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ON SOME FIXED POINT THEOREMS FOR MAPPINGS
WITH GENERALIZED LIPSCHITZIAN ITERATES

BALWANT SINGH THAKUR, BIRENDRA KUMAR SHARMA AND JONG SOO JUNG

Abstract. In this paper we prove the following theorem: Let p > 1 and let E be a p-uniformly
convex Banach space, K a nonempty bounded closed convex subset of E, and A = [ta,k]n,k>1

a strongly ergodic matrix. Let T : K — K be a continuous mapping satisfying: for each z, y in
K andi=1;2; .«

1Tz — T y|| < aillz — yll + bi(llz — T2l + lly — T'yll) + c:(llz = Tyl + lly — T*=l))

where a;, b;, c; are nonnegative, 3b; + 3¢; <1, and

co

liminf  inf E toiii 2p_l{az+m o L B

n—+oc0 m=0,1,2,..

k=1

a;+bi+c; B: = 2b;4+2c;
1

where a; = = =g and ¢, > 0 is some constant. Then T has a fixed point in

K.

1. Introduction and Preliminaries

Let K be a nonempty subset of a Banach space E. A mapping T: K — K is said to
be Lipschitzian if for each n > 1 there exists a positive real number k, such that

IT"z — T"y|| < knllz — yl|

for all z, y in K. A Lipschitzian mapping is said to be nonexpansive if k, = 1 for all
n > 1 and asymptotically nonexpansive [5] if lim;— 00 kn = 1.

A Lipschitzian mapping is said to be uniformly Lipschitzian if k, = k for alln > 1
or in other words, if the Lipschitz constant of T, ‘

IT"z — T y||

™ = sup { ==

:a:;éy,:c,yeK}<k,n21

holds for some k£ > 0.
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In [8], Lifshitz proved the following result:

Theorem A. Let K be a nonempty closed conver bounded subset of a Hilbert space.
IfT: K = K is a mapping such that

lim sup [||T™|| < V2,
n—oo

then T has a fized point in K. '

Let p > 1 and denote by A a number in [0,1] and by wp(A) the function A- (1 — A)? +
AP (1 —=2). The functional || - ||? is said to be uniformly convex (c. f. Zalinescu [16]) on
the Banach space E if there exists a positive constant ¢, such that for all A € [0,1] and
z,y € E the following inequality holds:

1Az + (1= XyllP < Allzll” + (1 = A)llyll” = ¢p - wp(A) - l|lz — ylIP (1)

Xu [15] proved that the functional || - ||? is uniformly convex on the whole Banach space
E if and only if E is p-uniformly convex, i.e., there exists a constant ¢, > 0 such that
the moduli of convexity, g(€) > ¢p-€P for all 0 < e'< 2.

Gérnicki and Kriippel [7] extended Theorem A via an inequality in Banach space and
proved the following:

Theorem B. Let E be a uniformly conver Banach space with diam E > 2 for which
norm satisfies (1) for some p > 2 and let K be a nonempty bounded closed convex subset
of E. If T: K =+ K is a mapping such that

1 i
i e P
lim E HI e < 1 + ¢p,

n
=1

then T' has a fized point in K.

Recently, Gérnicki [6] generalized Theorem B to the following result via Banach space
inequalities and more general summation methods involving

o0
3 tax - NITHIP, n=1,2,...
k=1

where A = [tn i]n,k>1 is strongly ergodic matrix [2]:

(a) An,ktn,k 2 0,

(b) Ak limn—)oo tn,k = Os

(C) Ay El?;l tn,k =1,

(d) limpseo 3oy ltnks1 —tni| =0

Theorem C. Let p > 1 and let E be a p-uniformly convez Banach space, K a
nonempty bounded closed convex subset of E, and A = [tni]lnk>1 @ strongly ergodic
matriz. If T : K — K 1is a mapping such that

n—oo m=0,1,2,

o0
g =liminf inf Z takITFF™IIP < 1+ ¢
ot



ON SOME FIXED POINT THEOREMS 189

then T has a fized point in K.

