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CONVOLUTIONS OF UNIVALENT FUNCTIONS
WITH POSITIVE COEFFICIENTS

B. A. URALEGADDI AND A. R. DESAI
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Abstract. Let f(z) = z + Zn=2 nz", an > 0 and g(z) = z + Zn=2 bnz™, by > 0. We
investigate some properties of h(z) = f(z) * g(z) = z + Z:"_z anbn 2™ where f(2) and g(z)
belongs to certain subclasses of starlike and convex functions.

1. Introduction

Let S be the class consisting of the functions of the form f(z) = z+ Y ., an2™ that
are analytic and univalent in the unit disk E = {z : |z| < 1}. A function f € S is said to

be starlike of order o, 0 < a < 1, if Re{%?} > « for z € F and it said to be convex

of order @, 0 < a < 1, if Re{l1 + %—?} > a for z € E. These classes are respectively
denoted by S*(a) and K(a). S*(0) = S* and K(0) = K are respectively the classes of
starlike and convex functions in S.

Let f(2) = z4+ Y ;opanz™ and g(z) = z+ Y oo, bp2z™ Then the Hadmard prod-
uct (convolution) (f * g)(2) of functions f(z) and g(z) is defined by (f * g)(2) = 2z +
D BB, _

Recetly Ruscheweyh and Sheil-Small [1] proved the Polya-Schoenberg conjecture that
if f(z) =2+ ) ppanz™ € K and g(2) = z+ Y oo, bpz™ € K then h(z) = f(2) * g(z) =
z+ Y o ,anbpz™ € K. Further in [2] Shild and Silverman considered convolutions of
univalent functions with negative coefficients.

For1<fB<4andze Elet M) ={f € S: Re2; < B} and L(B) = {f €

S : Re(l+ %%2) < B}. Let V be the subclass of S consisting of functions of the
form f(z) = z+ Y o. 5 an2™, an > 0. Let V*(a) = S*(a) NV, Vk(a) = K(a) NV and
VB) =MB)NV,UB) = LB)NV. V*0) = V* and Vi(0) = Vi are respectively
the classes of starlike and convex functions in V. The classes V() and U(8) have been
studied by B. A. Uralegaddi, M. D. Ganigi and S. M. Sarangi [3]. They have shown that
all functions in V() are starlike and all functions in U(8) are convex.

In this paper we investigate some properties of f *x g where f,g € V(8) or U(B).

We need the following results [3].
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Theorem A. Let f(z) =2+ Y72 yan2™ be in S. If .22 ,(n — B)|an| < B — 1 then
feM(p).

Theorem B. Let f(2) =2+ 307y anz" be in S. If 20, n(n— B)|an| < B—1 then
i € E{B)..

Theorem C. A function f(z) = z+ 350, anz™, an > 0 is in V(8) if and only if
Z;o—_—z(n - :8) Q.n S ﬂ = s

Theorem D. 4 function f(z) = z + Y o0, anz™, an > 0 is in U(B) if and only if
Zszn(ln‘ - ﬂ) Qn S ﬁ - 1

2. Convolutions of functions in V(8) and U(3)

Theorem 1. If f(2) = 2+ Y} 02 ,an2™, an > 0 and g(2) = 2 + Y sbu™ by 20
are elements of V(B), then f(2)*g(z) = z + Yo 5 anbn2z™ is an element of V(v), where
_ 6-88+3p2
Y= 5Tep+267"
Proof. Since f(z) and g(z) € V(), it follows that ) Il %an <land } .7, g%?bn
< 1. We want to show that 2 ,(n — 7)a,b, < v — 1. Equivalently we want to show
that

oo n—g
< 1
and g ;
n—p
) 2
o1 “
imply that
2 n—7 6 — 88 + 33*
< = > 3
Z’y_lanbn_lforallfy W(ﬁ)_5—6ﬂ+2ﬁ2 (3)

n=2

From (1) and (2) using Cauchy-Schawarz inequality, we get

3 %:—f\/anbn <1 (4)

n=2

Hence it suffices to show that

n——-ﬂlyanbn < Z_f\/anbn, R e

v
n—pFgvy-1
or anbnsﬁ—IZ—'y'
From (4) it follows that
@by < —— for each n.
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Therefore it is sufficient if we show that

B-1_n-By-1

Il n.
ey L pu i for all n (5)
The inequality (5) is equivalent to
1+n(5=5)°
v —a (6)
L+ k=5

The right-hand side of (6) is a decreasing function of n, n = 2,3,.... For n = 2, we get

- 1+2(555)° _ 6—88+30°
T 1+(85)?  5-60+26

The result follows.

Observe that 1 < v < 4/3.
The result is sharp, for the functins

e
Z—ﬂ)z'

f(z) = g(2) = 2+ (

Remark 1. V($23+38) ¢ v*(2=£)) follows from the result [3]: If f € V() then
Fev (=)

Remark 2. In the above theorem we have shown that if f,g € V(83) then fxg€
V(%). For given h € V(g%gﬂ'—g—z—) do there exist functions f,g € V() such that
h = fxg? We shall show by an example that the answer is no. Let f(z) = z +ZZ°=2 anz"
and g(z) = z+ Y .o, bpz™ be the functions in V(f), then an < -g:—é, b, < f—f% By the .
above theorem we have '

o0
6 — 83 + 332
= nn a Wle—————ur],
fxg z+";a bp2™ € (5—6ﬁ+252)
Also note that a,b, < (-g—__—é)z.
Consider ,
6-86+382 _ 3 "
hz) =z + S8 e V(—-——————g 2[5 L 222).
, M = 5=66+207 — 80
For this function we have
6—803+382 . >
5—6@r207 _ ! (8 -1)° (B-1)?

