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ON THE SPIN REAL PROJECTIVE BUNDLE

CHERNG-YIH YU AND KUEN-HUEI LIN

Abstract. In this paper, we give a characterization of spin real projective bundles. We also
construct special spin real projective bundls over real projective space.

Introduction

The motivation for studying spin real projective bundle comes from the existence (or
non-existence) of positive scalar curvature on a given manifold with fundamental group
7. Modifying a conjecture of Gromov and Lawson, Rosenberg conjectures (cf. [GrLa2],
[Rol], [Ro3]) that a connected spin manifold M of dimension n > 5 with fundamental
group 7 admits a Riemannian metric of positive scalar curvature if and only if all KO,-
valued index obstructions associated to Dirac operators with coefficients in flat bundles
vanishes. If M is a spin manifold, the indices of all the Dirac operators; with coefficients
in flat bundles turn out to be a single element a(M,u) € KO, (C;m), where C7(m) is the
C*-completion of the real group ring R and u : M — B is the classifying map of the
universal covering M — M. It is known that the vanishing of the index a is necessary for
existence of a positive scalar curvature metric on M (cf. [Ro2]). This has been proved
to be a sufficient condition if  is the trivial group ( [St1], Thm.A), an odd order cyclic
group ([Ro2], Thm.1.3; [KwSc], Thm.1.8), Z/2 ([RS], Thm.5.3), and more generally a
finite group with periodic cohomology (cf. [BGS)). It turns out that a(M,u) depends

only on the spin bordism class [M,u] € Q%pm(Bﬂ) and, hence, we have a homomorphism
a: QSPIN(Br) - KO, (Cin).
In fact, o can be factorized in the following way : (cf. [Ro2], [Ro3], [RoSt])
aSPin( By 2k, (Br) BKO,(Br) BKO,(Crm).

Here the first map is induced from the orientation class D : MSpin — ko from the Thom
spectrum to the connective real K-theory spectrum via Pontrjagin-Thom construction

gpm(Bﬂ) =~ 1,(MSpin A B7y), p is the canonical map from connective to periodic
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KO-homology and A is the assembly map (cf. [Ro3]). It follows from results of Jung
(cf. [Ju]) and Stolz (cf. [St1]) that whether M has a positive scalar curvature metric
depends only on its image D.[M,u] € ko, (B); more precisely, M has a positive scalar
curvature metric if and only if D4[M,u] = D,[M',u] € ko, (Bm) for some manifold M’
which admits a positive scalar curvature metric.

This result is a significant improvement since the connective KO-theory group

ko, (Bm) is much smaller than QSpl (B) and it is much easier to find generators of
the groups ko, (Bm) than of the bordism groups. Due to this result, calculating the
connective real K-homology of Bm and representing every element in ker(A o p) by a
positive scalar curvature manifold are two possible steps to study the Gromov-Lawson-
Rosenberg Conjecture. Due to the fact that real projective spaces RP",n = 3 (mod4)
are spin manifolds with positive scalar curvature, Rosenberg and Stolz showed that the
images of the collection RP?, n = 3 (mod4) under D, known to generate ker(A o p) and
thus proved the Gromov-Lawson-Rosenberg Conjective for 7 = Z/2.

Note that we may regard real projective space RP™ as a real projective bundle of
(n+ 1)5, (n + 1)-dimensional real trivial vector burdle over a point.Here (n + 1)e means
e@®e® - @ e, Whitney sum of (n + 1)-copies of trivial line bundles. In general, we are
interested in determining which real projective bundle RP(c) of a real vector bundle a
is spin and admits a Riemannian metric of positive scalar curvature.In fact, if the base
space B of a is compact then RP(a) always has a metric of positive scalar curvature due
to the following observation, which is well known to experts in this field (cf. [GrLal],
[Mi], [Ro2] and [St1]).

Observation Let m : E — B be a fiber bundle with fiber F' and structure
group G. If F is a compact manifold of positive scalar curvature, B is a
compact manifold and G acts on F by isometries, then E also has a metric
of positive scalar curvature.

