transformed into

A+ (f,x)°) fr.xx = 2f1,x frow fixe + (Fr,v) froow = 0, (2.15)
for 0 < ¥ < Uyh,
(14 (f2.x)%) fo.xx = 2f2.% fa.v Faxw + (f2.9)? fo.ww = 0, (2.16)
for —cc <y <0,
f1(X, Ugh) = S:1(z), (2.17)
fl(X: O) = fZ(Xa O) = SZ(X)a (218)
fo,x(X,¥) =0 asy — —c0(2.19)
Lil+{fhxlPY
951 + 5 (W) = L, (220)
on w = Ugh,
1 1 1+(f2,x)2) P (1+(f1.x)2) _ 5 91
(1 P) 9S> + 5 ( (f2,w)2 o 5 -_—H'(fLu))z i = (o, (2.21)

ony = 0.

Here, in (2.21), p = p1/p2; 0 < p < 1. In (2.20) and (2.21), C; and Cy are two fixed
constants.

In terms of the streamline functions, the uniform horizontal flow defined in (2.10) can
be rewritten as

filX,¥) =¢/Uy, fori=1,2, (2.22)
S1(X)=h, So(X)=0.

Assume that the exact internal waves sought are small perturbations of the above uniform
horizontal flow. For this reason, we consider the following change of corrdinates and
variables

t=X/h, &=1/Ush, (2.23)
fi = h( +ew; (2,£)), fori=1,2, .
Sy =h(l+en(z)), S2=ep(z).

Now the top and bottom layers of fluid occupy the horizontal strips

O ={(2,6) :0<&<1}and Qy = {(z,¢) : ~po < £< 0}
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And equations (2.15) - (2.21) are transformed into

(]. + ezwi,xz) Wi ge — 26W; & (1 + E’wi'g) Wi, e (2.24)
+ (1+ew; ¢)® Wize =0, inQy, fori=1,2,
w =i oméE=l, (225)
wy =ws =12, oné=0, (2.26)
wy, z —+ 0, as €& — —oo, (2.27)
i —2wy ¢ + €wy, 57 — ewy, g2
= =1, 2.28
g 2 [ (1+6’U)1 5)2 0, ong ( )
Y [ 2wz ¢ +€ws o® — ewsy ¢
(1-=pms + = [ (2.29)
2 (1+E'LU2 5)2 £=0—
-2 22 = 2
ﬂ[ wi, ¢+ ewy, €W, ¢ ~0, oné=0.
2 (1+E’HJ}_,E) £=0+

Here -y is the Froude number U{)Q /gh. In particular, when € = 0, we obtain the linearized
system

Wi gz + Wi gg = 0, inf, fori=1,2, (230)

wio=m onag = L (2.31)

wy =wy =19, onéf=0, (2.32)

we . — 0, asf — —oo, (2.33)

m—yw,e =0, oné&=1, (2.34)

(1=p)m2 —7[w2,ele=0- + py[w1,elg=0+ =0, ong&=0. (2.35)

3. Linearized internal gravity waves

In this section, we solve linear system (2.30) - (2.35) for linearized internal waves

with n; of the form
+oc

= > Mme™2, fori=1,2 (3.1)
m=—0o0
We will assume that the linearized internal waves sought have surface elevations ni(z)
being even functions of z; i. e., in (3.1), gy = Mi(—m), for all integer m. The wave
number k is yet to be determined.
Assume that, for i = 1,2, w; can be expressed as

+oo

wilz, §) = ) wim(§) e (3.2)

m=—oc
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For each integer m, (2.30) - (2.33) lead to

Wi = WP Wm0k E<],
Wim = T m; 0I1€:1,

W1,m = N2m, ong=0,

and
wh, . =m?kwy,, —-c0<E<0,
Wa2m = MN2m, 0n£=0,
wem —+ 0, as €& — —co.
Here ' represents derivative with respect to €. We obtain
_ Mm —T2m coshmk . <
W1m = N2m cOShmkE + : sinh mk¢, (3.3)
sinh mk
Wam = MN2m elmf kE: (34)
for m # 0, and
wio = N20 + (Mo — N20) &,
W20 = 720- (3.5)