We now consider the following class of mappings which we call generalized Lips-
chitzian mapping:

A mapping T : K — K is said to be generalized Lipschitzian if

IT"z — T"y||
< anllz —yll + bn(llz — Tzl + [ly — T"yll) + ealllz = T"yll + lly - T"zl))  (2)

for each z, y in K and n > 1, where a,, b,, ¢, are nonnegative constants such that
3(bp +cn) <1lforalln > 1.

This class of mappings are more general than nonexpansive, asymptotically nones-
pansive, Lipschitzian and uniformly Lipschitzian mappings and it can be seen by taking
b, == gy, =00, '

In the present paper, we extend the result of Gérnicki [6] and consequently Gérnicki
and Kriippel [7] and Lipschitz [8] for generalized Lipschitzian mappings and in p-uniformly
convex Banach space.Further, we establish for these mappings some fixed point theorems
in Hilbert space, LP spaces, Hardy space HP or Sobolev spaces H*? for 1 < p < co and
k> 0.

2. Main Results
Before presenting our main result, we need the following:

Lemma 1 [6]. Let p > 1 and let E be a p-uniformly convexr Banach space, K a
nonempty closed convex subset of E, and {zp,} C E a bounded sequence. Then there
exists a unique point z in K such that

(o e}
lim sup Z tnk - |lzk — 2||P

n—oo k=1

o o]
<limsup Ytk - llzk — 2lIP —cp - ||z — 2| (3)

n—oo f=4

for every z in K, where c, is the constant given in (1) and A = [tnk]nk>1 S @ strongly
ergodic matriz.
We are now in position to give our result:

Theorem 1. Let p > 1 and let E be a p-uniformly convex Banach space, K a
nonempty bounded closed convexr subset of E, and A = [tni]lnk>1 @ strongly ergodic
matriz. If T : K — K is a continuous generalized Lipschitzian mapping such that

n—o0 m=0,1,2,.

o0
h=lminf inf 3 tnk-22"of, , + Bl ym} < 1+0cp
k=1
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where
- _ Qg4m t+ bktm + Crki4m
e 1-= bk+m — Ck+m
and
_ 2bggm + 2Ck4m
ﬂk-{»m ==

gl = bk+m == ck+m,
then T has a fized point in K.

Proof. Let {n;} and {m;} be sequences of natural numbers such that

) (o.°]
s — ; .op—1f.P p
h = hirll»élolfm:(l)l,llf:l...kz_:l tnik 2P {0 . + Biym, ) <1+ cp.
For any zp € K, we can inductively define a sequence {z;} in the following manner: z;
is the unique asymptotic center in K of the sequence {T"z;_; }n>1, i-e., 2; is the unique

point in K that minimizes the functional

o0
rj-1(z) =Hmsup Y tn, - [lz — T ™z ||P
100 k=1

over z in K. Using (2), after a simple calculé,tion, for each z,y € K, k > N > 1, we have

TNz — T*y||
any + by + N . 2bn + 2¢cn
Y —— -l — T* Ny|l+1—_bN—_N-Hx—T"yII (4)

=an - |lz = T*Ny|| + Bn - [|lz — T*y||
In view of inequality (1), for any fixed NV, k, m; € Nand 0 < A <1, we have

X254+ (L= X) - TN g5 — T*F™iz5_4|IP

= |A(z5 — THF™izj_1) + (1 — (TN 25 — TF™iz54)|P

L Ao flzy = Ty 4 ]1P ¢ (1 = X} < [TV gy = TH g4 1P
—cp - wp(A) - |lzj = TN 2P

Multiplying both sides of this inequality by suitable elements of the matrix A and sum-
ming, we have

oo
Y tnk - Az + (1 — NNz = THEmigy , ||P
k=1
» o0
SAY tagn - llzg — TF™z P
k=1

o0
(A= A) ) tagk - 1TV 25 — TE™iz 4|1F
k=1

—cp-wp(A) - ||lzj = TNz||IP fori=1,2,....
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Taking the limit superior on each side as 1 — 00, we obtain

