PARTIAL SUMS OF A CLASS OF UNIVALENT FUNCTIONS

HERB SILVERMAN

Abstract

We investigate the sequence of partial sums f_{n} of univalent functions f for which $\operatorname{Re} f^{\prime}>0$ in the unit disk. Radii of univalence for f_{n} are tracked as a function of n.

1. Introduction

Denote by ${ }^{\circ} S$ the family of functions $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$ that are analytic and univalent in the unit disk $\Delta=\{z:|z|<1\}$ and by R the subfamily for which $\operatorname{Re} f^{\prime}(z)>0$, $z \in \Delta$. In [2], MacGregor investigated the sequence of partial sums $f_{n}(z)=z+\sum_{k=2}^{n} a_{k} z^{k}$ for $f \in R$. He showed that $\operatorname{Re} f_{n}^{\prime}(z)>0,|z|<1 / 2$, and that the radius of univalence for f_{n} is $1 / 2$. The result is sharp only when $n=2$.

In this note, we track the radius of univalence of $f_{n}, f \in R$, as a function of n. Sharp results are found when n is even. The radius of univalence for $f_{n}, f \in R$, is shown to be an increasing function of $n, n \geq 4$.

Characterizing the extreme points of the closed convex hull of various subfamilies of S has enabled us to apply the Krein-Milman Theorem to solve many linear extremal problems. In [1] it is shown that $f \in R$ if and only if $f(z)=-z-2 \int_{X} \bar{x} \log (1-x z) d \mu(x)$, where $|x|=1$ and μ is a probability measure defined on the unit circle X. Consequently, the extreme points of R are $f_{x}(z)=-z-2 \bar{x} \log (1-x z),|x|=1$. Thus, to minimize Re $f_{n}^{\prime}(z),|z|=r$, we need only consider the sequence of partial sums of

$$
\begin{equation*}
f(z)=-z-2 \log (1-z)=z+2 \sum_{k=2}^{\infty} \frac{z^{k}}{k} . \tag{1}
\end{equation*}
$$

2. Main Results

Theorem 1. If $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \in R$, then the sequence of partial sums $f_{n}(z)=z+\sum_{k=2}^{n} a_{k} z^{k}$ is univalent in the disk $|z|<r_{n}$, where r_{n} is the smallest positive root of the polynomial equation $1-r-2 r^{n}=0$. The result is sharp for n even.
Received June 3, 1997.
1991 Mathematics Subject Classification. Primary 30C45.
This work was completed while the author was on sabbatical leave from the University of Charleston as a Visiting Scholar at the University of California at San Diego. The author would like to thank Professor Carl FitzGerald for some helpful discussions during the preparation of this paper.

Proof. In view of the extremal function (1), it suffices to show that $\operatorname{Re} f_{n}^{\prime}(z)=$ $\operatorname{Re}\left(1+2 \sum_{k=2}^{n} z^{k-1}\right)>0$ for $|z|<r_{n}$. We have

$$
f_{n}^{\prime}(z)=1+\frac{2\left(z-z^{n}\right)}{1-z}=\frac{1+z-2 z^{n}}{1-z}
$$

and

$$
\operatorname{Re} f_{n}^{\prime}(z)=\frac{\operatorname{Re}\left(1+z-2 z^{n}\right)(1-\bar{z})}{|1-z|^{2}}>0
$$

if

$$
\begin{equation*}
g(r, n, \theta)=1-r^{2}-2 r^{n}(\cos n \theta-r \cos (n-1) \theta) \tag{2}
\end{equation*}
$$

is positive. But

$$
g(r, n, \theta) \geq 1-r^{2}-2 r^{n}(1+r)=(1+r)\left(1-r-2 r^{n}\right)
$$

which is positive when $|z|<r_{n}$.
Note that $g\left(r_{2 n}, 2 n, \pi\right)=0$. Hence if n is even we have $f_{n}^{\prime}\left(-r_{n}\right)=0$, so that the radius of univalence cannot be extended.

It is of interest to obtain a "reasonable" approximation of r_{n} in Theorem 1 that does not involve extracting roots from an nth degree polynomial. To this end, we give the following corollaries.