Note that we have w;m = w;(_m) for each integer m; that is to say, w;(z, £) are also
even functions of the x variable. Substitute (3.3),(3.4) into (2.34) and (2.35). We obtain
linear system

(1 — ymk cothmk) m , — ymksinhmk (1 — coth® mk) nam = 0,

pymk ‘
Ll — A — k — — _
5 : Mmm —[(1=p) —ym pymk cothmk] g = 0, (3.6)

for each integer m > 0. When m = 0, we have
(1=9)mo+7n20 =0,
pYmo— (1 —p—py)neo =0. (50

Because of the symmetries in the z direction, it suffices to consider those linear systems
corresponding to m > 0.
Note that linear system (3.7) has determinant dy given by

do=(1-p)—1.

From now on, we will assume that the internal gravity waves sought have Froude number

v # (1-p). (3.8)
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As aresult, linear system (3.7) has solution (n10, 720) = (0,0). Next, for integer m > 0,
linear system (3.6) has determinant d,, given by

dm = (1 =~vymk) (1 —p(1+ymk) —ymkcothmk). (3.9)

In order to determine the coefficients 1y, 92 m, it is customary in classical literaure to
have the wave number k chosen so that the determinants d; = 0 and d,,, # 1, for all
integer n. > 0. This causes 7y, = nam = 0 for all integer | m |> 1. The coefficients
M1 +1 and 72, +1 are then determined by imposing an appropriate normalization. For this
reasorn, besides system (2.15) - (2.21), we will impose an additional normalization

Ugh &5 |
/ / e "L fi(X, ¢)dX dy = eC”. (3.10)
0 -L
Here 2L is the wavelength of the internal gravity wave considered; C* is some fixed

constant. This is equivalent to, in terms of the (z,£) coordinates,

2nUh?
k

fl T.Uu(é-) d& =eC”. (311)
0

For convenience’s sake, we choose

o — 27Ugh? (cosik — 1) [1 "

vk cosh k — sinh k
o sinh k '

vk

Consequently, we have

vk cosh k — sinh k
vk '

mi =1, nma =

Now let b(r) be the function
b(r) = (1=v7)(1=—p(l+77) — 7 cotht). (3.12)
It is easy to see that b(7) = 0 if and only if 7 satisfies v = 1/7, or

N
1= pT -+ T cothr
(1 - p) tanht

- T(l+ ptanh7)’ (3.13)

It 1s not hard to find out that the function

(1 - p) tanhr
7(1+ p tanh7)’

T > 0,

is decreasing in 7 when 0 < p < 1, with

(1 —p) tanhr
7(1 + p tanh )

—+(1-p), asT7—=0+.
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When v > 1 — p, (3.13) can not hold. As a result, equation b(7) = 0 has only one root;
namely, ks = 1/v. Thus, for a fixed density ratio 0 < p < 1, there is only one linearized
internal gravity wave for each Froude number v > 1 — p. This linearized internal gravity
wave has wave number k = k;, and is given by

vk coshk — sinh k .

wi(z, & k) = 2( = osh k¢
—_— 2 — 3
i vk — vk COShk fnh s;:nhkcosh k sheh e amsba,
vk si
kcoshk —sinhk
wa(z, € k) =27 COC;thk SRR ke og kz,

m(x; k) = 2coskz,
(vkcoth k — 1) sinh? k
vk

o (ws k) =2 coskz. (3.14)

When 0 < y < 1 — p, the situation is more complicated. For 0 < v < 1 — p, there
exists a unique k; > 0 such that

(1 — p) tanh k;

— . 3.15
7 ki (1 + p tanh k;) ( )

Then eqaution b(r) = 0 has two positive roots; they are k; and k,, where ks = 1/. Both
k; and ks are functions of the Froude number v and the density ratio p.
Note that, when 0 < v < 1 — p, we have

- pk; + k; cothk;

k
s 1-p

(3.16)