In this paper, we study spin real projective bundle RP(a) of a real vector bundle «
and give the following characterization:

Theorem A. Let a be a n-dimensional real vector bundle with projection map ™ :
E - B. '

(1) Assumen > 2, RP(a) is oriented if and only if

{n =0 (mod2)
w1 (Ot) = w1 (B)

(2) Assumen > 3, RP(a) is spin if and only if

n=0 (mod4)
wi(a) =0 =w;(B)
wo (@) = we(B).
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Here wy, wa mean first and second Stiefel Whitney classes.

Let Lo denote the Hope line bundle over RP" and let B s;n denote the real vector
bundle mLo ® se over RP?. Then RP(Bm s:n) is a fiber bundle over RP™ with fiber
RP™+s—1_ Let [ means the non-negative integers congruent to ! (mod4).

Proposition B. RP(8m s;n) is spin if and only if

(m,s;n) = (2,0;3), (1,1;2), (0,2;3),(0,0;3), (2,2 1).

Proposition B shows spin real projective bundles RP(8,s;n) over RP™ with fiber RP™
can be constructed if and only if

_[@3),
Sty = {(3 1),

Let L; denote the canonical line bundle over RP(8y, s;n) and let Eo denote the pull-
back of Hopf line bundle Ly by the projection map p : RP(Bm,s;n) — RP™. Using the
similar construction, we can form real projective bundle RP(8;) over RP(Bm,s:n) With

4

fiber RP™2, where I = (my,...,M4;m,s;n), Ng = (Z m,—) — 1 and By is the real vector
) - - i=1

bundie m1L; ® Lo ® maLy @ m3Lo & mae over RP(Bm,s:n)-

Proposition C. Spin real projective bundle RP(8;) can be constructed if and only if

(1 1 i) (1,1,?), (1,1,3)
1 @,2,1), 1,2,3)
(n2,m1,7m) = § (1 3, o)
(3,3, all), (3,1, all)

ezcept for (3,3,2), (3,3,0).

1. Outline of the proof of Theorem A
1.1. H-structure

Let G be a Lie group. A principal G-bundle P is a bundle with a G-action on P
preserving fibers whose restriction to a fiber F' is free and transitive. An isomorphism
f: P = P' between principal G-bundle is a fiber-preserving map which is G-equivalent.
Suppose p : G — GL(V) is a representation and P — X principal G-bundle. The
associated vector bundle is a vector bundle P xgV := (P xV)/G = P/G=X. Let E
be an oriented vector bundle and let

O(E) :={(v1,...,n,Z)|{v1,...,vn}is an orthonormal basis of F}
SO(E) := {(v1,.--,vn,z)|{v1,-..,Vn}is an oriented orthonormal basis of E; }.
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In fact, the principal O(n)-bundle O(E) and the principal SO(n)-bundle SO(E) are
related by the O(n)-bundle isomorphism SO(E) X5y, O(n) = O(E).

Definition1.1.1. Let p: H — G be a representation. A H-structure on a principal
G-bundle P; — X is an H-bundle Py together with an isomorphism

Py g G= Pg.

Remark 1.1.2. An orientation on a vector bundle E™ is a SO(n)-structure on O(E).

Definition 1.1.3. A spin-structure on E is a Spin(n)-structure on O(E).
The following characterization of orientation-structure and spin-structure on vector
bundle is well known to experts in this field (cf. [LaMi]).

Theorem 1.1.4.

(1) Vector bundle E is orientable if and only if wy(E) = 0.
(2) Vector bundle E has a spin-structure if and only if wi(E) = 0, wz(E) = 0.

Definition 1.1.5. A spin manifold is an oriented Riemannian manifold with a spin
structure on its tangent bundle.

The Stiefel-Whitney classes w;(X) of a manifold X are defined to be the Stiefel-
Whitney classes of its tangent bundle TX. Hence, we have the following.

Theorem 1.1.6.

(1) Manifold X is orientable if and only if w1 (X) = 0.
(2) Manifold X has a spin-structure if and only if w;(X) = 0,w2(X) = 0.

