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ON L~-QUASI-DERIVATIVES FOR SOLUTIONS OF

PERTURBED GENERAL QUASI-DIFFERENTIAL EQUATIONS

SOBHY EL-SAYED IBRAHIM

Abstract. This paper is concerned with square integrable quasi-derivatives for any solution
of a general quasi-differential equations of nth order with complex coefficients M[y] 一 .>..wy =
w/(t,yloJ, ... ,yln-11) t E (a,b) fprovided that all rth quasi-derivatives o solutions of M[y] -
.>..wy = O and all solu~ions of its formal adjoint M爭 ］一 .>..wz = 0 are in 比(a, b) and under
suitable conditions on the function /.

1. Introduction

In [16] Anton Zettl proved, under suitable conditions on f, that y(i) E L吁0, oo),j =
O, 1, ... , n - I for any solution y of M[y] = f(t, y) provided that all jth derivatives of
solutions of M[y] = 0 and all solutions of M+[y] = 0 are in£2[0, oo), when M be a
regular ordinary linear differential operator of order n with coefficients which are locally
integrable on [O, oo) and Af+ is the formal adjoint of M. The case j = 0 was considered
in [16] for general nth order M and for n = 2 by Bradley [l]. Also, in (14] Wong proved
that all solutions of a perturbed linear differential equation belong to£2 (0, oo) assuming
the fact that all solutions of the unperturbed equation possess the same property, these
results generalized by Ibrahim in [10] for general ordinary quasi-differential equations of
nth order.

Our objective in this paper is to extend the results of Ibrahim, wong and Zettl in
[10], [14], [15] and [16] for general ordinary quasi-differential expression M of order n
with complex coefficients and to prove under suitable conditions on f, that the quasi­
derivatives yfr] E L趴a, b), r = 0, l, ... , n - 1 for any solution y of

M[y] - .Xwy = wf(t, y[0l, ... , y!n-ll)(.X EC) on [a, b),

provided that all rth quasi-derivatives of solutions of the equation

M[y] - .Xwy = 0

(1.1)

(1.2)
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and all solutions of
M廿y] - Xwy = o (1.3)

are in L坏 (a, b). These results are extensions of those proved by Ibrahim in [10]. Our
approach is區ed on an extension of Gronwall's inequality used by Bradley and due to
Gollwitzer [6], on a technical lemma from Goldberg's book [5] and on an appropriate
formulation of the variation of parameters formula.
We deal throughout with a quasi-differential expression M of arbitrary order n defined

by a Shin-Zettl matrix on the interval I= (a, b). The left-hand end-point of I is assumed
to be regular but the right-hand end-point may be either regular or singular.

2. Notation and Preliminaries

The set Zn(I) of Shin-Zettl matrices on the interval J consists of n x n- matrices
A = {ars} whose entries are complex-valued functions on I which satisfy the following
conditions:

｛二鬥 ＼『）a.e. on I (l (~ ~; ~:: }) 2)
ars = 0 a.e. on I (2 :S r + 1 < s :S n)

For A E Zn(I), the quasi-derivatives associated with A are defined by

(2.1)

{ ~:: : 二: ;::;[訌u~[H])'-立~詞t一! ]} ,
y!n) := (y) - I:;=1 ansY

(1:::;r:::;n--:-1) (2.2)

where the prime 1 denotes differentiation.
The quasi-differential expression lvf associated with A is giveri by

M[y] = iny[n], (n 2: 2) (2.3)

this being defined on the set

V(M) := {y : ylr-iJ E ACtoc(I), r = 1, 2, ... , n}, (2.4)

where ACtoc (I) denotes the set of all functions which are absolutely continuous on every
compact subinterval of I.
The formal adjoint M,+ of Mis defined by the matrix A+ E Zn(I) given by,

A+= -L-1A*L, (2.5)

where A* is the conjugate transpose of A and L is the non-singular n x n- matrix,

L := {(-lYor,n+l 一s,} (1 ::S r, s :Sn), (2.6)
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c5 being the kronecker delta. If A+ = {咕}, then it follows that

咕= (-1r+s+1五n一s+l, n一r+l'for each r and s. (2.7)

The quasi-derivatives associated with A+ are therefore.

