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PARTIAL SUMS OF A CLASS OF

UNIVALENT FUNCTIONS

HERB SILVERMAN

Abstract. We investigate the sequence of partial sums /n of univalent functions / for which
Ref'> O in the unit disk. Radii of univalence for /n are tracked as a function of n.

1. Introduction

Denote by·s the family of functions f(z) = z + I:~2 akzk that are analytic and
univalent in the unit disk~= {z: lzl < 1} and by R the subfamily for which Ref'(z) > 0,
z E~- In (2) MacGregor investigated the sequence o part1a sums n z = zf·1 f () +I:;=2 a己
for f ER. He showed that Re f~(z) > 0, lzl < 1/2, and that the radius of univalence for
fn is 1/2. The result is sharp only when n = 2.

In this note, we track the radius of univalence of fn, f E R, as a function of n. Sharp
results are found when n is even. The radius of univalence for fn, f E R, is shown to be
an increasing function of n, n 2: 4.

Characterizing the extreme points of the closed convex hull of various subfamilies
of S has enabled us to apply the Krein-Milman Theorem to solve many linear extremal
problems. In (1) it is shown that f E R if and only if f (z) = -z -2 fx xlog(l- xz)dµ(x),
where 囯= 1 andµis a probability measure defined on the unit circle X. Consequently,
the extreme points of R are fx (z) = - z 一 2芍 log(l - xz), lxl = I. Thus, to minimize Re
J~(z), lzl = r, we need only consider the sequence of partial sums of

00 分
f(z) = -z 一 2log(l 一 z) = z + 2芷 一·kk=2

(1)

2. Main Results

Theorem 1. If f位）=z+ 立~2 akzk E R, then the sequence of partial sums
fn(z) = z+立=2 a己 is univalent in the disk 囯< rn, where rn is the smallest positive
root of the polynomial equation l 一T 一姸 = 0. The result is sharp for n even.
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Proof. In view of the extremal function (1), ·it suffices to show that Ref詒z)
Re(l + 2蠶; =2z辶 1) > 0 for lzl < Tn. We have

f~(z)=l+ =
2(z 一玕） 1 十 z - 2zn

1-z 1-z

and

Re几 (z) = Re(l + z 一 2玕）(1 - 司
11-平 >0

if
g(r,n,B) = 1 一 r2 - 2严 (cosnB - rcos(n - l)B)

is positive. But
(2)

g(r,n, 0) 2: 1- r2 - 2严 (1 + r) = (1 + r)(l 一 T 一 2严 ），

which is positive when 囯＜互

Note that g(r2n, 2n, 1r) = 0. Hence if n is even we have f訊-rn) = 0, so that the
radius of univalence cannot be extended.

It is of interest to obtain a "reasonable" approximation of rn in Theorem 1 that does
not involve extracting roots from an nth degree polynomial. To this end, we give the
following corollaries.

Corollary I. If f ER, then fn is univalent for lzl < (志）1/n, n 2: 2.

Proof. It suffices to show that 1 - r 一 2严 2: 0 for r = (1/2n)1/n. We have

1 1/n 1
1 - (~) - 2 (~) 2: 0 if n (1 -~) n 2'. 1/2

s·mce an mduction argument shows that n(l 1＿訂 is an increasing function of n for
n 2'. 2, the proof is complete.

A similar argument leads to

Corollary 2. If f E R, then
(i) fn is univalent for lzl < (1/n)1/n, n 2'. 10, and
(ii) For any A > 0, there exists an No(A) such that fn is univalent for lzl < (A/n)1ln,

n 2'. No(A).

Corollary 3. If f E R, then fn is univalent for lzl < 1 - 區n , n 2'. 5.

Proof. A a·irect substitution shows that 1- r- 2严 2: 0 when r = 1-~n for n =5, 6,
7, 8, 9. In view of Corollary 2, for n 2'. 10 it suffices to show that 1- logn/n < (1/n)1/呎
or equivalently log n + n log (1 - 干）< 0. Since log (1 - 平 ＿平n) < n'the result
follows.



PARTIAL SUMS OF A CLASS OF UNIVALENT FUNCTIONS 173

The value rn in Theorem 1 is sharp only when n is even. For g defined by (2) and
n odd, we have mine g(r, n, B) > (1 + r)(l - r 一 2严 ），which shows that the radius of
univalence can be extended beyond rn, In general, it appears to be a computationally
difficult problem to find the smallest r for which mine g(r, n, B) = 0 when n is odd. We
do this in the special case of n = 3.