Corollary 1. If $f \in R$, then f_{n} is univalent for $|z|<\left(\frac{1}{2 n}\right)^{1 / n}, n \geq 2$.
Proof. It suffices to show that $1-r-2 r^{n} \geq 0$ for $r=(1 / 2 n)^{1 / n}$. We have

$$
1-\left(\frac{1}{2 n}\right)^{1 / n}-2\left(\frac{1}{2 n}\right) \geq 0 \text { if } n\left(1-\frac{1}{n}\right)^{n} \geq 1 / 2
$$

Since an induction argument shows that $n\left(1-\frac{1}{n}\right)^{n}$ is an increasing function of n for $n \geq 2$, the proof is complete.

A similar argument leads to
Corollary 2. If $f \in R$, then
(i) f_{n} is univalent for $|z|<(1 / n)^{1 / n}, n \geq 10$, and
(ii) For any $A>0$, there exists an $N_{0}(A)$ such that f_{n} is univalent for $|z|<(A / n)^{1 / n}$, $n \geq N_{0}(A)$.
Corollary 3. If $f \in R$, then f_{n} is univalent for $|z|<1-\frac{\log n}{n}, n \geq 5$.
Proof. A direct substitution shows that $1-r-2 r^{n} \geq 0$ when $r=1-\frac{\log n}{n}$ for $n=5,6$, 7, 8, 9. In view of Corollary 2, for $n \geq 10$ it suffices to show that $1-\log n / n<(1 / n)^{1 / n}$, or equivalently $\log n+n \log \left(1-\frac{\log n}{n}\right)<0$. Since $\log \left(1-\frac{\log n}{n}\right)<-\frac{\log n}{n}$, the result follows.

The value r_{n} in Theorem 1 is sharp only when n is even. For g defined by (2) and n odd, we have $\min _{\theta} g(r, n, \theta)>(1+r)\left(1-r-2 r^{n}\right)$, which shows that the radius of univalence can be extended beyond r_{n}. In general, it appears to be a computationally difficult problem to find the smallest r for which $\min _{\theta} g(r, n, \theta)=0$ when n is odd. We do this in the special case of $n=3$.

Theorem 2. $f \in R$, the radius of univalence of $f_{3}(z)$ is $\sqrt{2} / 2$. The result is sharp.
Proof. It suffices to look at $f_{3}(z)=z+2 \sum_{k=2}^{3} \frac{z^{k}}{k}$. We have for $|z|=r$,

$$
\begin{aligned}
\operatorname{Re} f_{3}^{\prime}(z) & =\operatorname{Re}\left(1+2 z+2 z^{2}\right)=1+2 r \cos \theta+2 r^{2} \cos 2 \theta \\
& =\left(1-2 r^{2}\right)+2 r \cos \theta+4 r^{2} \cos ^{2} \theta
\end{aligned}
$$

This last expression takes its minimum when $\cos \theta=-1 / 2 r, r \geq 1 / 2$, which shows that $\operatorname{Re} f_{e}^{\prime}(z)>0,|z|<\sqrt{2} / 2$. Since $f_{3}^{\prime}(z)=0$ for $z=(-1 \pm i) / 2, f_{3}$ is not univalent in a larger disk.

From Theorems 1 and 2 we see that the radius of univalence of f_{2} is $1 / 2$, of f_{3} is $\sqrt{2} / 2$, and of f_{4} is ≈ 0.648. Thus the radius of univalence of $f_{n}, f \in R$, is not generally an increasing function of n. On the other hand, f_{3} is the only exception. We will show that the radius of univalence of f_{n} is an increasing function of n for $n \geq 4$. But first we need the following lemma.

Lemma. Let f_{n} be the sequence of partial sums of $f \in R$. If Re $f_{n}^{\prime}(z)=0$ for some $z,|z|=r$, then there exists an $h \in R$ such that $h_{n}^{\prime}(r)=0$.

Proof. If Re $f_{n}^{\prime}\left(z_{0}\right)=0, z_{0}=r e^{i \alpha}$, set $g(z)=e^{-i \alpha} f\left(e^{i \alpha} z\right)$ and $h(z)=\frac{1}{2}(g(z)+$ $\overline{g(\bar{z})})$. Both $g, h \in R$, with $g_{n}^{\prime}(r)=f_{n}^{\prime}\left(z_{0}\right)$ and $h_{n}^{\prime}(r)=0$.