{ : ~ : : 二 ［五）;;~"" 一,+1 {(yt-'])'-江-1 (-1r+•+l lin-,+1,n-,+1y~丸 }(1夕 <::n-1)(2.8)
y屈 ：= (y!;-11)'-江~l (-l)n+s+l石n一 s+I,IY尸

and

for all y in

M+[y] = iny匝 (n~2),

V(M叮 ：= {y: Yt-l] E ACtoc(I), r = 1,2, ... ,n}.

(2.9)

(2.10)

Note that (A+)+ = A and so (M可十= M. We refere to [3], [9] and [17] for a full
account of the above and subsequent result on quasi-differential expressions.

Let the interval I have end-points a and b, -oo:::; a< b:::; oo, and let w be a function
which satisfies,

w > 0 almost everywhere on I, w E LJ0c(I).

The equation
M[y] = >.wy, (>. E C)

on I is said to be regular at the left end-point a if for all x E (a, b),

aE 良ars E L1[a,x], (r,s = 1,2, ... ,n).

(2.11)

(2.12)

(2.13)

Otherwise (2.12) is said to be singular at a. Similarly we define the terms regular and
singular at b. If (2.12) is regular at both end-points, then it is said to be regular; in this
case we have

a,b E 良 ars E L1(a, b), (r, s = 1, 2, ... , n); (2.14)

see [2], (8] and [9].
We shall be concerned with the case when a is a regular end-point for (2.12), but the

end-point b being allowed to be either regular or singular. Note that in view of (2.7), an
end-point of the interval I is regular for (2,12) if and only if it is regular for the equation,

M可y] =°Xwy (,\ E C)

Let 乓 (a, b) denote the usual weighted£2-space with inner-product

bu, g) = J f(x)詞w(x)dx,
a

(2.15)

(2.16)

and norm 11/11 := (!, !)112, this is a Hilbert space on identfying functions which differ
only on null space.
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一 Denote by S(M) and S(M可 the sets of all solutions of M[y]- .\wy = 0 and M+[y]­
),wy = 0, respectively, and Sr(M) = {y叮M[y] - .\wy = 0, r = 0, 1, ... ,n -1} denotes
the set of all quasi-derivatives of solutions of M[y] - .\wy = 0, etc. Let 咋 (t,.\) for
k = l, 2, ... , n be the solutions of the homogeneous equation (1.2) determined by the
initial conditions,

扣 (to,,\) = 8k,r+I' for all to E [a, b), (2.17)

(k = 1,2, ... ,n;r = 0,1, ... ,n- l). Then <Ptl(t0,.X) is continuous in (t,.X) for a< t < b
囚< oo, and for fixed t it is entire in .X. Let 咋 (t, .X) for k = 1, 2, ... , n be the solutions
of the homogeneous equation (1.3) determined by the initial conditions,

(</Jt)[rl(to) = (-It+rJk,n一r', for all to E [a,b), (2.18)

(k = l, 2, ... , n; r = 0, l, ... , n - 1).
Suppose a < to < b. According to Gilbert [4, Section 3) and Ibrahim [11, Section

3], a solution of M[¢] - ..\w¢= wf, f E 几 (a, b) satisfying 砌 (to, ,\) = O:r+i , r =
0, 1, ... , n - l, is given by

n n

¢(t, A) =芷 的体）<Pi(t,Ao) + [(A - Ao)/(i叮］芝 巴列(t, Ao)
j=l j,k=l

．「 競 (s, Ao)f(s)w(s)ds
t。

(2.19)

where 咋 (t, A) stands for the complex conjugate of 叭 (t, A), and for each j, k, (ik is
a constant which is independent oft, A (but does depend in general on t), also see [9,
Corollary 3.10] and [17, Theorem 3].

