ON SOME FIXED POINT THEOREMS FOR MAPPINGS WITH GENERALIZED LIPSCHITZIAN ITERATES

BALWANT SINGH THAKUR, BIRENDRA KUMAR SHARMA AND JONG SOO JUNG

Abstract. In this paper we prove the following theorem: Let p > 1 and let E be a p-uniformly convex Banach space, K a nonempty bounded closed convex subset of E, and $A = [t_{n,k}]_{n,k \ge 1}$ a strongly ergodic matrix. Let $T: K \to K$ be a continuous mapping satisfying: for each x, y in K and $i = 1, 2, \ldots$

$$||T^{i}x - T^{i}y|| \leq a_{i}||x - y|| + b_{i}(||x - T^{i}x|| + ||y - T^{i}y||) + c_{i}(||x - T^{i}y|| + ||y - T^{i}x||)$$

where a_i , b_i , c_i are nonnegative, $3b_i + 3c_i \le 1$, and

$$\liminf_{n \to \infty} \inf_{m=0,1,2,...} \sum_{k=1}^{\infty} t_{n,k} \cdot 2^{p-1} \{ \alpha_{k+m}^p + \beta_{k+m}^p \} < 1 + c_p$$

where $\alpha_i = \frac{a_i + b_i + c_i}{1 - b_i - c_i}$, $\beta_i = \frac{2b_i + 2c_i}{1 - b_i - c_i}$, and $c_p > 0$ is some constant. Then T has a fixed point in K

1. Introduction and Preliminaries

Let K be a nonempty subset of a Banach space E. A mapping $T: K \to K$ is said to be Lipschitzian if for each $n \ge 1$ there exists a positive real number k_n such that

$$||T^n x - T^n y|| \le k_n ||x - y||$$

for all x, y in K. A Lipschitzian mapping is said to be nonexpansive if $k_n = 1$ for all $n \ge 1$ and asymptotically nonexpansive [5] if $\lim_{n \to \infty} k_n = 1$.

A Lipschitzian mapping is said to be uniformly Lipschitzian if $k_n = k$ for all $n \ge 1$ or in other words, if the Lipschitz constant of T^n ,

$$|||T^n||| = \sup \left\{ \frac{||T^n x - T^n y||}{||x - y||} : x \neq y, x, y \in K \right\} < k, n \geq 1$$

holds for some k > 0.

Received September 18, 1997.

1991 Mathematics Subject Classification. 47H10.

Key words and phrases.p-uniformly convex Banach space, asymptotic center, generalized Lipschitzian mapping, fixed point.

In [8], Lifshitz proved the following result:

Theorem A. Let K be a nonempty closed convex bounded subset of a Hilbert space. If $T: K \to K$ is a mapping such that

$$\limsup_{n\to\infty}|||T^n|||<\sqrt{2},$$

then T has a fixed point in K.

Let p>1 and denote by λ a number in [0,1] and by $\omega_p(\lambda)$ the function $\lambda \cdot (1-\lambda)^p +$ $\lambda^p \cdot (1-\lambda)$. The functional $\|\cdot\|^p$ is said to be uniformly convex (c. f. Zalinescu [16]) on the Banach space E if there exists a positive constant c_p such that for all $\lambda \in [0,1]$ and $x, y \in E$ the following inequality holds:

$$||\lambda_x + (1 - \lambda)y||^p \le \lambda ||x||^p + (1 - \lambda)||y||^p - c_p \cdot \omega_p(\lambda) \cdot ||x - y||^p \tag{1}$$

Xu [15] proved that the functional $\|\cdot\|^p$ is uniformly convex on the whole Banach space E if and only if E is p-uniformly convex, i.e., there exists a constant $c_p > 0$ such that the moduli of convexity, $\delta_E(\varepsilon) \geq c_p \cdot \varepsilon^p$ for all $0 \leq \varepsilon \leq 2$.

Górnicki and Krüppel [7] extended Theorem A via an inequality in Banach space and proved the following:

Theorem B. Let E be a uniformly convex Banach space with diam E > 2 for which norm satisfies (1) for some $p \geq 2$ and let K be a nonempty bounded closed convex subset of E. If $T: K \to K$ is a mapping such that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} |||T^{i}|||^{p} < 1 + c_{p},$$

then T has a fixed point in K.