lim sup Z tn: kllAz; + (1 = A)TN z; — Th+miy; 1||p

1—00 F=1

<A hmsupZtn” lzj — TF+™iz;_1||P

1—00 k=1

o0
+(1=X) - Hmsup Y _ tn, k- [TNz; — TEF™iz;_4||P

1—00 k=1

—cp - wp(A) - [lz; — TV 2P

and
' (/\)'llz'-TNZ'H”
Cp ~Wp J J
<A hmsupZtn” lzj — TF+™iz; 4|
12— 00 =1
+(1—/\)hmsup2tn” |TN 25—~ Trt ™, |IP
1—>00 k=1
—hmsupZtn“ Azj + (1 = N)TNz; — TF+miz; ||
11— 00
<(1=-2A)- hmsupZtn k|| TNz — Th™ig;_,||P
1—00 k=1
- lim su t zj —T*F™ig L|IP
={1 = 1—>oopz nik || 1l
and

ep [A(1— /\)”_1 + M- |lz; — TN z||P

<11msupZtn“ TNz — TRE™iz 4 |IP

1—00 k=1

— lim sup Z Bk [[ey =T g, P,

1—00 k=1

Taking A = 1, we get

(o]
cp - llzj = TNzj||P <limsup Y tn, - [TV 2z — TH¥ ™z 4|

1—00 k=1

— lim sup Z bk - |27 — TE ™ 254 ||P.

1—00
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In view of inequality (4), we have
p - Iz — TNZ;'II‘D

< lim sup [Zt’“ TNz = TR™iz;4|IP

i—00

+ Z tnek{alN - llz; = T*N* Mz + B - llz; — Tk+m‘zj—1||}p]
k=N+1

—hmsupZtn“ lz; — TFF™iz;_4|P

1— 00

Slimsup[ E be ke | TV g TR ™ 4 ||
i N+1

+2p—1{ Z B e !z _Tk—N+m,~zj__1”p
k=N+1

B D tn gy Tz )]

k= N+1

—l1msupZtn, Nzj = T ™ z;_4||P

21— 00 k 1

<hmnup[2tn., TN 2y — Ty P

1—00 k=1

O
+2”_1{ B tnekan - llzg — THF™iz 4 |P
k=1

0B S ol — THmez 1P}

k= N+1

-—hmsupZtn“ llz; — TF+™iz;_4||P

21—+ 00

= hmsup [Zt"n TNz —T* g 4P

1—+00

+2p“1{°‘§\’ ' (Z tngk - ll2j — T ™ 251 |IP
" k=1
oo

= (tnyk = tnogan) - llzj — TH™ 25 1||”)
k=1
(o) . N
B (D tmak - llzg = TH+™ 25 1P = 3t allzs = TH™ 254 |P) }

k=1 k=1
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o0

—lim_supZItn,.,k-HzJ /Rl T
i—00 k=1

< 271 (ad + ) — 1] - limsup 3 tnk - Iz — Tz |

1—>00

k=1
since
(i) Zk _itnikc I TNzj — TF+™iz;_4||IP — 0 as i = +o0,
(i) ¥ emillnek = Lughrat) * |25 — T"+m'z _1||P = 0 as i = +o0,

(iii) rj-1(25) < rj-1(2j-1)-
For any fixed N € N, we have
cp - |lz5 — TNZJ'”p < [2’9—1(0111’\1 i g ﬁﬁr) ~ 1] rj—1(25-1)-
We multiply this inequality for N = k + m; by suitable elements t,, ; for £k = 1,2,....