Theorem 2.1. (Existence and Uniqueness Theorem). Suppose f E L註 (a, b) and
suppose that the conditions (2.1) are satisfied. Then given any complex numbers ai E
C, j = 0, ... , n - 1 and to E (a, b) there exists a unique solution of M伶］－掃 w = wf in
(a, b) which satisfies

护 (to,..\)= Ctr+l, r = 0, ... ,n - 1.

Proof. See (2, Theorem 3.10.1), (8, Theorem 16.2.2) and (9, Theorem 1.11).

3. Some Technical Lemmas -

Our first lemma is a form of the variation of parameters formula. However it is
different from the form of this formula generally found in textbooks and the literature.
For the variation of parameters formula for general quasi-differential equations, see [11,
Section 3) and [17, Theorem 3). These contain Lemma 3.1 as a special case, see [16).
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Lemma 3.1. Suppose f is locally L~(a, b) function and </>(t, >.) is the sqlution of
M[y] - >.wy = wf satisfying

</>[r] (to,>.) = ar+l (>.), to E [a, b) for all r = 0, 1, ... , n - l.

Then,
n n

护 (t, .X) =芷 CTj扒）劇 (t,Ao) + [(.X - .Xo)/(in)] L~jk劇 (t, Ao)
j=l j,k=l

．「 吋 (s, -Xo)f(s)w(s)ds
a

for r = 0, l, ... , n - l. (3.1)

Crucial in the study of boundedness of solutions of quasi-differential equations is the
fundamental inequality of Gronwall, see (7]. Here, we shall also need the following variant
which may be found in (13].

Lemma 3.2. Let u(t), v(t) be two non-negative functions, locally integrable on [a,b).
Then, the following inequality for O~p < l,

u(t) ::; Co +「v(s)uP(s)ds,
a

Co> 0,

implies that,
u(t)::; [ct-p + (1 - p) 1t v(s)ds] l/{l-p) (3.2)

In particular, if v(t) E L1(a, b), then (3.2) implies that u(t) is bounded.
The next lemma is a special case of an extension of the well-known Gronwall inequality

due to Gollwitzer [6] (See also Willett [12) and Willet-Wong (13)).

Lemma 3.3. Let u, z, g, h, be continuous non-negative functios on [a, b) and suppose
that

u(t)~z(t) + g(t) [「訌s)h(s)ds !
a
］fort~a.

Then,

u(t)~z(t) + g(t) [lt 2z2(s)h(s)~xp[「紐(x)h(x)dx]ds ! fort~a
a

）
The next two Lemmas has been proved in [9] for general case.

Lemma 3.4. ([9, Proposition 3.23]) If all solutions of嶧 ＝這 </J are bounded
on [a, b) for some Ao E C. and 护 E L~(a, b) for j = 1, 2, ... , n, then all solutions of
M伶] = AW<P are also bounded on [a, b) for all A EC.

Lemma 3.5. ([9, Proposition 3.24}) If all solutions of M[咧＝這 ¢and M嘀 ＝
x。w¢are in L!(a, b) for some Ao E C, then all solutions of M[</J] = .-\w</) and M咽 ＝
Aw¢are in L!(a, b) for all.,\ EC.



180 SOBHY EL-SAYED IBRAHIM

4. The Main Results

Suppose there exist non-negative continuous functions k(t) and hi(t), i = 0, ... , n - l
such that

n-1
1/(t, y[oJ, ...'Y圧 1])1 :::; k(t) 十芷 叫 t)lyliJ I汽

i=O
fort 乏 a, -oo <护 < oo, for each i = 0, ... , n - l; 0 :::; a :::; 1.

(4.1)

Theorem 4.1. Suppose f satisfies (4.1) with a= 1, sr(M) U S(M勺 C L00(a, b) for
some r = 0, 1, ... , n - 1 and some >.o E IC and that,
(i) k(t) E L~(a, b) for all t E [a, b),
(ii) hi(t) E I心 (a, b) for all t E [a, b), i = 0, 1, ... , n - 1.
Then cp[r] (t, >.) is bounded on [a, b) for any solution cp(t, >.) of the equation (1.1) for all
). E IC.