1.2. The Splitting Principle

Our proof of Theorem A then amounts to calculating first and second Stiefel Whitney
classes of RP(c:). For this purpose, we need the splitting principle (cf. [BoTu]). Let a
be a n-dimensional real vector bundle with projection map 7 : E — B. There exists
a manifold F(E), called a split manifold of E, and a map o : F(E) — B such that
c*E =1, ®---®l, the pullback of E to F(E) splits into a Whitney sum of line bundles
and the homomorphism ¢* : H*(B) — H*(F(E)) is injective.

The Splitting Principle To prove a polynomial identity in the Stiefel-
Whitney classes of real vector bundles, it suffices to prove it under the as-
sumption that the vector bundles are Whitney sums of line bundles.
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Let p : RP(a) — B denote the projectivization of the n-dimensional real vector bundle
o. Tt is a fiber bundle whose fiber at b is the real projective space RP(E;) = RP*!
of all lines in Ep. p*a contains a line bundle L, called canonical line bundle, defined
tautologically at a line I C Ejp to be [. We have the splitting p*a = L @ L+. Note that
RP™~! can be regard as RP(ne) real projective bundle of n-dimensional trivial bundle ne
over point, the tangent bundle of RP™1 is stably isomorphic to the bundle Hom(Lo, Lg),
where Ly is the Hopf line bundle over RP*~! and p*(ne) = Lo ® L#. The tangent bundle
of RP(a) is stably isomorphic to p*T'B @ Hom(L, L+). Due to the fact that Hom(L, L)
has a nowhere-vanishing cross section, Hom(L, L) is trivial. Hence we have the following
stable isomorphism

TRP(a) ~; p*TB & Hom(L, L*)
~, p*TB & Hom(L,L') & Hom(L, L")
=~ p*TB @ Hom(L,L & L")
~ pTBOL®p'a

Using the splitting principle, we may assume a = l, ®--- ®l,. By abuse of notation
we write p*a = I, & --- @ I, for the pullback of . Using the fact that p* is injective,
we write w(B) for p*(w(B)).It follows from the Whitney Product Formula, the tatal
Stiefel-Whitney class of RP(c) can calculated as follows.

w(RP(a)) = w(p*TB)w(L ® p*a)
—w(BwI L& L)
=w(B)w(L @) wlL®l)
=w(B) 1 +y+z1) - (1+y+2n)

where y = wy (L), ; = wi(l), i =1,. , 7.

1.3. Cohomology of RP(«a)

Leray-Hirsch Theorem 1.3.1. Let E be a fiber bundle over B with fiber F. If there
is a global cohomology classes ey, ...,er ON E which when restricted to each fiber freely
generate the cohomology of the fiber, then H*(E) is a free module over H*(B) with basis
€15 » oy Epe

Since the restriction of the canonical line bundle L to a fiber RP(E}p) is the Hopf
line bundle Lo of the projective space RP(E;), by the naturality property of the Stiefel-
Witney class, w; (Lo) is the restriction of y = wi (L) to RP(E;). Hence the cohomology
classes 1,y,...,y" ! are global classes on RP(a) which when restricted to each fiber
RP(E}) freely generate the cohomology of the fiber. The Leray-Hirsch Theorem implies
the cohomology of RP(a) is a free module over H*(B) with basis 1,y,... S,
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Proposition 1.3.2.
H*(RP(a)) = H*(B)[y]/(y" + wi(@)y" ™" + -+ + wn(@)).

Proof. Since L is a subbundle of p*(a), Hom(L, p*(@)) has a nowhere-vanishing cross
section and hence, w,(Hom(L, p*(a)) = 0. By direction computation,
0=wa(L ®p*(a))
=wp(LR (1 & B ln))
=w,(LRL & --BLRI,)
=w(L®lL) - wi(L®ly)
= (y+z1) (Y +2n)

n
= Zy"_iai(:zzl, i & oy el

1=0
where o;(z1,...,Z,) is the i-th elementary symmetric function of z1,...,%,. Using the
assumption @ =l @ - -+ @ ln, wi(a) = 0i(z1, . .., Tn) and hence complete the proof.
It follows from the fact that wi(a) = gi(21,. .., Zn);t = 1,...,1,
w(RP(a)) =w(B)(1L+y+z1) - (1+y+2zs)