Summing up these inequalities and taking the limit superior on each side as i — +oo,
we obtain

ep * hmsupZtn” |zj — T*F™iz;)P

11— 00 kg

0
s il—i)ngoztni,k : {zp_l(az—f-m.' + '6£+mi) - 1} ' Tj_l(zj'-l)
k=1

and
ri(zi) £ B rj-i(z5-1);
where
1 1
v E % [}_1{&221&,1“;; [ 2P g T 0] — 1}] ol
In a similar way, we obtain
Tj(Zj) S Bj '7'0(20), ] =1,2,....
Next, we show the convergence of the sequence {z;}. For a fixed N € N, we have
lzjr1 — 2P < 2P (l|zj41 — TN 2|7 + 1T 25 — 24IP)

We multiply this inequality for N = k + m; by suitable elements t,, , for k = 1,2,..
Summing up these inequalities and taking the limit superior on each side as i — +o0,
we obtain

o0
llzj1 — 2P < 2P {limsup D tn k- N2j01 — TN 2P

1— 00 g

+ lim sup Z tnok - 1T 2z — 25]|P]

11— 00 k=1
= 2771 (rj(2j41) + ri(25))
< 27 -r;i(24)
S 2P . BJ . r’-o(zo)
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and
241 — zi|| < 2[Bj 'To(zo)]’l’ ~ 0 as § = +o0,

which show that {z;} is a Cauchy sequence. Let z = lim;_, 2. For fixed N € N, we
have

llz — TNz

<z =zl + llz5 = TNz + |ITV 2; — TV 2|
14+ an + 2¢en 14+bny —cn

< — 2 Mze — TN oy
- l"bN'—CN ”Z ZJ“+1_bN_cN ”Z] Z]”
or
llz — TN|?
= 1+GN+2CN p 1+bny +cny\P N
<P1-[“). — P (__) 7 .p]
<2 ( 1-bny—cn Iz = 21" + 1-by—c, 25 %l

- 1+any+2en\P
<2° L. e p . — 2. ||P D . mN ,P].
<2 [(1_bN_cN) llz = 2P + 27 ||z; — TN z]|

We multiply this inequality for N = k + m; by suitable elements t,, ; for k =1,2,....
Summing up these inequalities, we obtain

(o o}
S tnek - Iz = TEHms 5
k=1

oo
1+ akym; + 2Cktm; \P
< 2p-1 [Hz — z;||P - Ztna.k . ( k+m; k+m; )
e 1 — biginy — Chim

oo}
2 3t ellzs - TH™)p9].
k=1
Taking the limit superior on each side as i — +o0, we get

o0}
limsupZtm,k ||z = TEtm™iz||P

=00 k=1

oo
1 ; +2¢ .\ P
< 2r-l. [”z — z||? - limsupZtm,k ) ( + Qp4m; + k+m.)
k=1

i—00 1- bk+m; — Ck+m;

co ,
27 Hmsup 3 b, kllzg — T 5]

1—00 k=1

(oo}
.+ 2 o kP ;
< 9p—1 [”z — z]|? - limsupZtm,k : (1 + Gk4m; + Ck+m.) +27. BJro(zo)]
k=1

- 1—00 1~ bk+m.~ — Ck4m;
—+0asj— +c0
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Therefore,

(e o]
lim sup Zt”f”‘ |z = TEr™iz||P = 0.

1—00 k=1

This implies that T, = z. Indeed, for any € > 0 there exists natural numbers n, n + 1
such that
|z —T"z|| < € and ||z = T"z|| < &.

Otherwise, we have for any n and m.
= 1
D tnk - llz = TH™2P 2 oe?
k=1

and hence

e o] o0
. 1
lim sup Z tnk - |2 = T*F™2||P > lim sup Z to k- ||z = TFF™iz||P > 56”.

1—00 E—1 1—00 k—1

Thus for every natural number [/ there exists a natural number n; such that

1 1
|z = T™z| < 7 and ||z — T™*z|| < T

It follows that
Tz -5 z and TPl - 2381 <5 oo,

Since T is continuous, we have
T =T i T o= fin TP e
l—oo =00

This completes the proof.