It is not hard to see that %f > 0 for positive k;. Moreover, the ratio ks /k; tends to +oo
as k; goes to 0. In particular, when the Froude number « approaches 1 — p from below,
the wave number k; decreases to 0 and the ratio the ratio ks/k; increases without bound.
For each integer n > 1, there exists a Froude number ~, such that

Now (3.16) and (3.17) lead to

i

tanh ’{% = m

(3.18)

From (3.18), we sce that a sufficient and necessary condition for k; /ki = n to occur is to
have

1

—_ < 1.
n(l—p)—p
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That is to say,
1+
2l

T, n. (3.19)
Now, for cach integer n which satisfies (3.19), let
B = tanh—l(—l—), (3.20)
n(l—p)—p
and let
. (1 - p) tanh k2 (3.21)

~ kx(1+ ptanhk®)
with & in place of k; in (3.15). Suppose that the Froude number v of the flow is less
than 1 — p and is different from all of the v}, n = 1,2,3,.... Then the function b(7)
mentioned above has two positive zeros k, and k;, with ratio ks/k; nonintegeral. This
gives two different types of linearized internal gravity waves. One of them has wave
number k;. When +y is small, this linearized internal gravity wave has surface elevation
on the free surface much larger than that of the interface separating the two fluids. The
other linearized internal gravity wave has wave number k;, whose surface elevation on the
free surface is much smaller than that of the interface when -« is close to 0. See Art. 231
in [2]. These two nonresonant linearized internal gravity waves all have the form (3.14).
If the Froude number «y is equal to one of the 4%, n = 1,2,3,..., then the two positive
zeros ks, k; of the function b(¢) are given by

ks =nk,, ki=k.
In this case, the general solutions of linear system (2.30) — (2.35) are the resonant of two
different families of linear internal gravity waves. '

4. An auxiliary linear problem

In the following section, we will solve the nonlinear system (2.24) - (2.29) by itera-
tions. In order to do that, we need to solve the following linear problems.

(P1)  wi,a2 +wi,ee = fi, in @, (4.1)
wy =g, oné=1, (4.2)
wy =gz, on§=0. (4.3)
(P2)  wa,4c + w2 ee = f2, inQy, (4.4)
wy = gz, onf =0, (4.5)
wa gz —0, asf— —o. (4.6)

Here f; : ; = R, and g; : R = R are given functions which are periodic in x of period
2 /k.
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Before we proceed to solve (4.1) - (4.6), we now define the function spaces used from
here on. We will call any terminating Fourier series of the form

f(z, &) =) fm(&)e™=, (2,6 €0

a trigonometric polynomial. Given a smooth, bounded trigonometric polynomial f :
02; = R, we take

“+0oo +00

Il £ llo, 0= Z Slglpl fm(€) | = Z | fm lloo - (4.7)
For n > 1, let
I lle,n=1l folleo + > | D27 DI f |l - (4.8)
7=0

We denote by A™(Q2) the completion of these trigonometric polynomials in the norm
|- llo,n- If g: R = R, then we say g is in A"(R) if the extension g{z; &) = g(z) 18
in by A™(€2). The norm of g in A®(R) is denoted as || g ||n. A subscript e or o is used
to indicate subspaces consisting of functions that are even or odd in z. For example,
AZ(€;) is the subspace of A%();) consisting of functions which are even in the z direction.
Several lemmas of the function spaces defined above will be listed below. See [6] for their
detailed proof.

Lemma 1. Let u, v are smooth trigonometric polynomials defined on Q); let integer
n > 0. Then

I DZ(wv) llo,0< Y CF | DF 7w lla,o | DIv lla,o -

=0
Here C7 = nl/j!(n — j).
From Lemma 1, we can prove

Lemma 2. Let u, v € A™(Q2), where integer n > 0. Then uv € A™(Q)), with
n
luvllon< €D CF flullan-sllvlla,;-
=0

Here C is some constant > 0.
The following lemma says that the imbedding from A"+ () to A™(82) is continuous.