= w(B)(1+ (ny +wr (@) + (g2 o+ (n — s (@)y + wa(@)) +--)

=14 (w1 (B) + ny + wi(a)) + (wa(B) + w1 (B)(ny + w1 ())

n(n —

D2 4 (0 D (a)y + wa(e) +

and hence

w1 (RP(a)) = wy(B) + ny + w ()
ws(RP(@)) = wy(B) + w1 (B)(ny + w1 (a)) + (2% Hy? + (n — Dwi ()y + wa(a)).

Therefore, RP(a) is oriented if and only if 0 = w; (RP(a)) = wi(B) + ny + wi(a), or
equivalently,
{n =0 (mod2)
wi(B) = wi(a),

provided n > 2. Similarly, for n > 3, RP(«) is spin if and only if

0 =wi (RP(a)) = wi(B) +ny + wi(a)

0= w3 (RP(a)) =ws(B) + w1 (B) (ny + w1(a)) + (25242 + (n — wn (@)y +ws(a)),
or equivalently,

n=0 (mod2)
w1 (B) = w; ()
0 = (wa(B) + wy (B)ws (a) + wa(@)) + (n — L)ws (a)y + 2Bty



ON THE SPIN REAL PROJECTIVE BUNDLE 315

or equivalently,

w1 (B) =0= wl(a)
wy(B) = wa(a))-

This completes the proof of Theorem K

{n =0 (mod4)

2. Construction of spin real projective bundle over RP™
2.1. Construction of RP(8m,sn)

Let Lo denote the Hope line bundle over RP" and let Bm,s;n denote the real vector
bundle mLo @ se over RP™ and L; the canonical line bundle over RP(Bm,sin). Then

W(RP(Bm s:n)) = (1 +30)" (1 +yo +3)" (A + y1)°,

where yo = w1(Lo), y1 = wi(l)-

9.1.1. RP(A.am)y mra23
For m + 5 > 3, RP(Bm,s;n) is spin if and only if

m+s=0 (mod4)
{wl (RP”) =0=w (,Bm,s;n)
’U.)z(R]Pn) = wZ(ﬂm.s;n)’

Note that w(RP™) = (1 + yo)"tt = 1+ (n+ yo + (—’ﬁ;—)ﬂyg +.-- and W(Bm,sin) =
(1+yo)™ =1+myo+ 1”—(—'%"—111/3 + --.. Hence, for m +s 2> 3, RP(Bm s:n) is spin if and
only if

m+s=0 (mod4)

n+1=0 (mod2)

m=0 (mod2)

n+l=m (mod4),

or equivalently,
m=s=n+1=0,2 (mod4),

or equivalently,
(m,s;n) = (0,0,3), (2.2:1),

where I means the non-negative integers congruent to | (mod4).
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2.1.2. RP(Bm s;in), m+ 5 =2

For the case m + s = 2, we have the relation (yo + y1)™y; = 0 coming from
wa(Hom (L1, p*Bm s:n)) = 0. It follows from w(RP(Bm, sin) = (1+90)"F (1 +yo+y1)™(1+
¥1)° = (1 + yo)" (1 + myo) that RP(B,, s. is spin if and only if

m+s=2
n+l=m (mod2)
(ﬂl-z_lm +n+1m=0 (mod2),

or equivalently,

n+1=0 (mod2) for (m,s) = (0,2), (2,0)
{n +1=3 (mod2) for (m. 8} =(1,1),

or equivalently,
(m,s,;5n) = (0,2;3), (1,1;2), (2,0;3).

This finishes the proof of Proposition B.

