ANGULAR ESTIMATES OF CERTAIN INTEGRAL OPERATORS

NAK EUN CHO AND IN HWA KIM

Abstract. In the present paper, we investigate certain integral preserving properties in a sector. Our results include several previous results as the special cases.

1. Introduction

Let \mathcal{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $U=\{z:|z|<1\}$. A function f of \mathcal{A} is said to be in the class $\mathcal{S}^{*}(\alpha)$, the class of starlike functions of order α, if

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha(z \in U, 0<\alpha \leq 1)
$$

The class \mathcal{S}^{*} of starlike functions is identified by $\mathcal{S}^{*}(0)=\mathcal{S}^{*}$. A function $f \in \mathcal{A}$ is said to be in the class $\mathcal{S}(m, M)$ if

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-m\right|<M(z \in U,|m-1|<M \leq m)
$$

The class $\mathcal{S}(m, M)$ was introduced by Jakubowski [5]. It is clear that $m>\frac{1}{2}$ and $\mathcal{S}(m, M) \subset \mathcal{S}^{*}(m-M) \subset \mathcal{S}^{*}$.
A. function $f \in \mathcal{A}$ is said to be in the class $\mathcal{B}(\mu, \alpha, \beta)$ if it satisfies

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z) f^{u-1}(z)}{g^{\mu}(z)}\right\}>\beta(z \in U)
$$

for some $\mu(\mu>0), \beta(0 \leq \beta<1)$ and $g \in \mathcal{S}^{*}(\alpha)$. Furthermore, we denote $\mathcal{B}_{1}(\mu, \alpha, \beta)$ by the subclass of $\mathcal{B}(\mu, \alpha, \beta)$ for $g(z) \equiv z \in \mathcal{S}^{*}(\alpha)$. The classes $\mathcal{B}(\mu, \alpha, \beta)$ and $\mathcal{B}_{1}(\mu, \alpha, \beta)$ are the subclasses of Bazilević functions in U [14]. We also note that $\mathcal{B}(1, \alpha, \beta) \equiv C(\alpha, \beta)$ is an important subclass of close-to-convex functions [6].

Received September 18, 1997.
1991 Mathematics Subject Classification. 34C45.
Key words and phrases. Argument, integral operators, starlike functions, Bazilević functions.

Many authors $[1,2,3,4,8]$ have studied the integral operators of the form

$$
\begin{equation*}
I_{c, \mu}(f)=\left(\frac{c+\mu}{z^{c}} \int_{0}^{z} t^{c-1} f^{\mu}(t) d t\right)^{\frac{1}{\mu}} \tag{1.2}
\end{equation*}
$$

where c and μ are suitably chosen real constants and f belong to some favoured classes of univalent functions. In particular, Kumar and Shukla [8] showed that the integral operator $I_{c, \mu}(f)$ defined by (1.2) maps $\mathcal{S}(m, M)$ into itself for $c \geq-\mu(m-M)(\mu>0)$.

In the present paper, we give some argument properties of the integral operator defined by (1.2). We also generalize the previous results of Libera [9], Owa and Srivastava [12] and Owa and Obradović [13].

2. Main Results

In proving our main results, we shall need the following lemmas.
Lemma $1([10])$. Let $M(z)$ and $N(z)$ be regular in U with $M(0)=N(0)=0$, and let β be real. If $N(z)$ maps U onto a (possibly many-sheedted) region which is starlike with respect to the orign, then

$$
\operatorname{Re}\left\{\frac{M^{\prime}(z)}{N^{\prime}(z)}\right\}>\beta(z \in U) \Rightarrow \operatorname{Re}\left\{\frac{M(z)}{N(z)}\right\}>\beta(z \in U)
$$

and

$$
\operatorname{Re}\left\{\frac{M^{\prime}(z)}{N^{\prime}(z)}\right\}<\beta(z \in U) \Longrightarrow \operatorname{Re}\left\{\frac{M(z)}{N(z)}\right\}<\beta(z \in U)
$$

Lemma 2([11]). Let $p(z)$ be analytic in $U, p(0)=1, p(z) \neq 0$ in U and suppose that there exists a point $z_{0} \in U$ such that

$$
|\arg p(z)|<\frac{\pi \beta}{2} \text { for }|z|<\left|z_{0}\right|
$$

and

$$
\left|\arg p\left(z_{0}\right)\right|=\frac{\pi \beta}{2}
$$

where $0<\beta \leq 1$. Then we have

$$
\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=i k \beta
$$

where

$$
k \geq \frac{1}{2}\left(a+\frac{1}{a}\right) \text { when } \arg p\left(z_{0}\right)=\frac{\pi \beta}{2}
$$

and

$$
k \leq-\frac{1}{2}\left(a+\frac{1}{a}\right) \text { when } \arg p\left(z_{0}\right)=-\frac{\pi \beta}{2}
$$

where

$$
p\left(z_{0}\right)^{\frac{1}{\beta}}= \pm i a(a>0) .
$$

Lemma $3([7,8])$. The function f of the form (1.1) belongs to $\mathcal{S}(m, M)$ if and only if there exists a function w regular in U and satisfying $w(0)=0,|w(z)|<1$ for $z \in U$ such that

