PARTIAL SUMS OF A CLASS OF UNIVALENT FUNCTIONS

HERB SILVERMAN

Abstract. We investigate the sequence of partial sums f_n of univalent functions f for which $\operatorname{Re} f' > 0$ in the unit disk. Radii of univalence for f_n are tracked as a function of n.

1. Introduction

Denote by S the family of functions $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$ that are analytic and univalent in the unit disk $\Delta = \{z : |z| < 1\}$ and by R the subfamily for which $\operatorname{Re} f'(z) > 0$, $z \in \Delta$. In [2], MacGregor investigated the sequence of partial sums $f_n(z) = z + \sum_{k=2}^n a_k z^k$ for $f \in R$. He showed that $\operatorname{Re} f'_n(z) > 0$, |z| < 1/2, and that the radius of univalence for f_n is 1/2. The result is sharp only when n = 2.

In this note, we track the radius of univalence of f_n , $f \in R$, as a function of n. Sharp results are found when n is even. The radius of univalence for f_n , $f \in R$, is shown to be an increasing function of $n, n \ge 4$.

Characterizing the extreme points of the closed convex hull of various subfamilies of S has enabled us to apply the Krein-Milman Theorem to solve many linear extremal problems. In [1] it is shown that $f \in R$ if and only if $f(z) = -z - 2 \int_X \overline{x} \log(1-xz)d\mu(x)$, where |x| = 1 and μ is a probability measure defined on the unit circle X. Consequently, the extreme points of R are $f_x(z) = -z - 2\overline{x} \log(1-xz)$, |x| = 1. Thus, to minimize Re $f'_n(z)$, |z| = r, we need only consider the sequence of partial sums of

$$f(z) = -z - 2\log(1 - z) = z + 2\sum_{k=2}^{\infty} \frac{z^k}{k}.$$
 (1)

2. Main Results

Theorem 1. If $f(z) = z + \sum_{k=2}^{\infty} a_k z^k \in R$, then the sequence of partial sums $f_n(z) = z + \sum_{k=2}^{n} a_k z^k$ is univalent in the disk $|z| < r_n$, where r_n is the smallest positive root of the polynomial equation $1 - r - 2r^n = 0$. The result is sharp for n even.

Received June 3, 1997.

1991 Mathematics Subject Classification. Primary 30C45.

This work was completed while the author was on sabbatical leave from the University of Charleston as a Visiting Scholar at the University of California at San Diego. The author would like to thank Professor Carl FitzGerald for some helpful discussions during the preparation of this paper.

Proof. In view of the extremal function (1), it suffices to show that $\operatorname{Re} f'_n(z) = \operatorname{Re} \left(1 + 2\sum_{k=2}^n z^{k-1}\right) > 0$ for $|z| < r_n$. We have

$$f_n^{\prime}(z) = 1 + \frac{2(z - z^n)}{1 - z} = \frac{1 + z - 2z^n}{1 - z}$$

and

$$\operatorname{Re} f'_n(z) = \frac{\operatorname{Re}(1+z-2z^n)(1-\overline{z})}{|1-z|^2} > 0$$

if

$$g(r, n, \theta) = 1 - r^2 - 2r^n(\cos n\theta - r\cos(n-1)\theta)$$
⁽²⁾

is positive. But

$$g(r, n, \theta) \ge 1 - r^2 - 2r^n(1+r) = (1+r)(1-r-2r^n),$$

which is positive when $|z| < r_n$.

Note that $g(r_{2n}, 2n, \pi) = 0$. Hence if n is even we have $f'_n(-r_n) = 0$, so that the radius of univalence cannot be extended.

It is of interest to obtain a "reasonable" approximation of r_n in Theorem 1 that does not involve extracting roots from an *n*th degree polynomial. To this end, we give the following corollaries.

Corollary 1. If $f \in \mathbb{R}$, then f_n is univalent for $|z| < (\frac{1}{2n})^{1/n}$, $n \ge 2$.

Proof. It suffices to show that $1 - r - 2r^n \ge 0$ for $r = (1/2n)^{1/n}$. We have

$$1 - \left(\frac{1}{2n}\right)^{1/n} - 2\left(\frac{1}{2n}\right) \ge 0 \text{ if } n\left(1 - \frac{1}{n}\right)^n \ge 1/2$$

Since an induction argument shows that $n(1-\frac{1}{n})^n$ is an increasing function of n for $n \ge 2$, the proof is complete.