2.2. Construction of RP(8;)

Let Lo denote the pull-back of Hopf line bundle Lo by the projection map p :
RP(Bm,s;n) — RP". Using the similar construction, we can form real projective bun-
dle RP(8r) over RP(Bm,s:n) with fiber RP™2, where I = (mq,...,mq4;m,s;n), ng =

4 ; - = _
(Z m¢> — 1 and fr is the real vector bundle mi;L; ® Lo & maLi @ m3Lg @ mye over
=1

RP(Bm s.n). Let Ly denote the canonical line bundle overRP(8;). Then the tatal Stiefel-
Whitney class of RP(8;) is

wRP(Br)) = (1 +yo)" T (1 +yo +y1)™ (L + 31)°
(I+yo+uyr+y2)™ (1 +y1 +y2)™ (1 +yo +y2)™ (1 + y2)™,
where yo = w;(Ls).
4
2.2.1. RP(Br), > m; >3 and m+s >3

1=1

4
For the-case ) m; >3 and m + s > 3, RP(8;) is spin if and only if

1=1

5 iy =3 (mod4)
=1

wy (R]P(,Bm,s;n)) =0=w (IBI)

(05 (R]P(ﬂm,s;n)) = W2 (51)
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Note that
{w(RP(ﬁm.s;n)) =(1+ yO)n+1(1 +Yo + yl)m(l + yl)s
w((Br) =1+yo+y)™ (L +y1)™ (1 +y)™,

RP(Brm,s:n) is spin if and only if

' i m; =0 (mod4)
:L—}i- 1+m=0 (mod2)
m+s=0 (mod2)

4 mi+mg =0 (mod2)
my +mz =0 w (mod2)
M+ (7 +(r+)m= () + (2) +mams (mod?2)
(3) + (5) +ms=(5) + (™2) + mims (mod2)

| ms = mams (mod2),

or equivalently,

' i mi =0 (mod4)
;L_-li— l=m=s (mod2)
my = ma = ms (mod2)
"+ (3 +(r+)m= (M) + () +mams(mod2)
(2) + (5) +ms = [T (%2) + mima (mod?2)
| TR =g (mod2).
Inthecasem; =mg =m3 =0 (mod2), we have
’ }3 m; =0 (mod4)
e = 0, 4 =15 54 (mod2)
\n+tl=m=s=0 (mod2)
I+ =)+ () (mod2)
L(3) + () = (%) + () (mod2),
or equivalently,
((my+me=0=m3 +my (mod4)
m;=0,1=12,3,4 (mod2) form+s=0 (mod4)
n+l+m=m+ms (mod4)

—_— =

my +mg =2 =m3+my (mod4)
m;=0,1=12,3,4 (mod2) form+s=2 (mod4)
| n+1+m=mi+ms (mod4) :



318 CHERNG-YIH YU AND KUEN-HUEI LIN

In this case, (m1,ma, m3, mg;m, s;n + 1) can be presented as follows.

m; Mg M3 Mg M S N —1— 1 (ng, 72,1,_n)
5 0 0 0 00 0 (333
0 0 2 2 0 0 2 (3,3, })
2 2 0 0 0 0 2 (_3, 3,_1)_
2 3 3 3 0 0 0 (B39
o o6 0 0 3 2 2 (330
0 0 2 8 2 32 0 (3,3, 3)
2 2 0 0 2 2 0 (_3, 3,_3)_
2 2 2 8 24 2 2 ([_3]7_, 3, })
2 0 2 0 2 0 2 (3, [}]5, })
5 0 0 3 20 0 (313
6 3 3 0 20 0 ()
0 2 0 2 2 D 2 (3,[1]s, })
2 0 2 0 0 2 0 ) [1]5,§)
. 0 0 2 0 2 2 3,[1s,1)
0 2 2 0 0 2 2 3,[1s,1)
0 2 0 2 0 2 0 (3,[1]s,3),
where [I], means the positigers > r congruent to I.
In the other case m; =mg =m3 =1 (mod2), we have
(4
>.m=0 (mod4)
=1
m;=1,1=1,2,3,4 (mod?2)
\n+l=m=s=1 (mod?2)
"N+ (G =)+ (%) (mod2)
(M+E=(+0P)  (modd),
or equivalently,
[ (m1+me=0=m3+my (mod4)
q M = 1, #=1,2,3,4 (mod?2) form+s=0 (mod4)
) (n+1l+m=m +mg (mod4)
(M) +ma =2=mg +my (mod4)
mi=1 1=1,2,34 (mod2) form+s=2 (mod4)
L \n+l+m=m+ms (mod4)