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=\frac{1+a w(z)}{1-b w(z)} \quad(z \in U) \tag{2.1}
\end{equation*}
$$

where $a=\left(M^{2}-m^{2}+m\right) / M$ and $b=(m-1) / M$.
With the help of Lemma 1 and Lemma 2, we now derive
Theorem 1. Let c and μ be real numbers with $c \geq 0, \mu>0$ and let $f \in \mathcal{A}$. If

$$
\left|\arg \left(\frac{z f^{\prime}(z) f^{\mu-1}(z)}{g^{\mu}(z)}-\beta\right)\right|<\frac{\pi \delta}{2} \quad(0 \leq \beta<1,0<\delta \leq 1)
$$

for some $g \in \mathcal{S}^{*}(m, M)$, then

$$
\left|\arg \left(\frac{z\left(I_{c, \mu}(f)\right)^{\prime} I_{c, \mu}^{\mu-1}(f)}{I_{c, \mu}^{\mu}(g)}-\beta\right)\right|<\frac{\pi \delta}{2}
$$

where $I_{c, \mu}$ is the integral operator defined by (1.2) and $\eta(0<\eta \leq 1)$ is the solution of the equation

$$
\begin{equation*}
\delta=\eta+\frac{2}{\pi} \operatorname{Tan}^{-1}\left(\frac{\eta \sin \frac{\pi}{2}\left(1-\frac{2}{\pi} \sin ^{-1}\left(\frac{M}{c+m}\right)\right)}{c+m+M+\eta \cos \frac{\pi}{2}\left(1-\frac{2}{\pi} \sin ^{-1}\left(\frac{M}{c+m}\right)\right)}\right) \tag{2.2}
\end{equation*}
$$

Proof. Let

$$
p(z)=\frac{M(z)}{N(z)}
$$

where

$$
M(z)=\frac{1}{1-\beta}\left\{z^{c} f^{\mu}(z)-c \int_{0}^{z} t^{c-1} f^{\mu}(t) d t-\beta \mu \int_{0}^{z} t^{c-1} g^{\mu}(t) d t\right\}
$$

and

$$
N(z)=\mu \int_{0}^{z} t^{c-1} g^{\mu}(t) d t
$$

Then $p(z)$ is analytic in U with $p(0)=1$. By a simple calculation, we have

$$
\begin{aligned}
\frac{M^{\prime}(z)}{N^{\prime}(z)} & =p(z)\left(1+\frac{N(z)}{z N^{\prime}(z)} \frac{z^{\prime} p(z)}{p(z)}\right) \\
& =\frac{1}{1-\beta}\left(\frac{z f^{\prime}(z) f^{\mu-1}(z)}{g^{\mu}(z)}-\beta\right)
\end{aligned}
$$

Since $g \in \mathcal{S}(m, M), I_{c, \mu}(g) \in \mathcal{S}(m, M)$ [8] and hence $N(z)$ is (possibly many sheeted) starlike function with respect to the orign. Therefore, from our assumption and Lemma $1, p(z) \neq 0$ in U.

If there exists a point $z_{0} \in U$ such that

$$
|\arg p(z)|<\frac{\pi \eta}{2} \text { for }|z|<\left|z_{0}\right|
$$

and

$$
\left|\arg p\left(z_{0}\right)\right|=\frac{\pi \eta}{2}
$$

then, from Lemma 2, we have

$$
\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=i k \eta
$$

where

$$
k \geq \frac{1}{2}\left(a+\frac{1}{a}\right) \text { when } \arg p\left(z_{0}\right)=\frac{\pi \eta}{2}
$$

and

$$
k \leq \frac{1}{2}\left(a+\frac{1}{a}\right) \text { when } \arg p\left(z_{0}\right)=-\frac{\pi \eta}{2}
$$

where

$$
p\left(z_{0}\right)^{\frac{1}{n}}= \pm i a(a>0)
$$

Since $I_{c, \mu}(g) \in \mathcal{S}(m, M)$, we have

$$
\frac{z N^{\prime}(z)}{N(z)}=\frac{z\left(I_{c, \mu}(g)\right)^{\prime}}{I_{c, \mu}(g)}+c=\rho e^{i \frac{\pi \phi}{2}}
$$

where

$$
\left\{\begin{array}{l}
c+m-M<\rho<c+m+M \\
-\frac{2}{\pi} \sin ^{-1}\left(\frac{M}{c+m}\right)<\phi<\frac{2}{\pi} \sin ^{-1}\left(\frac{M}{c+m}\right)
\end{array}\right.
$$