3. Some Applications
In a Hilbert space H, the following identity holds:
Az + (1 = Xyll* = Allzll* + (1 = Iyl = A1 = N)]lz - > (5)

for all z, y in H and ) € [0,1].
By (5), we immediately obtain from Theorem 1 the following:

Corollary 1. Let K be a nonempty bounded closed convez subset of a Hilbert space H
and A = [tn klnk>1 6 strongly ergodic matriz. If T : K — K is a continuous generalized
Lipschitzian mapping such that

o0
liminf inf Z biE (af‘l+m + Bz+m) <l
k=1

i—oo m=0,1,2,
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then T' has a fized point in K.
If 1 <p <2, then we have for all z, y in LF and X € [0,1]
1Az + (1 = Nyll® < Ale|l® + (1 - Myll* = A1 = A) - (p = Dllz — yl” (6)

(The inequality (6) is contained in Lim, Xu and Xu [10] and Smarzewski [14].)
Assume that 2 < p < +00 and hp is the unique zero of the function g(z) = —zP~! +
(p— 1)z + p — 2 in the interval (1, c0). Let

9 L4-hg1
cp=(—1)-(1+h,)? p—m
Then we have the following inequality:
Az + (1 = Nyll” < AMlz|l” + (1 = MIYlP = wp(A) - ¢ - Iz — ylI? (7)

for all z, y in L? and A € [0,1] (The inequality (7) is essentially due to Lim [9]).

Corollary 2. Let K be a nonempty bounded closed convez subset of LP(1 < p < +00)
and A = [ty k]nk>1 a strongly ergodic matriz. If T : K — K is a continuous generalized
Lipschitzian mapping such that

lim inf nf Ztn k- 2(0F m + Boym) <D, for1<p<2

n—oo m=0

and

liminf inf Zt"k 2P 1(Ozk+m+ﬁk+m)<1-i—c,[,, forp > 2,

n—oo m=0,1,2,.

Then T has a fized point in K.

Let H?, 1 < p < 400, denote the Hardy space [4] of all functions z analytic in unit
disc |z| < 1 of the complex plane and such that

1 27 . 8 )
llz]| = lim (%/ |x(re'9)|pd9)p < 0
o 0

r—1

Now, let 2 be an open subset of R*. Denote by H*?(Q),k > 0,1 < p < +o0,
the Sobolev space [1, p. 149] of distributions z such that D%z € LP(Q) for all |o| =
a1 + -+ a, < k equipped with the norm.

lall = (3 / ID%a(w)Pdw)”

|| <k

Let (R, ) 41 1a), @ € A, be a sequence of positive measure spaces, where index set
A is finite or countable. Given a sequence of linear subspaces Xg in L?(Qq, 3 or Ba), We
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denote by Lgp,1 < p < +00 and ¢ = max{2,p} [11], the linear space of all sequence
z{zo € X4 : @ € A} equipped with the norm

el = (3 Ulzallpa)?)

a€EA

where || - ||p,o denotes the norm in LP(Qq, ", ia)-

Finally, let L, = L?(S1,>,, 1) and L, = L9(S3,Y 5, u2), where 1 < p < +o0,
¢ = max{2,p} and (S;,)_;, ;) are positive measure spaces. Denote by Ly(Ly) the
Banach spaces [3, III. 2.10] of all measureble L,—value function z on S, such that

1
€

lell = ([ (o)) ha(as))

These spaces are g-uniformly convex with ¢ = max{2,p} [12, 13] and the norm in these
spaces satisfies

Az + (1 = Xyll? < Allll? + (1 = Nllgll? = d - w(A) - Iz — y||?

with a constant
1l for1<p<?2

defasd §
P {p,lzp for 2< p < 40

Here, from Theorem 1, we have the following result:

Corollary 3. Let K be a nonempty bounded closed conver subset of the space E,
where E = HP?, or E = H*?(Q), or E = Lyp, or E = Ly(Ly), and 1 < p < +oo,
g =max{2,p}, k>0 and A = [tn.k]n.k>1 18 a strongly ergodic matriz. If T : K — K is
a continuous generalized Lipschitzian mapping such that

liminf inf Z A 2"_1{0124_m + Bf L} <14dy,
o et

n—oo m=0,1,2

then T' has a fized point in K.
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