In this case, (m1, ma, m3,mq;m,s;n + 1) can be presented in a similar way as above
by replacing 0-by 1 and 2 by 3.
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4
For the case S m; > 3 and m + s = 2,we have the relation (yo +v1)™y} coming from

i=1
wo(Hom(Lq, P*Bm

sn)) = 0. It follows from

w(RP(Br)) = (1 +yo)" (1 + 30 +y1)™ (1 +31)°
(1+yo+y1 +y2)™ (L+y1 +92)™(L+yo0+92)" (L +32)™
(14 y0)" (1 + myo)
L+yo+y +y2)™ A +y1 +32)™ 1 +yo +y2)™ (1 + y2)™
(14 90)" (1 +yo +y1 +y2)™ (L+y1 +32)™

In the case (m,s) = (2,0), (0,2), RP(r) is spin if and only if

("3 = (

\ T113

r 4
ZmiEO
i=1
n+1=0

m1+m3£0

mp+mgy =0
my

) + (%) +mums
(%) + (732) +mim2 =0

0

(mod4)

(mod2)
(mod?2)
(mod2)
(mod?2)
(mod2)
(mod?2),

(1+yo +y2)™ (1 +y2)™
for (m,s) = (2,0), (0,2)

(L+yo)" (1490 +y1 +32)™ (1 +31 +y2)™2 (1 + 40 + y2)™3 (1 + y2)

for tm, 8) = (1,1).

mae
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or equivalently,

4

z m; =0 (mod4)
=1

mi=n+1=0, i=1,2,3,4 (mod?2)
n+1=m; +ms (mod4)
m;+my =0 (mod4)

In this case, (m1,ms, m3, mq;n + 1) can be presented as follows.

m; ma m3 mgn + 1 (ng,n1,n)

0 000 0 (313
0 02 2 2 (31,1
3 3 00 2 (1,1
2 2 2 2 0 (31,3

For the other case (m,s) = (1,1), we have

m; ma m3 man + 2 (ng,n1,n)

0 00 0 0 (312

00 2 2 2 (310

5 200 2 (31,0

2 222 0 (87L2
Hence, for Zrl m; > 3, spin real projective bundle RP(3;) can be constructed if and
only if (ns,ny,n) = (3,3,all), (3,1,all) except for (3,3,2), (3,3,0). This proves the half

part of the Proposition C.

4

2.2.3. RP(8;), Z

For the case E m; = 2, we have the relation (yo + y1 + y2)™ (¥1 + ¥2)™*(yo +
i

Y2)™3(y2)™ coming from wq(Hom(La, p*Br)) = 0. It follows from
w(RP(Br)) = (1 +y0)" " (L +yo +y1)" (1 +11)°
(IT+yo+yr+y2)™ (L +y1 +y2)™ (1 +yo +y2)" (1 +y2)™
= (1+y0)"™ (1 +yo +y1)™ (1 +%1)°(1 + (m1 + m3)yo + (M1 + m2)y1)
(1+yo)" "1 +yo+y1)™(1+11)° oif m; = 2 for some i =1,2,3,4
(14 y0)" 21 +yo +y1)™(1 +y1)° ifm,=mg=1,ormg=my=1
(1+y0)" P (1 +yo 4+ y1)™tm(l +y1)fif my =mg=1,0orme =my =1
(1+yo)" P (1 +yo+y1)™(L+11)*T! ifmy =mg=10rme=m3=1
that spin real projective bundle RP(8;) can be constructed if and only if

[1.1.8): (1,1.2), 11, 3 1) o W
(nz,nh") {(1 1 2) ( } p (1 ( 3 2)
(1,2,1), (1.2,3),
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or equivalently,

(n2,n1,n) = (1,1,1), (1,1,2), (1,1,3), (1,2,1), (1,2,3), (1,3,all).

This completes the proof of Proposition C.
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