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ANGULAR ESTIMATES OF CERTAIN INTEGRAL OPERATORS

NAK EUN CHO AND IN HWA KIM

Abstract. In the present paper, we investigate certain integral preserving properties in a sector.
Our results include several previous results as the special cases.

1. Introduction

Let A denote the class of functions of the form
00

J(z) = z + I: 的Zn

n=2

(1.1)

which are analytic in the open unit disk U = {z: Jzl < l}. A function f of A is said to
be in the class S*(a), the class of starlike functions of order o, if

Re{尸 }> o(z E U, 0 < a :::; 1)

The class S* of starlike functions is identified by S* (0) = S*. A function f E A is said
to be in the class S(m, M) if

zjl(z)
f(z)

- mJ < M (z E U, Im - 11 < M :::; 叫

The class S(m, M) was introduced by Jakubowski [5]. It is clear that m > ! and
S(m,M) c S*(m - M) CS*.

A function f E A is said to be in the class B(µ, a, /3) if it satisfies

Re{
zjl(z)fu-1(z)

岬(z) } > /3 (z E U)

for someµ(µ> 0), /3(0:::; /3 < 1) and g E S*(o). Furthermore, we denote B1(µ,o,/3) by
the subclass of B(µ, a, /3) for g(z) 三 z E S* (a). The classes B(µ, a, /3) and 趴(µ, a, /3) are
the subclasses of Bazilevic functions in U [14]. We also note that B(l, a, /3) = C(o, /3) is
an important subclass of close-to-convex functions [6].
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Many authors [1, 2, 3, 4, 8] have studied the integral operators of the form

le,µ(!) = (二 「tc-1 尸(t)dtµ'
l.

zC 。 ） (1.2)

where c andµare suitably chosen real constants and f belong to some favoured classes
of univalent functions. In particular, Kumar and Shukla [8] showed that the integral
operator Ic,µ,(f) defined by (1.2) maps S(m, M) into itself for c~ 一µ(m - M)(µ> 0).

In the present paper, we give some argument properties of the integral operator
defined by (1.2). We also generalize the previous results of Libera [9], Owa and Srivastava
[12] and Owa and Obradovic [13].

2. Main Results

In proving our main results, we shall need the following lemmas.

Lemma 1((10]). Let M(z) and N(z) be regular in U with M(O) = N(O) = 0, and
let /3 be real. If N(z) maps U onto a (possibly many-sheedted) region which is starlike
with respect to the orign, then

Re{豔t} > /3 (z E U) 江 4閼}> /3 (z E U)

and
Re{ M,(z)} < {J (z E U) ===} Re{ M(z) < {J (z E U)

N'(z) N(z)}

Lemma 2((11]). Let p(z) be analytic in U, p(O) = 1, p(z) -:/= 0 in U and suppose
that there exists a point z0 E U such that

I argp(z) [ <竺 for 回< lzol2

and
I argp區）＝旱

where O < f3 < l. Then we have

zop'(zo) = ik/3,p(zo)

where

and

1 1
k~2(a+』when argp(zo) =—

可3
2

k:::;-!(a+ 勺 when argp(zo) =三
2 a 2
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whe元
p(z。註 ＝士ia (a> 0).

Lemma 3((7,8]). The function f of the form (1.1) belongs to S(m, M) if and only
if there exists a function w regular in U and satisfying w(O) = 0, \w(z)I < 1 for z E U
such that zf'(z) 1 + aw(z)

一... ' , , = .. 一 .. .. 一"' .一．

J (z) l - bw(z)
(z EU), (2.1)

where a= (M2 - 記+m)/M and b = (m - 1)/M.
With the help of Lemma 1 and Lemma 2, we now derive

Theorem 1. Let c andµbe real numbers with c 2: 0, µ > 0 and let f EA. If

l zf'(z)Jµ一 l(z) 商
arg ( 护(z) -f3)\< 了

for some g E S* (m, M), then

(0~(3 < 1, 0 < c5~1)

I arg Cu'·"~J;;:f"'(/) - /J) I < 呈，
where Ic,µ. is the integral operator defined by (1.2) and碉 <1]~1) is the solution of the
equation

{J = 7J + -Tan-1
2 ( ij sin 囹 (1- 钅sin可 品 ；）） ）
1r c + m + M + 7J cos 差 (1 -~sin-1(差 訂）．

(2.2)

Proof. Let
p(z)=四N(z)'

where
M(z) =己丑于(z) - C [ 仔－于 (t)dt 一丑 . i•-1妒 (t)dt}

and z
N(z) =µJ 尸gµ(t)dt.

。
Then p(z) is analytic in U with p(O) = 1. By a simple calculation, we have

M'(z) N(z) z1p(z)
言 =p(z)(l+声霄）

＝一 （
1 zf'(z)fµ.一 l(z)

1 - /3 gµ. (z) - /3).