At first, suppose that $p\left(z_{0}\right)^{\frac{1}{n}}=i a(a>0)$. We obtain

$$
\left.\begin{array}{rl}
& \arg \left(\frac{z_{0} f^{\prime}\left(z_{0}\right) f^{\mu-1}\left(z_{0}\right)}{g^{\mu}\left(z_{0}\right)}-\beta\right)=\arg \frac{(1-\beta) M^{\prime}\left(z_{0}\right)}{N^{\prime}\left(z_{0}\right)} \\
= & \arg p\left(z_{0}\right)+\arg \left(1+\frac{1}{\frac{z\left(I_{c, \mu}(g)\right)^{\prime}}{I_{c, \mu}(g)}}+c\right. \\
z_{0} p^{\prime}\left(z_{0}\right) \\
p\left(z_{0}\right)
\end{array}\right) .
$$

where δ are given by (2.2). This is a contradiction to the assumption of our theorem.

Next, suppose that $p\left(z_{0}\right)^{\frac{1}{n}}=-i a(a>0)$. Applying the same method as the above, we have

$$
\begin{aligned}
\arg \left(\frac{z_{0} f^{\prime}\left(z_{0}\right) f^{\mu-1}\left(z_{0}\right)}{g^{\mu}\left(z_{0}\right)}-\beta\right) & \leq-\frac{\pi \eta}{2}-\operatorname{Tan}^{-1}\left(\frac{\eta \sin \frac{\pi}{2}\left(1-\frac{2}{\pi} \sin ^{-1}\left(\frac{M}{c+m}\right)\right)}{c+m+M+\eta \cos \frac{\pi}{2}\left(1-\frac{2}{\pi} \sin ^{-1}\left(\frac{M}{c+m}\right)\right)}\right) \\
& =-\frac{\pi}{2} \delta,
\end{aligned}
$$

where δ are given by (2.2), which contracts the assumption. Therefore we complete the proof of our theorem.

Let us choose $m=N-\alpha(N-1)$ and $M=N(1-\alpha)$, where $N \geq 1$ and $0 \leq \alpha<1$. Then $|m-1|<M \leq m, a=\alpha / N+(1-2 \alpha)$ and $b=1-1 / N$ in Lemma 3. Now as $N \rightarrow \infty, a \rightarrow 1-2 \alpha$ and $b \rightarrow 1$. In this case, the relation (2.1) reduces to

$$
\frac{z f^{\prime}(z)}{f(z)}=\frac{1+(1-2 \alpha) w(z)}{1-w(z)}(z \in U)
$$

which is a necessary and sufficient condition for f to be in $\mathcal{S}^{*}(\alpha)$. Hence we have the following

Corollary 1. Let $c \geq 0, \mu>0$ and $f \in \mathcal{A}$. If

$$
\left|\arg \left(\frac{z f^{\prime}(z) f^{\mu-1}(z)}{g^{\mu}(z)}-\beta\right)\right|<\frac{\pi \delta}{2} \quad(0 \leq \beta<1,0<\delta \leq 1)
$$

for some $g \in \mathcal{S}^{*}(\alpha)$, then

$$
\left|\arg \left(\frac{z\left(I_{c, \mu}(f)\right)^{\prime} I_{c, \mu}^{\mu-1}(f)}{I_{c, \mu}^{\mu-1}(g)}-\beta\right)\right|<\frac{\pi \delta}{2}
$$

where $I_{c, \mu}$ is the integral operator defined by (1.2).
Remark 1. For $\delta=1$, Corollary 1 is the result obtained by Owa and Obradović [13].
Letting $\mu=1$ in Theorem 1, we have
Corollary 2. Let $c \geq 0$ and let $f \in \mathcal{A}$. If

$$
\left|\arg \left(\frac{z f^{\prime}(z)}{g(z)}-\beta\right)\right|<\frac{\pi \delta}{2} \quad(0 \leq \beta<1,0<\delta \leq 1)
$$

for some $g \in \mathcal{S}(m, M)$, then

$$
\left|\arg \left(\frac{z\left(I_{c, 1}(f)\right)^{\prime}}{I_{c, 1}(g)}-\beta\right)\right|<\frac{\pi \eta}{2},
$$

where $I_{c, 1}$ is the integral operator defined by (1.2) and $\eta(0<\eta \leq 1)$ is the solution of the equation (2.2).