Proof. Note that (4.1) and Theorem 2.1 implies that all solutions exist on the entire
interval [a, b), see (2, Chapter 3], [10], [14) and [15).

Let {衛 (t,.Xo), ... ,cpn(t,).o)} and {cpf(t,>.o), ... ,cpt(t,>.o)} be two sets of linearly
independent solutions of (1.2) and (1.3) respectively and let cp(t, >.) be any solution of
(1.1) on [a, b), then by Lemma 3.1, we have,

n n

护 (t, A)= 芷 llj(,\)劇 (t, Ao) + ((>. - Ao) /回 ）芝 ~jk<l>1rJ (t, Ao)
j=l j,k=l

t·! 吋 (s, .Xo)f (s, ¢[01, ... , ¢严 1l)w(s)ds, for r = 0, ... , n - l. (4.2)
a

Hence,
n n

仞 (t, -\)I :SL屈(-\)II</>尸 (t, -\o)I + I入－団 芷 l~jkll</>尸 (t, -\o)I
j=l j,k=l

·「园(s, 袖) I (k(s) 十瓦 犀 s)I刷 (s, -A)I w(s)ds, r = 0, 1, ... , n-1. (4.3)
a i=O

）

Since, k(t) E 比 (a, b) and 吋 (t, -Ao) bounded on [a, b) for some A。E C, then </>J k E
L~(a, b), j = 1, 2, ... , n for some -Ao EC.
Setting,

n

偽＝扒－団芷 11e•1[1吋 (s, A0)Jk(s)w(s)ds, (j = 1, 2, ... , n), (4.4)

then,

n n n-1
I护 (t,A)J::;芝 (cj + laj(A)l)<I>尸 (t, Ao)I + IA - Aol 芷 芷 I~卣

j=l J,k=l i=O
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·I¢尸 (t, 品）丨「 ！吋 (s, Ao) I hi (s) I劇 (s, .X)lw(s)ds, r = 0, 1, ... , n - l. (4.5)
a

By hypothesis, there exist positive constants Ko and K1 such that,

闖(t, Ao)I :S K。and I吋 (t,.Xo)I:::: K1, for all t E {a,b),

j = 1, 2, ... , n and some r = 0, 1, ... , n - l.
Hence, by summing both sides of (4.5) from r = 0, ... , n - l we get,

n-1

図护(t, .X)l)~(n - l))K。立 Ci+ laj(.X)I) + (n - l)KoK心 －入ol
r=O j=l

．立 ,~jkl「(max hi(s 正 1 s, .X)I w(s)ds. (4.6)
j,k=l 。0~述 ；n-1

)) ( 芷 l剧 （
i=O

）

On application of Gronwall's inequality to _ (4.6) and from (ii), we deduce that
立 二i1护 (t, .\ ) 丨is finite and hence the result.

Remark. From [16, Section 3] and [9, Lemma 3.3], ¢and 刷 E L~(a, b) implies
that 邲r] E 広 (a, b) for any solution <I> of the equation (1.1), for all r = 1, ... , j - 1,
l~j~n-1.

'Theorem 4.2. Suppose J satisfies (4.1) with a- = 1, sr(M) u S(M勺 C 広 (a, b)
for some Ao E C and some r = 0, 1, ._ .. , n - 1 and that (i) k(t) E 乓(a, b) (ii) hi(t) E
L00(a, b), i = 0, 1, ... , n - 1, for all t E [a, b). Then¢[rl(t, .\) E L~(a, b) for any solution
</>(t, .\) of the equation (1.1) for all A EC.