A similar argument leads to

Corollary 2. If $f \in R$, then

(i) f_n is univalent for $|z| < (1/n)^{1/n}$, $n \ge 10$, and

(ii) For any A > 0, there exists an $N_0(A)$ such that f_n is univalent for $|z| < (A/n)^{1/n}$, $n \ge N_0(A)$.

Corollary 3. If $f \in R$, then f_n is univalent for $|z| < 1 - \frac{\log n}{n}$, $n \ge 5$.

Proof. A direct substitution shows that $1-r-2r^n \ge 0$ when $r = 1 - \frac{\log n}{n}$ for n = 5, 6, 7, 8, 9. In view of Corollary 2, for $n \ge 10$ it suffices to show that $1 - \log n/n < (1/n)^{1/n}$, or equivalently $\log n + n \log \left(1 - \frac{\log n}{n}\right) < 0$. Since $\log \left(1 - \frac{\log n}{n}\right) < -\frac{\log n}{n}$, the result follows.

The value r_n in Theorem 1 is sharp only when n is even. For g defined by (2) and n odd, we have $\min_{\theta} g(r, n, \theta) > (1 + r)(1 - r - 2r^n)$, which shows that the radius of univalence can be extended beyond r_n . In general, it appears to be a computationally difficult problem to find the smallest r for which $\min_{\theta} g(r, n, \theta) = 0$ when n is odd. We do this in the special case of n = 3.

Theorem 2. $f \in R$, the radius of univalence of $f_3(z)$ is $\sqrt{2}/2$. The result is sharp.

Proof. It suffices to look at $f_3(z) = z + 2 \sum_{k=2}^{3} \frac{z^k}{k}$. We have for |z| = r,

$$\operatorname{Re} f_3'(z) = \operatorname{Re}(1 + 2z + 2z^2) = 1 + 2r\cos\theta + 2r^2\cos2\theta$$
$$= (1 - 2r^2) + 2r\cos\theta + 4r^2\cos^2\theta.$$

This last expression takes its minimum when $\cos \theta = -1/2r$, $r \ge 1/2$, which shows that $\operatorname{Re} f'_e(z) > 0$, $|z| < \sqrt{2}/2$. Since $f'_3(z) = 0$ for $z = (-1 \pm i)/2$, f_3 is not univalent in a larger disk.

From Theorems 1 and 2 we see that the radius of univalence of f_2 is 1/2, of f_3 is $\sqrt{2}/2$, and of f_4 is ≈ 0.648 . Thus the radius of univalence of f_n , $f \in R$, is not generally an increasing function of n. On the other hand, f_3 is the only exception. We will show that the radius of univalence of f_n is an increasing function of n for $n \ge 4$. But first we need the following lemma.

Lemma. Let f_n be the sequence of partial sums of $f \in R$. If $Re f'_n(z) = 0$ for some z, |z| = r, then there exists an $h \in R$ such that $h'_n(r) = 0$.

Proof. If Re $f'_n(z_0) = 0$, $z_0 = re^{i\alpha}$, set $g(z) = e^{-i\alpha}f(e^{i\alpha}z)$ and $h(z) = \frac{1}{2}\left(g(z) + \overline{g(\overline{z})}\right)$. Both $g, h \in \mathbb{R}$, with $g'_n(r) = f'_n(z_0)$ and $h'_n(r) = 0$.

Theorem 3. Let t_n be the radius of univalence of f_n , $f \in R$. Then t_n is an increasing function of n for $n \ge 4$.

Proof. In view of (2) and the Lemma, for n fixed we see that t_n is the smallest positive r for which

$$\min_{a}(1 - r^2 - 2r^n(\cos\theta - r\cos(n-1)\theta)) = 0.$$
 (3)

Note that $t_n \ge r_n$, the least positive root of $1 - r - 2r^n = 0$. Since $g(r_{2n}, 2n, \pi) = 0$, g defined by (2), we have $t_{2n} = r_{2n}$.

Now r_n increases with n, so that $t_{2n+1} \ge r_{2n+1} > r_{2n} = t_{2n}$. It thus suffices to show that $t_{2n} = r_{2n} > t_{2n-1}$, $n \ge 3$. By choosing a particular θ in (2), it is clear from (3) that t_{2n-1} is \le the smallest positive root of

$$g\left(r, 2n-1, \pi + \frac{\pi}{2n-1}\right) = 1 - r^2 - 2r^{2n-1}\left(1 - r\cos\left(\frac{2n-2}{2n-1}\pi\right)\right)$$
$$= 1 - r^2 - 2r^{2n-1}\left(1 + r\cos\left(\frac{\pi}{2n-1}\right)\right). \tag{4}$$