Lemma 3. Let n be an integer > 0. If u € A™*1(Q), then u € A™(Q) and
lulle,n < C |lullne
Jor some constant C > 1. Furthermore, D u is in A™(82), with

“ Dlu ”Q'n S Cl ” u “Q.TH-I-
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for some constant C' > 1. Here D'u represents a first order derivative of u either in the
x direction or in the £ direction..

The following lemma concerns the compositions of funcions in A®(Q) with analytic
functions.

Lemma 4. Let B be a ball in RP, centered at the point § = (G1,§2,--,3p). Let
[+ B — R be analytic. Let g = (g1,92,---,9p) € [A™(Q)]?, where integer n > 0. If

lg—3l13 .= ?:1 Il 95 —3; g, is small enough, then the composition f(g(z, £)) is
in A™(Q).
Finally, if f : R — R is a trigonometric polynomial, we define
1 flloa= 3 I (4.9)
m70 m

and we denote by A™!(R) the completion of the trigonometric polynomials in this semi-
norm. In what follows, we will have ) = Q,, or §25. Then the supremum in (4.7) is taken
over 0 < { < lfori=1and —c0o <& <0fori=2 In(4.8), D, and D, represent
derivatives in the z and ¢ directions respectively.

Theorem 5. Let f; € A2(Q1) and let g1, g2 € A2(R). There exists a unique solution
wy of the linear problem (Py) in A%(£);), with estimate

fwilley,2< Cr(llgrlla + 1l g2 ll2 + | A lloi,0)s (4.10)
for some constant Cy, > 0.

Proof. Expand wy, fi1, g; formally in Fourier series

+oo
wi(z, §) = ) wim(f) ™,
m-;O;oo |
fl (Ea f) = Z flm(g) ezmkw,

“+o0
gi= Y gm(&e™=, forj=1,2

m=—00

For each integer m, problem (P;) leads to

"

Wiy, = m2k*wim + S, O '<'£ < 1,
wlm(]-) = GJim; wlm(o) = G2m-

!

Here ' represents derivative with respect to . Thus we obtain, for integer m # 0

sinh mké& sinhmk(1 — &) " sinh mké&
sinh mk ™ sinh mk mk

Wim(§) = gim (Fn(€) — Fn(1)), (4.11)
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where

_ ¢ sinhmk(€ —t)
Fm(g) "'/0 sinhmkf flm(t) dt.

When m = 0, we have

w10(§) ='g10€ + g20 + & (Fo(€) — Fo(1)), (4.12)

€ rt
R = [ [ 2 a

From (4.11), it is easy to see that we have

where

Wim'= Wi(—m), forall m # 0.

Thus w; is even in z. It remains to estimate || w; ||q,,2. Note that, for | m | large
enough,

sinh mk7r sinh mk(é — 1
CER NG — L) o
sinh mk

! sinhmk(1 - 7)
inh mk d
+ | sin mk!j/g sinh mk fim{r)dr |

¢ sinh mkT sinh mk(¢ — 1)
<l fim lloo _ d
<1 fum o [ Sl 4

3
| sinhmké (Fm(g) - Fm(l)) | = , /0

sinhmk(l — 7)
sinh mk

1
+ 1| fim lloo | sinh mké /{5 ar |

sinhmk(§ — 1)

< m oo = h k — 1
<l fuom Nl | S S22 (coshmi — 1) |
sinh mké
m. ||ocO WAL h ]- - - 1
1) fim oo | = (coshmb(1 = €) = 1) |
|| flm ”oo
L Q0—" 4.1
<G, (4.13)
for some constant C' > 0 independent of m. Similarly, we can show that
| coshmké (Fn(€) — Fiu(1)) < C'Mﬂl—“«f. (4.14)
| mk |
Next, observe that
¢ sinhmkr
F’ =\ - k m d
| Fo@) =1 -mk [* ST (e ar |
¢ sinhmkr
< fom lloe| =k [ ST g
o sinh®mk¢€
o M fim [l (4.15)