; < > forn > 3.
n oSSBT ~ (560 +2p)n— (6-8p+ 360  (n-BP -
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L.e there is no f and g € V(B) such that fxg=h € V(———Eg:ggigg2 ,

Corollary. Let f(z) and g(z) be in V(B). Then h(z) = 2+ X o7, Vaba2™ € V(B).

This result follows from the inequality (4). It is sharp for the same functions as in
Theorem 1.

Theorem 2. If f e V(B) and g € V(v) then f xg € V(6), where § = %.

Proof. Proceeding as in the proof of Theorem 1, we obtain

n(B-1)(y=1)
L+ B Ko
= (B=1)(y—1) -~
bttt

The right-hand side of (7) is a decreasing function of n (n = 2,3,...). Taking n = 2, we
get

2(8-1)(v=1)
5> 1t ToAG) _ 648 — 4y + 3By

(Fally—1) * 5B - Byt Oy’
L+ 6300 S el

Corollary. If f(z), g(2), h(z) € V(B), then f*xg*xhe V(,,ﬁﬁ—_*_‘%%).

Proof. From Theorem 1, we have f * g € V(%). Using Theorem 2, we get

- 2 e 2
hey (8748 - 4GS +36(52ts)
Fgxhe 5— 33 — 3(6=8B438%\ | 53 6-83+307
3B (5—6B+251) £ ﬂ(5—6ﬁ+2[35)
ie. fxgxhe V(w%):

7—98+383
For functions in the class U (B) we have similar result. We shall prove:

Theorem 3. If f € U(B) and g € U(y), then f*xg € U(S), where§ = 225_"5?__5377:32‘(&).

Proof. From Theorem D, we have Yoo sn(n—pB)a, < B—1and Yoo s n(n—7)b, <
7 — 1. We wish to show that S°°° . n(n — 6)a,b, <6 — 1. It is sufficient to show that

> S5 s
2

and
o0
Z n(n — ) by < 1
n=2 T -

imply

T 9-58-5y+38y

il

S
Il
I
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Proceeding as in the proofs of Theorems 1 and 2, we get:

n—38 _nn—p)n-7)
F-1° (F-D0-D

or
5> (n=8)(n—7) (8)
Z 13 00

n(n—=p)(n—")

The right hand side of (8) is a decreasing function of n(n = 2,3,...). Taking n = 2, we
get

5 2(5—-38—3v+20y)
= 9-58-5y+38y

The result follows.

_ 8-68—67+508
Theorem 4. If f € V() and g € V(7) then f xg € U(8), where d = g=35—42 135 -

Proof. From Theorem C, we have Y00 ,(n—f)an < f—1and Y7 5(n—7)by < v-1.
It follows that

(o]

> (n = B)(n —Y)anbn < (B-1)(y—1).

n=2

‘We wish to show that > oo ,n(n — 6)anb, <6 — 1.

This is satisfied if
n(n—2) _ (n=B)n=1)
-1 ~— (B-1)(v-1)

n?(8—1)(y=1)
5 1+ ((n—B)(n—7) 9)
=14 nB-0G=
U (n=B8)(n—7)

The right hand side of (9) is a decreasing function of n(n = 2,3,...). Taking n = 2, we
get

i.e. for

5>8—6ﬁ—67+56’)f
= 6-—48—4y+ 38y

The result follows.
The result is sharp for the functions

-1
2-p4

Putting 8 = v = 4/3 in Theorem 4, we get the following

-1
22 e V(B) and g(z) =z + %:722 e V(y).

Corollary. If f, f € V(4/3), then f xg € U(4/3).
Since U(4/3) C Vi [3], the convolution of any two functions in V/(4/3) is convex.
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Theorem 5. If f(z) = z + D ome28n2™, ap >0, € V(B) and &) == 0, b,
with [b;) <1,71=2,3,..., then f*xgeM@).

Proof. 377 ,(n — B)|anby| = 2onez(n = B)anlbn] < T2, (n - Blan < - 1.

Corollary. If f(2) € V(B) and 9(z) =24 372 bez™, with0< b; < 1,4 = - 15—
then fxg € V(f).

Theorem 6. let fl2) = 2=+ Zn_ anz™ € U(B) and g(z) = z + ZZC’:? b.z" with
B £1,4=235.. ., then fx g e L(B). _

Proof.

>_n(n = B)lanbn|

n=2

=Y n(n—Bagb,|
n=2

<Y n(n-Ba, <B-1.
n=2

Corollary. If f(z) € U(B) and 9(z) =2+ Y, baz™, with 0 Sl i=23...,
then fx g € U(B).

Theorem 7. If f, g € V(B), then Mz) = 2+ 320 ,(a2 + b2)2" € V(8) where

_ 8-12845p32
5 6—-88+332 -

Proof. Since 372 ,(n —B)an, < 8 — 1, we have

Z(” )2a2 < {Z an}2 21, (10)
Simillarly
= n— Bz
b < 1. 11
n;( 2ot (11)
From (10) and (11), we get
;5(5 )(a +02) < 1. (12)
We want to find 6 = §(8) such that
Z( (a +82) < 1. (13)

n=2
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Comparing this with (12), we see that (13) will be satisfied if

=0 _ 18-P.
< - ;
0-1 —2(5—1)
or B
5> —("nil) =5

(5—_?)2 + 2

Right-hand side of (14) is a decreasing function of n(n = 2, 3,

5 8- 128+56°
— 6-88+362
The result is sharp for the function
B—1,

f(z)=9(z) =2+

— A"

cun)e bW =2,

Note that if in Theorem 4, we let v = 3, we get the same value for § as here.
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