Proof. On application of the Cauchy Schwartz inequality to the integral in (4.5) we
get,

丨护 (t,..\)l:S立Cj 十 laj(..\)l)l</J尸 (t, ..\o)I + I..\ - 団立団汩
j=l j,k=l i=O

闐(t,矼 (lt向(s, 入o)自hi(s)jwds) ! (lt lhi(s)II劃 (s, 入) l2wds) ! ,(4.7)

r=O,l, ... ,n-1.
Since <Pj(t, Ao) E L!(a, b), j = 1, 2, ... , n for some Ao E C and hi(t) E£=(a, b) by

hypothesis, then </>j(t, Ao)lhi(t)ii/2 E L!(a, b), j = 1, 2, ... , n, i = 0, 1, ... , n - 1. Let,

肛 ＝（「 I吋 (s, >.o)白hi(s)lw(s)ds) t, z(t) =户Ci+ la1(>.)l)I¢尸 (t, >.o) I,
a j=l

n n刁

and G(t) =扒－団 芝 芷 DJil~1kll</>尸 (t, >.o)I.
j,k=l i=O
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From Lemma 3.3 we have,

I护 (t, .X)I S Z(t) + G(t) (ft 2Z氕s)lhi(s)I exp[ 2G2(x)lhi(x)lwdx]wds).!

Since J:妒 (s)比(s)[w(s)ds and l: G2(x)[h,(x)[w(x)l~e both finite, we concelude that
l<f>[r) (t, .X)I is bounded by a linear combination of the L~(a, b) functions Z(t) and G(t).
Therefore, by using Lemma 3.5, 护 (t,.X) EL誌 (a, b) for all .XE C.

Remark. If we use the Cauchy Schwartz inequality to the integral in (4.5) as:

「= 2 !
圉 llhill</>lwds $ (1『hil2wds) (1 団叩wds) , i = 0, ... , n - 1,

a

we get also the result. We refer to (14] and [15] for more details.

Corollary 4.3. Suppose that f (t, yl01, ... , yln-l)) =立亡~1 hi(t)ylil, sr(M)US(M叮 C
広(a, b) for some .X0 EC and some.r = 0, 1, ... , n -1 and that hi(t) E Li(a, b) for some
p~2, t E [a,b); i = 0,1, ... ,n-1. Then 4>[rl(t,.X)_E L~(a,b) for any solution </>(t,.X) of
the equation {1.1} for all.XE C and all r = 0, 1, ... , n - l.

Proof. The proof is similar to Theorem 4.2 and therefore omitted.
The special case 比 (t) = 0, i = 0, ... ,n -1 and k E L~(a,b) yields:

Corollary 4.4. If all solutions of M椏］＝這 </>and M咽=X。w<p are in EL坏 (a, b)
for some .Xo E C and k E 広 (a, b), then all solutions of ,\1圍- ,\w<f> = wk are in乓 (a, b)
for all.XE C.

Next, we consider (4.1) with O $CY< 1, and have the following:

Theorem 4.5. Suppose f satisfies (4.1) with O $CY< 1, sr(M) U S(M叮 C 乓 (a, b)
for some .X。EC and some r = 0, 1, ... , n - 1 and that,
(i) k(t) E L~(a, b) for all t E [a, b),
(ii) hi(t) E L';J(l一u) (a, b) 0 S CY < 1, i = 0, 1, ... , n - l.
Then 4>[rl(t,.X) E L~(a,b) for any solution </>(t,.X) of the equation (1.1) for all.XE C.

Proof. For OS CY< 1, the proof is the same up to (4.5). In this case (4.5) becomes,
n n n-l

l护 (t, .\)I~芝(ci + Jai (,\)I) 1¢尸 (t, Ao) I + I A - Ao I 芷瓦的
j=l j,k=l i=O

·1¢尸 (t, Ao)I jt I吋 (s, Ao) I hi (s) I斟 (s, ,\)law(s)ds, r =0, 1, ... , n-1.(4.8)
a

Applying Cauchy Schwartz inequality to the integral in (4.8), we find

「1競 (s, Ao) I hi (s) I¢(s, ,\) I a w (s)ds
a~(i I吋 (s, Ao)比(s)II-Lw(s)ds);; (it陋(s, ,\) l2w(s)ds) 钅, (4.9)
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whereµ= 2/(2 - o-). Since 吋(s, -\o) E 乓(a, b) for some -\o E C, j = 1, 2, ... , n and
2/(1-u)

hi(s) E Lw (a, b) by hypothesis, then we have 吋 (s, -\o)hi(s) E L七 (a,b) for some
Ao EC, j = 1, 2, ... , n; i = 0, l ... , n - l. Using this fact and (4.9) in (4,8), we obtain