= | sinhmk€ |’
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for some constant C' > 0 independent of m.
As a result, (4.13) leads to

1
H Wim “oo S C(| gim | * | 92m l +W “ flm “oo )1 (4-16)

whereas (4.14) and (4.15) give us

[ @im llo < C (1 mE || gim | + | mk || g2m | +7=— || fim lloo ), (4.17)

for | m | sufficient large.
Now, in order to finish the proof, we estimate || w{ , ||co. What we need now is an
estimation of the term | F)!(£) |. Note that

Fr(€) = fim(§)

smhmkf

. hmk¢

+2 zsz s sinhmkr fi,,(7) dr.
m o sinh®mké hmAT fim(7)

Hence

" | mk |
, Fm(&) I S m ” flm ”oo

2 mk | | coshmkg |
| sinh® mké |

| mk |
| sinh mké |

'3
| fisn o] / mk sinh mk dr |
0

” flm ”oo:

for some constant C' > 0 independent of m. Consequently, we obtain

| Wi llo < C I mE* | gim |+ mE |* | g2m | + || Fim lloo )- (4.18)
Now, by (4.16) — (4.18),

lwi flay,2 =l wio lleo + Il Diwi llay,0 + || DeDewy llay,0 + || D2wi [loy,0
+00 .
= || wio lleo + Z [ mk * )| wim lloo +| mk | || Wi lloo + 1| w0, Jloo]
m=-—oo
SC(llgrllo+1lg2llo+1 f1lles,o) (4.19)

The uniqueness of the solution w; in A%(£2;) is immediate from above inequality. This
completes the proof of Theorem 5.
Now we turn to linear problem (P,). We have

Theorem 6. Let f, € AQ(2), g2 € AZ2(R). There exists a unique solution of the
linear problem (P,) in A2(Qy), with estimate

| w2 lloz,2 < Ca ([l g2 llo + Il f2 llea,0), (4.20)
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for some constant Cy > 0.
The proof of Theorem 6 is similar to that of Theorem 5 and is thus obmitted here.

5. Existence of exact internal gravity waves

In this section, we assume that the periodic internal gravity waves considered are not
in resonance with other internal gravity waves. For example, we may assume that the
Froude number +y is larger than 1 — p where p is the density ratio of the two layers. Then
there is only one kind of periodic linear internal gravity waves and no resonnance occurs.
Or, when 0 < 7 < 1 — p, we assume that the Froude number + is different from any of
the critical values %, n = 1,2,---. Then there exists a wave number k¥ > 0 which is a
zero of the function

b(r) =(1—~v7)(1—p(1+~y7) =T coth7),

with b(mk) # 0, for all integer m > 1. Although now we have two different kind of
linear internal gravity waves, their resonance is avoided. See Section 3 for the detailed
discussion.

The existense of the exact internal gravity waves is carried out in the following steps.
Frist we rewrite systems (2.24) — (2.27) as

Wi, ze + Wi e =€V, infly, fori=1,2, (5.1)
wy =n, oné=1, (5.2)

wy =wg =172, oné=0, < (§.3)
wy 0, as& — —oo, (5.4)

where

Ni = Ni(’Dlwi, ’DZ’UJi, 6)

= Qwi.m(l + €’wi'§)'wi, € — 211);‘1,511)1',;,;2 =5 E’wi'zz’wi,gg = ewi‘ﬁzwi,m, for i = 1,(5,5)

Here D w; and D?w; represent the first and second derivatives of w; respectively. Note
that, for each choice of (n1, n2) in [A2(R)]?, (5.1) — (5.4) give us two nonlinear elliptic
boundary value problems for w; and wy over domains €2; and Q5 respectively. By solving
these nonlinear boundary value problems, we can regard both w; and ws as nonlinear
functions of 7, 72, and €. The solvability of these nonlinear elliptic problems can be
achieved by using Theorem 5 and 6 in the previous section and the contraction mapping
principle. This enables us to treat w; and ws as nonlinear functions of n;, 72 and €. Next
we rewrite (2.28), (2,29) as

m +F(7)‘177]2:€):0a OII&:]., (56)
(1=p)n2 +G(m,n2,€) =0, on&=0. (5.7)
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Here
Y | —2wi, e +ew .Iz—ewl“g2
F(ni,ne,€) == : . 3 5.
(1,72, €) 2 [ (1+ews¢)? (5.8)
v [ —2ws ¢ + ewy 2% — ewsy 52}
G(ni,m,€) = = [ ' : : 5.9
(7?1 2 ) ) (1+€'U}2,£)2 — ( )
Y
2