Theorem 3. Let t_{n} be the radius of univalence of $f_{n}, f \in R$. Then t_{n} is an increasing function of n for $n \geq 4$.

Proof. In view of (2) and the Lemma, for n fixed we see that t_{n} is the smallest positive r for which

$$
\begin{equation*}
\min _{\theta}\left(1-r^{2}-2 r^{n}(\cos \theta-r \cos (n-1) \theta)\right)=0 \tag{3}
\end{equation*}
$$

Note that $t_{n} \geq r_{n}$, the least positive root of $1-r-2 r^{n}=0$. Since $g\left(r_{2 n}, 2 n, \pi\right)=0, g$ defined by (2), we have $t_{2 n}=r_{2 n}$.

Now r_{n} increases with n, so that $t_{2 n+1} \geq r_{2 n+1}>r_{2 n}=t_{2 n}$. It thus suffices to show that $t_{2 n}=r_{2 n}>t_{2 n-1}, n \geq 3$. By choosing a particular θ in (2), it is clear from (3) that $t_{2 n-1}$ is \leq the smallest positive root of

$$
\begin{align*}
g\left(r, 2 n-1, \pi+\frac{\pi}{2 n-1}\right) & =1-r^{2}-2 r^{2 n-1}\left(1-r \cos \left(\frac{2 n-2}{2 n-1} \pi\right)\right) \\
& =1-r^{2}-2 r^{2 n-1}\left(1+r \cos \left(\frac{\pi}{2 n-1}\right)\right) \tag{4}
\end{align*}
$$

Since $g(r, 2 n, \theta) \geq 0$ for $r \leq r_{2 n}$ and all θ, it will follow that $r_{2 n}>t_{2 n-1}$ if we can show that $g\left(r_{2 n}, 2 n-1, \pi+\frac{\pi}{2 n-1}\right)<0$.

Noting that $1-r-2 r^{2 n}=0$ when $r=r_{2 n}$, we get from (4) that $g\left(r, 2 n-1, \pi+\frac{\pi}{2 n-1}\right)=$ $1-r^{2}-2 r^{2 n-1}\left(r+2 r^{2 n}+r \cos \left(\frac{\pi}{2 n-1}\right)\right)=1-r^{2}-(1-r)\left(1+2 r^{2 n-1}+\cos \left(\frac{\pi}{2 n-1}\right)\right)=$ $(1-r)\left(r-\cos \left(\frac{\pi}{2 n-1}\right)-2 r^{2 n-1}\right)$. To see that this last expression is negative at $r=r_{2 n}$, it suffices to show that $r<\cos \left(\frac{\pi}{2 n-1}\right)$.

Since $1-r_{2 n}-2 r_{2 n}^{2 n}=0$, our result will follow upon demonstrating that

$$
\begin{equation*}
1-\cos (\pi / 2 n-1)-2(\cos (\pi / 2 n-1))^{2 n}<0, \quad n \geq 3 \tag{5}
\end{equation*}
$$

A direct computation shows that (5) holds for $n=3$. Since $\cos (\pi / n) \geq 1-\pi^{2} / 2 n^{2}$, we have

$$
\begin{gathered}
1-\cos (\pi / 2 n-1)-2(\cos (\pi / 2 n-1))^{2 n} \leq \frac{\pi^{2}}{2(2 n-1)^{2}}-2\left(1-\frac{\pi^{2}}{2(2 n-1)^{2}}\right)^{2 n} \\
\quad \leq \frac{\pi^{2}}{2(2 n-1)^{2}}-2\left(1-\frac{2 n \pi^{2}}{2(2 n-1)^{2}}\right)=\frac{(4 n+1) \pi^{2}}{2(2 n-1)^{2}}-2<0 \quad \text { for } n \geq 4
\end{gathered}
$$

This completes the proof.

References

[1] D. J. Hallenbeck, "Convex hulls and extreme points of univalent functions," Trans. Amer. Math. Soc., 192(1974), 285-292.
[2] T. H. Mac Gregor, "Functions whose derivative has positive real part," Trans. Amer. Math. Soc., 104(1962), 532-537.

Department of Mathematics, Universit of Charleston, Charleston, SC 29424, U.S.A.
E-mail:silvermanh@cofc.edu