Theorem 2. f E R, the radius of univalence of fs(z) is溈/2. The result .is sharp.

Proof. It suffices to look at h(z) = z + 2 E辶 ~. We have for 囯 =r,

Ref詎）= Re(l + 2z + 2z2) = 1 + 2r cosB + 2戶 cos 2()

= (1- 2r2) + 2rcos8 + 4戶 cos2 B.

This last expression takes its minimum when cos()= -1/2r, r 2: 1/2, which shows that
Re几 (z) > 0, 囯＜溈 /2. Since !Hz)= 0 for z = (-1 士 i)/2 f3 is not umvalent in a
larger disk.

From Theorems 1 and 2 we see that the radius of univalence of h is 1/2, of h is
y'2/2, and of /4 is~0.648. Thus the radius of univalence offn, f E R, is not generally
an increasing function of n. On the other hand, h is the only exception. We will show
that the radius of univalence of fn is an increasing function of n for n 2: 4. But first we
need the following lemma.

Lemma. Let fn be the sequence of partial sums off ER. If Re f~(z) = 0 for some
z, lzl = r, then there exists an h ER such that h~(r) = 0.

Proof. If Re 几 (zo) = 0, zo = reio, set g(z) = e刁°'f(e主）.and h(z) = ! (g(z) +
詞. Both g, h ER, with 韐 (r) = f~(zo) and h~(r) = 0.

Theorem 3. Let tn be the radius of univalence offn, f ER. Then tn is an increasing
function of n for n 2: 4.

Pro~f. In view of (2) and the Lemma, for n fixed we see that tn is the smallest
positive r for which

min(l 一 r2 - 2严 (cosB- rcos(n - l)B)) = 0.
。

(3)

Note that tn~rn, the least positive root of 1 - r 一玘 = 0. Since g(r2n, 2n,司= 0, g
defined by (2), we have t2n = r2n·

Now rn increases with n, so that t2n+1~r2n+1 > r2n = t2n- It thus suffices to show
that品= r2n > t2n-l, n~3. By choosing a particular() in (2), it is clear from (3) that
t2n- l is ::; the smallest positive root of

g (r, 2n - 1, 1r十户 ）= 1- r2 - 2r足1 (1 - r cos (~~主 ））
= 1 - r2 - 2r2n- l (1 + r cos ( 7r

2n - 1))·(4)
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Since g化 2n, B)~0 for r ::; r2n and all 0, it will follow that r2n > t2n-I if we can show
that g(r2n, 2n - 1, 7r十声 ）< 0.

Noting that 1-r-2严=0 when r = r2n, we get from (4) that g (r, 2n-1, 1r十二一 ＝

I - r2 - 2r2n-l (r + 2r2" 十 rcos匡 ））= I - r2 - (I 一 r)(! + 2r2n-I 十 cos (;;Yi=
(1-r)(r 一 cos (~) - 2r2n-l). To see that this last expression is negative at r = r2n,
it suffices to show that r < cos(云 与 ）．

Since 1 一 r2n - 2r菰 = 0, our result will follow upon demonstrating that

1- cos(1r/2n - 1) - 2(cos(1r/2n - 1))2n < 0, n ?= 3. (5)

A direct computation shows that (5) holds for n = 3. Since cos(可n) 2: 1 - 7f勺2n汽 we
have

7f 21 - cos(計2n - 1) - 2(cos(可2n-1)严 < - 2 (1 - 7f2 rn
一 2(2n - 1)2 2(2n - 1)2

7f2 2nn 2
＜

(4n + 1)丑
一 2(加 -1)2~2(1-2(2n-1)2) = 2(2n-1)2 -2<0 forn~4

This completes the proof.

References

[1] D. J. Hallenbeck, "Convex hulls and extreme points of univalent functions," Trans. Amer.
Math. Soc., 192(1974), 285-292.

[2] T. H. Mac Gregor, "Functions whose derivative has positive real part," Trans. Amer. Math.
Soc., 104(1962), 532-537.

Department of Mathematics, Universit of Charleston, Charleston, SC 29424, U.S.A.
E-mail:silvermanh@cofc.edu