[ —2w; ¢+ €wy 5% — €w ¢ ]

(1+ews¢)? =04
(5.6) and (5.7) will be solved together with normalization (3.11) as a system of nonlinear
functional equations for n; and 7y by again using the contraction mapping principle.
In the normalization (3.11), the Fourier mode wyy of the function w; is treated as a
nonlinear function of 7;, 7, and e.

Now let (11, 12) € [A2(R)]? be arbitrary. Consider the following linear elliptic bound-
ary value problems

Wier tWiree =0, 0<E& <1,
wy =1, on €= ]-)
w1 =172, on §=0, (5.10)

and

Wy 2z +Waee =0, —00< €<,
wz =172, oOn Ezoa
we,; —+ 0, as £ — —oco. (5.11)

By Theorem 5 and 6, systems (5.10) and (5.11) have solutions w§0)(1‘, ) and wéo)(x, &)
in A2(Q;) and A2(Q;) respectively, with

It o + 1w flag2 < Glm Il + | 72 l2)- (5.12)

Here the constant C > 0 is the sum of the constants C; and C5 in Theorem 5 and 6.

Now, for each integer n > 0, let w§n+l} and wénﬂ) be the solution of the linear problems
wi™ +wtY =N, 0<e<1,
w™™ =5 on E=1,

wi™V =n,, on £=0, (5.13)
and

1
WD+t = N, —co <€ <0,

w™ =n,, on £=0,

w50, as £ = —oo, (5.14)
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where
N = Ny(D'wf™, D*w{™, ), for i=1,2. (5.15)

1

By Lemma 2, Lemma 3, and the the definition of the nonlinear terms N;, it is easy to
see that, since w%”) € A2(Q;) and wé”) € A2(Q3), we have Ni(") € A%(Q,) fori = 1,2.
Thus, by Theorem 5 and 6, w§"+1) € A(Q;) for i = 1,2; and we obtain the sequence
{(@™, w§™)} in the Banach space A2(;) x A2(2,). To prove the convergence of above
sequence, take

R=2C(llmllz+lIm2ll2)-
Let Bg be the ball in A2(Q;) x A2(Q2)
Br = { (w1, wa2) € AZ(h) x AZ(Q2) :[| w1 [lay,2 + || w2 [la,,2 < R}
Note that, by solving (5.13) and (5.14) with n = 0, we obtain wgl) and wél) with

1 1 = 0 0)
I oy + 1wl llas2< Elm ll2 + 1172 Nl +€ | M9 llas,o +€ [ N2 llaz,0)-

Clearly, (wgl), 'wgl)) is in Bg if € is sufficiently close to 0. Furthermore, if (wﬁ”’, wé"))

and (w{™™Y, w{" ™) are in Bg, then we have

I8 = N7 e,
= || Ni(Dlwgn), Dzwin}, €) — Nz-(’Dlwgn_l), Dzwgn—l), €) |la:,0

1 =
d = -
=||/ —N( D™ + (D - DY),
0

Dzwin_l) + T(D2w§”) - Dzwgn_l) ), €)dT ||a;,0

< max || Nipig(D'w, D*w, €) |laso || D'wi™ — D™ |la, 0
[[@]lo,, 2 £ R
_max || Ny peg( DY@, D2, €) |las,0 || D2wl™ — D*w{* ™" [la;,0
[[@llo,,2 <R
< Gi(R) |w™ —w™ Y |la,.2 (5.16)

for each integer ¢ = 1,2. In above estimation, we have made use of the fact that Ny,
N, are analytic in their arguments. The constants C;(R) are continuous functions of R,
independent of integer n.