Sin~e g E S(m, M), Ic,µ.(g) E S(m, M) [8] and hence N(z) is (possibly many sheeted)
starlike function with respect to the orign. Therefore, from our assumption and Lemma

1, p(z) I= 0 in U.
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If there exists a point z0 E U such that

J argp(z)J <竺 for 囯＜因2

and J argp(zo) J =塈
then, from Lemma 2, we have

禪 (zo)
'·--p(zo) ＝函 ，

where

k~1(a 十勺 when argp(zo) =竺
a 2

and

k :'.S 1 (a+}) when argp(zo) = - 皇
where

p(z詛 ＝士ia (a> 0).

Since Iq, (g) E S(m, M), we have

zN'(z) z(Ic,tL(g))'
N(z) = Ic,µ(g) + c = pei主

where
{ c + m - M < p < c + m + M,
丑 sin-1 (潽 ）< <p < 钅sin可差）

I
At first, suppose that p(z芷 =ia(a > 0). We obtain

zof'(zo)Jµ-l(zo) (1 - (3)M'(zo)
arg (

9鬥zo) - /3) = arg
N七o)

= argp(z0) + arg (1 + 1 琿 (zo)
勺霏 )I+ C p因 ））

可
＝ 2 + arg (1 + (pei¥-)-1i77k)

可
=—+Tan (_1 17k sin扣- cp)

2 p + 77k cos 钅(1 -¢)
＞
叮

• iT•)

，鸝... .,
- 2

+ Tan_ 1 ( TJ sm 2 (1 - -=- sin五羞 ）） ）
c + m + M + TJ cos尸1- 钅sin-1 ( 差 ；））

7l"= -62 ,

where 6 are given by (2.2). This is a contradiction to the 9-ssumption of our theorem.
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Next, suppose that p(z芷 = -ia(a > 0). Applying the same method as the above,
we have 一

- - sin-1 M
arg (zof'(zo)Jµ-l因 ）一 13)~ 一竺 一Tan-1 ( 'TJ sin 2 (1 rr 尸

gµ(z0) 2 c + m + M + rJ co汙 (1 - 釒sin丐 圭 ）））
7r

=--82'

where 6 are given by (2.2), which contracts the assumption. Therefore we complete the
proof of our theorem.

Let us choose m = N - a(N - 1) and M = N(l - a), where N~l and O~a < 1.
Then Im - 11 < M~m, a= a/N + (1 - 2a) and b = l - l/N in Lemma 3. Now as
N -+ oo, a-+ l - 2a and b-+ 1. In this case, the relation (2.1) .reduces to

zf'(z) 1 + (1 - 2a)w(z)
"·-·=f(z) 1 - w(z)

(z E U),

which is a necessary and sufficient condition for f to be in S* (a). Hence we have the
following

Corollary 1. Let c~0, µ> 0 and f EA. If

I zf'(z)Jµ-l(z) 商

arg ( 妒(z) -f3)1< 了

for some g E S*(a), then

(0 ::; {3 < 1, 0 < b ::; 1)

I z(Ic,µ(f))'I戸 (f) . 冠
arg (

I戶(g) !3) I <了
where le,µis the integral operator defined by (1.2).

Remark 1. For o = 1, Corollary 1 is the result obtained by Owa and Obradovic [1.3].

Letting 11, = l in Theorem 1, we have

Corollary 2. Let c~0 and let f EA. If

zf'(z) 商
arg (言 -!3)1 <了

for some g E S(m, M), then

(0:::; {3 < 1, 0 < 6 :::; 1)

I z(Ic,1(!))' 可

arg (Ic,1(9) - !3) I< 了
where Ic,I is the integral operator defined by (1.2) and 71(0 < T/~l) is the solution of the
equation (2.2).
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Taking m = N-a(N-1), M = N(I-a)(O :Sa< 1), N ---too and b = 1 in Corollary
2, we have the result of Owa and Srivastave [12].

Corollary 3. If the function f defined by (1.1) is in the class C(a,{3), then the
integral operator Ic,i(J)(c~0) defined by (1.2) is also in the class C(a,{3).

Remark 2. Putting a= f3~0 and c = 1 in Corollary 3, we obtain the result given
by Libera [9].

By using the same technique as in proving Theorem 1, we have

Theorem 2. Let c andµbe real numbers with c~0, µ> 0 and let f E A. If

I zf'(z)fµ一 1 位） 聶
arg (!3 - gµ(z)) I <了

for some g E S(m, M), then

((3 > 1,0 < c5::; 1)

I z(Ic,µ.(f))'I戶 (! ) 可
arg (!3 - Itµ.(g)) I <了

where le,µ. is the integral operator defined by (1.2) and TJ(O < TJ :S 1) is the solution of the
equation (2.2).

Letting m = N - a(N - 1), M = N(l - a)(O :S a < 1), N~oo, µ= 1 and c5 = 1 in
Theorem 2, __ we have the following result by Owa and Srivastava [12].

Corollary 4. Let c 2:: 0 and f E A. If

Re{
zf'(z)
g(z) } < {3 值 > 1)

for some g E S*(a), then

Re{
z(Ic,1 (f))'
Ic,1(g) }</3,

where Ic,l is the integral operator defined by (1.2).
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