Taking $m=N-\alpha(N-1), M=N(1-\alpha)(0 \leq \alpha<1), N \rightarrow \infty$ and $\delta=1$ in Corollary 2, we have the result of Owa and Srivastave [12].

Corollary 3. If the function f defined by (1.1) is in the class $\mathcal{C}(\alpha, \beta)$, then the integral operator $I_{c, 1}(f)(c \geq 0)$ defined by (1.2) is also in the class $\mathcal{C}(\alpha, \beta)$.

Remark 2. Putting $\alpha=\beta=0$ and $c=1$ in Corollary 3, we obtain the result given by Libera [9].

By using the same technique as in proving Theorem 1, we have
Theorem 2. Let c and μ be real numbers with $c \geq 0, \mu>0$ and let $f \in \mathcal{A}$. If

$$
\left|\arg \left(\beta-\frac{z f^{\prime}(z) f^{\mu-1}(z)}{g^{\mu}(z)}\right)\right|<\frac{\pi \delta}{2} \quad(\beta>1,0<\delta \leq 1)
$$

for some $g \in \mathcal{S}(m, M)$, then

$$
\left|\arg \left(\beta-\frac{z\left(I_{c, \mu}(f)\right)^{\prime} I_{c, \mu}^{\mu-1}(f)}{I_{c, \mu}^{\mu}(g)}\right)\right|<\frac{\pi \eta}{2}
$$

where $I_{c, \mu}$ is the integral operator defined by (1.2) and $\eta(0<\eta \leq 1)$ is the solution of the equation (2.2).

Letting $m=N-\alpha(N-1), M=N(1-\alpha)(0 \leq \alpha<1), N \rightarrow \infty, \mu=1$ and $\delta=1$ in Theorem 2, we have the following result by Owa and Srivastava [12].

Corollary 4. Let $c \geq 0$ and $f \in \mathcal{A}$. If

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{g(z)}\right\}<\beta \quad(\beta>1)
$$

for some $g \in \mathcal{S}^{*}(\alpha)$, then

$$
\operatorname{Re}\left\{\frac{z\left(I_{c, 1}(f)\right)^{\prime}}{I_{c, 1}(g)}\right\}<\beta
$$

where $I_{c, 1}$ is the integral operator defined by (1.2).

Acknowledgement

This work was partially supported by Non Directed Research Fund, Korea Research Foundation, 1996 and the Basic Science Research Program, Ministry of Education, Project No. BSRI-97-1440.

References

[1] G. P. Bhargave and S. L. Shukla, "On the classes of regular univalent functions," Jnanabha, 12(1982), 33-39.
[2] W. M. Cauchy and W. L. White, "Starlikeness of certain functions with integral representations," J. Math. Anal. Appl., 64(1978), 458-466.
[3] R. M. Goel and B. S. Mehrok, "Some invarance properties of a subclass of close-to-convex functions," Indian J. Pure. Appl. Math., 12(1981), 1240-1249.
[4] V. P. Gupta and P. K. Jain, "On starlike functions," Rend. Mat., 9(6)(1976), 433-437.
[5] Z. J. Jakubowski, "On the coefficients of starlike functions of some classes," Ann. Polon. Math., 26(1972), 305-313.
[6] W. Kaplan, "Close-to-convex schlicht functions," Michigan Math. J., 1(1952), 169-185.
[7] V. Kumar and S. L. Shukla, "Certain integrals for classes of p-valent meromorphic functions," Bull. Austral. Math. Soc., 25(1982), 85-97.
[8] V. Kumar and S. L. Shukla, "Jakubowski integral operators," J. Austral. Math. Soc. (series A), 37(1984), 117-127.
[9] R. J. Libera, "Some classes of regular univalent functions," Proc. Amer. Math. Soc., 16(1965), 755-758.
[10] S. S. Miller and P. T. Mocanu, "Second order differential inequalities in the complex plane," J. Math. Anal. Appl., 65(1978), 289-305.
[11] M. Nunokawa, "On the order of strongly starlikeness of strongly convex functions," Proc. Japan Acad., 69, Ser. A(1993), 234-237.
[12] S. Owa and H. M. Srivastava, "Some applications of the generalized Libera integral operator," Proc. Japan Acad., 62, Ser. A(1986), 125-128.
[13] S. Owa and M. Obradović, "Certain subclasses of Bazilević functions of type α," Internat. J. Math. \& Math. Sci., 9(1986), 347-359.
[14] R. Singh, "On Bazilević functions," Proc. Amer. Math. Soc., 1(1952), 169-185.

Department of Applied mathematics, College of Natural Sciences, Pukyong National University, Pusan 608-737, Korea.