For each integer n > 0, note that

(wgnﬂ) B wgn) o (wgn-i-l} _ wgn) Jee = E(Nl(") _ N{n_” ), 0<E<1,
wi™ _ i =0, on £=1,

wi™ —w{™ =0, on £=0, (5.17)
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and

(Wi = wi™ )ap + (WS — wi )ee = e(N™ - NIDy —o < £ <0,

wéﬂﬂH) — w,g”) =0, on £=0,
(wénﬂ) - wén) )2 =+ 0, as £ — —oc. (5.18)

Hence, by the estimates in Theorem 5 and 6, we have

H w§n+1) én-i-l)

—wl™ Jlas2 + | w8 —wi la,,»
« é N(n) _ N(ﬂ—l) N(n) _ N(T'-'—l)
<eC{|| N 1 ey, 0 + || No 9 ls,0 }
< eCmax(Cy(R), Co(R)) { || w!™ — wi™™ |la,. 2
+ | ws™ —w™ ™Y g,z }- (5.19)

Thus, if € > 0 is sufficiently close to 0, then we have 0 < eC max(C1(R), C2(R)) < 1.
As a result, it is straightforward to prove that {(w%’i) ) wéﬂ’))} is a Cauchy sequence in the
closed ball of the Banach space A2(€1) x A2(€;). The limit (wi, w2) of this sequence
provides us the solution of the equations (5.1) - (5.4). From now .on, we can regard
all the terms in (5.6), (5.7) and the normalization (3.11) which involve w: and wo as
nonlinear functions of 01, 72, €.

Now, in order to solve (5.6) and (5.7), we rewrite them as

M~ F(Thﬂhao) = 6N31 (520)
T2 — G(n:n% O) = GN‘l (521)
where
1 i
Ns(m,nz,e)=EF(m,Tm,E) = F(m,m2,0)
N [wi,ﬁ + 3w g2 + 2£w1'53}
2 (1+ew1‘5)2 521’
1
N4(7?11712,€)= EG(Th:U‘z, £) = G(Til,??-z,o)
. [1 wg,m2+3wg,g2+2€wg,g3] Py [wl,m2+3w1,§2+26wl,53
Here
) F(WI:WQ:D) = —7[w1,5]§=1: (522)
G(n1,m2,0) = —y[W2, ¢]e=0— + py[w1, ¢le=0+; (5.23)

where (wy, wy) saitisfies (5.10) and (5.11). In order for an iteration to solve (5.20) and
(5.21), we need to solve the following linear problem.
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Lemma 7. Let (g, g3) € [AL(R)]? be given. Then the linear system

m — F(Th,ﬂg,O) = g1, (524)
(1= p)n2 — G(m1,7m2,0) = g, (5.25)

has a unique solution (n;, n,) in [A2(R)]? with

I llz+1In2lla< CUllg Il + 11 g2 1),

for some constant C > 0.

Proof. Suppose that g, g2 € A2(R) are given, which can be represented by the the
Fourier series

+co
gi = Z gimelmkza § = 1a2
Mm==00

Assume that 7, 7, € AZ(R) are known for the time being and have Fourier series
expansion

+oc
= ) mme™2, =12
m=—0o0
Let w; and ws be the solutions of linear problems (5.10) and (5.11) respectively. Recall
that, as in shown in Section 3, w; and wsy are given by the Fourier series

+oo
wi= Y wm(€) ™ =12,
m=—o0
where
Wi m(§) = 12m coshmké + Bl _S?jﬁnﬁf?h mk sinh mk¢,
W2m(€) = M2 m el™ ke
for m # 0, and
w10(€) = n20 + (Mo — M20) &,
w20(€) = N20.
Hence

F(n1,12,0) = —vy[wy, ¢]e=1,
oshmk — Tm imks

MmcC

e — ) , 5.26

V(Mo = M20) — %mk — (5.26)