护 (t, A)I ::;立 (ci + laj(A)l)I</>尸 (t, Ao)l + K,肅 -Aol t 団汩
j=l j,k::::l i==O

閾1(t, Ao)I (「l</>[i) (s, A) l2w(s)ds) 钅, r = 0, 1, ... , n - 1,
a

(4.10)

where Ko= II吋 (t, Ao)hi(s)IIµ, II·IIµdenotes the norm in L~(a, b). From the inequality

(u + v)2~2(u2 + v勺 ， (4.11)

it follows that

护 (t, .-\)12~主(c; + lo:i(.-\)I勺 1¢尸 (t, .-\o)l2 + 4K計.-\ - .-\。r 立団 ,~j平
j=l j,k=I i=O

極尸(t, Ao)l2 (It陋 (s,A)l2w(s)ds)u, r=O,l, ... ,n-l. (4.12)
a

Setting, 陷= 1: 楠尸 (t, Ao)四(s)ds, for some Ao EC and some r = 0, ... ,n - l; j =
1,2, ... ,n and integrate (4.12) to obtain

「仞(s, ..\)j2w(s)ds~K2 + 4/(詎- ,\。 n·n-1 t
a

12 ( 芷 芝 ,~凸 闖(s, ..\o)l2

[(「

;.•~• ;~o !.
u

· 陋 (x, ..\)j2w(x)dx) ] w(s)ds, (4.13)
a

where
n

氐 =4芷 (c; + lai(A)l2)K1
i=l

On application of Lemma 3.2 to (4.13) for O~a< I and of Gronwall's inequality to
(4.13) for a = l, yields the result.

Theorem 4.6. Suppose f satisfies (4.1) with O~a< 1, sr(M)US(M芍 CL誌 (a, b)n
L00(a, b) for some Ao EC and some r = 0, 1, ... , n - 1 and that,
(i) k(t) E L~(a, b) for all t E [a, b),
(ii) 比(t) E Li(a, b) for any p, 1~p~2/(1 - a), i = 0, 1, ... , n - l.
Then护(t, .X) E乓 (a, b) n L00(a, b) for any solution <jJ(t, .X) of the eq~ation (1.1) for all
.XE C.
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Proof. Since sr(M) U S(M鬥 C L~(a, b) n L00(a, b) for some ,\。E <C and some
r = 0, 1, ... , n - 1, then (j)尸 (t, 品 ），吋 (t, >.0) E Li(a, b), j = 1, 2, ... , n for every q~2
and for some ,\0 E <C, r = 0, 1, ... , n - l.
First, suppose that 比 (t) E L~(a, b) for some p, 1~p~2. Setting,

Ko = 11</J[r] (t, Ao)lloo and陷= II吋 (t, Ao) lloo, j = 1, 2, ... , n,

for some ,\0 E <C and some r = 0, 1, ... , n - 1, we have from (4.8),

n n n刁

l剧 (t,.X)I::; Ko(芷 (cj + laj(.X)I)) + K。K品- .Xol ( 芷 芷茫 l
j=l j,k=l i=O

．［犀s)I刷 (s, .X) I 17w(s)ds) . (4.14)

Since 比 (t) E Lt(a, b), 1 :Sp :S 2, then Lemma 3.2 together with Gronwall's inequality
implies that 护(t, -\) E L00(a, b) for all -\. E C, .1.e., there exist a positive constant K2
such that,

圄rl(t,-\)I :S K2 for all A EC, t E [a,b), r = 0,1, ... ,n-1. (4.15)

From (4.8) and (4.15), we obtain
n

I护 (t, >.)I~严(cj + laj(>.)I + K3)l</>~r](t, >.o)I,
j=l

for some appropriate constant K3. Since </>尸 (t, Ao) E 乓 (a, b) for some,\。E (C and some
r = 0, l, ... , n - l, this proves 4>[rl(t, ,\) E Li(a, b) for all A EC, 1~P~2.