Since $g(r, 2n, \theta) \ge 0$ for $r \le r_{2n}$ and all θ , it will follow that $r_{2n} > t_{2n-1}$ if we can show that $g\left(r_{2n}, 2n-1, \pi+\frac{\pi}{2n-1}\right) < 0.$

Noting that $1-r-2r^{2n}=0$ when $r=r_{2n}$, we get from (4) that $g\left(r,2n-1,\pi+\frac{\pi}{2n-1}\right)=0$ $1 - r^2 - 2r^{2n-1}(r + 2r^{2n} + r\cos\left(\frac{\pi}{2n-1}\right)) = 1 - r^2 - (1-r)(1 + 2r^{2n-1} + \cos\left(\frac{\pi}{2n-1}\right)) = 1 - r^2 - (1-r)(1 + 2r^{2n-1} + \cos\left(\frac{\pi}{2n-1}\right)) = 1 - r^2 - (1-r)(1 + 2r^{2n-1} + \cos\left(\frac{\pi}{2n-1}\right)) = 1 - r^2 - (1-r)(1 + 2r^{2n-1} + \cos\left(\frac{\pi}{2n-1}\right)) = 1 - r^2 - (1-r)(1 + 2r^{2n-1} + \cos\left(\frac{\pi}{2n-1}\right)) = 1 - r^2 - (1-r)(1 + 2r^{2n-1} + \cos\left(\frac{\pi}{2n-1}\right)) = 1 - r^2 - (1-r)(1 + 2r^{2n-1} + \cos\left(\frac{\pi}{2n-1}\right)) = 1 - r^2 - (1-r)(1 + 2r^{2n-1} + \cos\left(\frac{\pi}{2n-1}\right)) = 1 - r^2 - (1-r)(1 + 2r^{2n-1} + \cos\left(\frac{\pi}{2n-1}\right)) = 1 - r^2 - (1-r)(1 + 2r^{2n-1} + \cos\left(\frac{\pi}{2n-1}\right)) = 1 - r^2 - (1-r)(1 + 2r^{2n-1} + \cos\left(\frac{\pi}{2n-1}\right)) = 1 - r^2 - (1-r)(1 + 2r^{2n-1} + \cos\left(\frac{\pi}{2n-1}\right)) = 1 - r^2 - (1-r)(1 + 2r^{2n-1} + \cos\left(\frac{\pi}{2n-1}\right)) = 1 - r^2 - (1-r)(1 + 2r^{2n-1} + \cos\left(\frac{\pi}{2n-1}\right)) = 1 - r^2 - (1-r)(1 + 2r^{2n-1} + \cos\left(\frac{\pi}{2n-1}\right)) = 1 - r^2 - (1-r)(1 + 2r^{2n-1} + \cos\left(\frac{\pi}{2n-1}\right)) = 1 - r^2 - (1-r)(1 + 2r^{2n-1} + \cos\left(\frac{\pi}{2n-1}\right))$ $(1-r)(r-\cos\left(\frac{\pi}{2n-1}\right)-2r^{2n-1})$. To see that this last expression is negative at $r=r_{2n}$, it suffices to show that $r < \cos(\frac{\pi}{2n-1})$. Since $1 - r_{2n} - 2r_{2n}^{2n} = 0$, our result will follow upon demonstrating that

$$1 - \cos(\pi/2n - 1) - 2(\cos(\pi/2n - 1))^{2n} < 0, \quad n \ge 3.$$
(5)

A direct computation shows that (5) holds for n = 3. Since $\cos(\pi/n) \ge 1 - \pi^2/2n^2$, we have

$$1 - \cos(\pi/2n - 1) - 2(\cos(\pi/2n - 1))^{2n} \le \frac{\pi^2}{2(2n - 1)^2} - 2\left(1 - \frac{\pi^2}{2(2n - 1)^2}\right)^{2n} \le \frac{\pi^2}{2(2n - 1)^2} - 2\left(1 - \frac{2n\pi^2}{2(2n - 1)^2}\right) = \frac{(4n + 1)\pi^2}{2(2n - 1)^2} - 2 < 0 \quad \text{for } n \ge 4.$$

This completes the proof.

References

- [1] D. J. Hallenbeck, "Convex hulls and extreme points of univalent functions," Trans. Amer. Math. Soc., 192(1974), 285-292.
- [2] T. H. Mac Gregor, "Functions whose derivative has positive real part," Trans. Amer. Math. Soc., 104(1962), 532-537.

Department of Mathematics, Universit of Charleston, Charleston, SC 29424, U.S.A. E-mail:silvermanh@cofc.edu