G(m1,72,0) = ~y[ws ¢le—o— + py[wy, ele—oy
=pY(Mo ~120) + Y _ { =V | mk |
my
k — Nom )

+m/m (Mm — 72 coshmk) }elmkm' (5.27)

sinh mk
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Thus (5.24) and (5.25) lead to, for integer m # 0,

(1 — ymk cothmk) n1 m — ymk sinhmk (1 — coth® mk) N2 m = gim,
pymk

R ey Mm — [ (1= p) —7 | mk| —pymk cothmk] 2m = gom,

and

(I =9)mo0+v7m20 = 910,
pymo— (1 —p—py)n20 = o0,

when m = 0. By hypothesis, g; and g» are even in z. Thus we have

Gim = Gi(—m)> 1= 11 27

267

(5.28)
(5.29)

(5.30)
(5.31)

for all integer m. Next note that all the coefficients in the linear system (5.24), (5.25)
for 71m and 7., are even in m. As a result, it suffices to solve (5.24), (5.25) for integer
m > 0 and the resulting functions 7y, 7, are clearly even in z. For each integer m > 0,

we obtain

gim[(1 = p) — ymk — pymk cothmk] + gamymk/ sinh mk
Mm = 3
dm

—g1mpymk/ sinmk + (1 — ymk cothmk)
Tlam = d

where determinant
dm = (1 =7ymk)(1—p(l+ymk)—ymkcothmk).
Note that, for large | m |, the dominant term in d,, is
| (p — cothmk) v*m2k? | .

Thus we have, for large | m |,
| dm |2 C" | mk |,

for some constant €' > 0. Consequently, by choosing a large enough constant C' > 0, we

obtain c
| im | + | 72m | < m(lglm|+|gzm D;

for all integer m. Thus, for ¢ = 1,2, we have

7 ll2 = I mio | + 1| Dani llo
‘:lfhol‘FZ | mk || nim |
m#0 .
<C(gwl+lgol+> Imkl(lgim|+]gom)
m7#=0
<C(ll gl + 1 g2 lI)-
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This proves the lemma.
Now we are ready to solve system (5.20), (5.21) by an iteration. Let

ngo)(as) = 2coskz,

_o (ykcoth k — 1) sinh® &
= 7

(0
s (

z) coskzx,

where wave number k is a zero of the function
b(r) =(1=77)(1-p(1+v7) - y7 cothr),
with b(mk) # 0 for all integer m > 1. For each integer n > 1, let

NL’En) = Nd(n](_n}a T]én)’e)a
N{™ = Ny(n™ g™ ).

By Lemma 4, Né”’ and N,i”) are in A'(R) for € sufficiently close to 0 and are even in z,

provided n{™ and ns™ are in AZ(R). Now solves the linear system

- -1
,‘75 ) _F(niﬂ},nén)’o) = ENén )’

-1
(1= p)ns™ = Gn{™, n§™,0) = eN g™,

This gives us a sequence {(nin),nén])} in [AZ(R)]®. To show the convergence of above
sequence, we need to estimate

(n+1)
1

1
IE; 2™ Jlo + (| pd™H — i ),

By Lemma 7, we have

1™ =0l 12 = 0l < €0 () N = NPy 4] NP < NP [,

(5.32)
Note that N3 and N, are analytic in their arguments. We can estimate the right hand side
of (5.32) as in (5.16) and conclude that {(n§“),n.§”))} is a Cauchy sequence in [A2(R)]2.
Then convergence of the sequence {(nfn) ,nén) )} is straightforward. In conclusion, we
have

Theorem 8. Suppose that the Froude number 7y is larger than 1—p, or when 0 < ¥ <
1 —p, v is different from Tz Jarn=1,23 -.., Here Yy, are the critical Froude numbers
defined in (3.21). The constant p 15 the density ratio of the two layers of fluids; 0 < p < 1.
Then nonlinear equations (2.24) - (2.29) have an ezact solution (w1, w2, N1, n2) in

A2(u) x A2(22) x [AX(R)]2.
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