Next, suppose that 比(t) E L~(a,b), 2 < p~2/(1- a); i = 0,1, ... ,n- l. Define
q~2 by

1 2- a 1
一- = .....
q 2 p

(which is possible because of the restriction on p). Thus 劇 (t, >.o)吋 (t, Ao) E 几 (a, b)
and </>j(t, Ao)比 (t) E£~(a, lJ), µ= 2 / (2 - a).
Repeating the same argument in the proof of Theorem 4.5, from (4.8) to (4.13), we

obtain the fact that 4>[rl(t, >.) E L~(a, b). Returning to (4.9), we find that the integral on
the left-hand side is bounded which implies, by (4.8) that,

n

护 (t, A)I~ 芷 (cj + laj(A)I + K3)I¢尸 (t, Ao)I,
j=l

for some appropriate constant K3. Since </>尸 (t, ,\0) E L00(a, b), this completes the proof.
We refer to [10], (14] and (16] for more details.



ON L品QUASI-DE;R,IVATIVES FOR SOLUTIONS

References

185

[1] J. S. Bradley, "Comparison theorems for the square integrability of solutions of (r(t)y')'+
q(t)y = f(t, y)," Glasgow Math. Soc., 13 (1972), 75-79.

[2] D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Oxford Uni­
versity press, 1987.

[3] W. N. Everitt and D. Race, "Some remarks on linear ordinary quasi-differential expres­
sions," Proc. London Math. Soc., (3), 54(1987), 300-320.

[4] R. C. Gilbert, "Simplicity of linear ordinary differential operatiors, " Journal of Differential
Equations, 11(1972), 672-681.

同 S. Goldberg, "Unbounded linear operators," McGraw. Hill, New York, 1966
[6] H. E. Gollwitzer, "A note on a functional inequality," Proc. Amer. Math. Soc., 23(1969),

642-647.
[7] M. R Mohana Rao, "Ordinary differential equations," Theory and Applications, First pub­

lished in the United Kingdom in 1989 by Edward Arnold (Publishers) Limited, London.
[8] M. N. Nainiark, "Linear differential operators," G. I. T. T. L., Moscow {1954), Ungar, New

York, 1(1967), 11(1968)
[9] Sobhy El-sayed Ibrahim, "Problems associated with differential operators," Ph. D. thesis

(1989), Faculty of Science, Department of Mathematics, Benha University, 卫gypt.
[10] 一 "Boundedness for solutions of general ordinary quasi-differential equations," Journal

of Egyptian Mathematical Society, 2(1994), 33-44
回一 "The spectra of well-posed operators," Proc. ~oyal Soc. of Edinburgh, 124A(1995),

1331-1348.
[12] D. Willett 泅onlinear vector mtegral equat10ns as contraction mappings," Arch. Rational

Mech. Anal., 15(1964), 79-86.
[13] D. Willett and J. S. W. Wong, "On the discrete analogues of some generalizations of Gron­

wall's inequality," Monatsh. Math., 69(1965), 362-367, MR 32#2644.
[14] J. S. W. Wong, "Square integrable solutions of perturbed linear differential equations,"

Proc. Royal Society of Edinburgy, 73A, 16, (1974/75), 251-254.
[15] A. Zettl, "Square integrable solutions of Ly= f(t, y)," Proceedings of the American Math-

ematical Society, 26(1970), 635-639. ·
(16] 一 "Perturbation of the limit circle case," Quart. J. Math., Oxford (3), 26(1975), 355-360.
[17] A. Zettl, "Formally self-adjoint quasi-differential operators," Rocky_ Mountain Journal of

Mathematics, 5(3)(1975), 453-474.

Benha University, Faculty of Science, Department of Mathematics, Benha 13518, Egypt.