Recently, Górnicki [6] generalized Theorem B to the following result via Banach space inequalities and more general summation methods involving

$$\sum_{k=1}^{\infty} t_{n,k} \cdot |||T^k|||^p, \quad n = 1, 2, \dots$$

where $A = [t_{n,k}]_{n,k \ge 1}$ is strongly ergodic matrix [2]:

- (a) $\Lambda_{n,k}t_{n,k} \geq 0$,

- (b) $\Lambda_k \lim_{n \to \infty} t_{n,k} = 0,$ (c) $\Lambda_n \sum_{k=1}^{\infty} t_{n,k} = 1,$ (d) $\lim_{n \to \infty} \sum_{k=1}^{\infty} |t_{n,k+1} t_{n,k}| = 0$

Theorem C. Let p > 1 and let E be a p-uniformly convex Banach space, K a nonempty bounded closed convex subset of E, and $A = [t_{n,k}]_{n,k\geq 1}$ a strongly ergodic matrix. If $T: K \to K$ is a mapping such that

$$g = \liminf_{n \to \infty} \inf_{m=0,1,2,\dots} \sum_{k=1}^{\infty} t_{n,k} |||T^{k+m}|||^p < 1 + c_p$$

then T has a fixed point in K.

We now consider the following class of mappings which we call generalized Lipschitzian mapping:

A mapping $T: K \to K$ is said to be generalized Lipschitzian if

$$||T^{n}x - T^{n}y|| \le a_{n}||x - y|| + b_{n}(||x - T^{n}x|| + ||y - T^{n}y||) + c_{n}(||x - T^{n}y|| + ||y - T^{n}x||)$$
(2)

for each x, y in K and $n \ge 1$, where a_n , b_n , c_n are nonnegative constants such that $3(b_n + c_n) \le 1$ for all $n \ge 1$.

This class of mappings are more general than nonexpansive, asymptotically nonespansive, Lipschitzian and uniformly Lipschitzian mappings and it can be seen by taking $b_n = c_n = 0$.

In the present paper, we extend the result of Górnicki [6] and consequently Górnicki and Krüppel [7] and Lipschitz [8] for generalized Lipschitzian mappings and in p-uniformly convex Banach space. Further, we establish for these mappings some fixed point theorems in Hilbert space, L^p spaces, Hardy space H^p or Sobolev spaces $H^{k,p}$ for $1 and <math>k \ge 0$.

2. Main Results

Before presenting our main result, we need the following:

Lemma 1 [6]. Let p > 1 and let E be a p-uniformly convex Banach space, K a nonempty closed convex subset of E, and $\{x_n\} \subset E$ a bounded sequence. Then there exists a unique point z in K such that

$$\limsup_{n \to \infty} \sum_{k=1}^{\infty} t_{n,k} \cdot ||x_k - z||^p$$

$$\leq \limsup_{n \to \infty} \sum_{k=1}^{\infty} t_{n,k} \cdot ||x_k - x||^p - c_p \cdot ||x - z||^p$$
(3)

for every x in K, where c_p is the constant given in (1) and $A = [t_{n,k}]_{n,k \ge 1}$ is a strongly ergodic matrix.

We are now in position to give our result:

Theorem 1. Let p > 1 and let E be a p-uniformly convex Banach space, K a nonempty bounded closed convex subset of E, and $A = [t_{n,k}]_{n,k \ge 1}$ a strongly ergodic matrix. If $T: K \to K$ is a continuous generalized Lipschitzian mapping such that

$$h = \liminf_{n \to \infty} \inf_{m=0,1,2,\dots} \sum_{k=1}^{\infty} t_{n,k} \cdot 2^{p-1} \{ \alpha_{k+m}^p + \beta_{k+m}^p \} < 1 + c_p,$$

where

$$\alpha_{k+m} = \frac{a_{k+m} + b_{k+m} + c_{k+m}}{1 - b_{k+m} - c_{k+m}}$$

and

$$\beta_{k+m} = \frac{2b_{k+m} + 2c_{k+m}}{1 - b_{k+m} - c_{k+m}},$$

then T has a fixed point in K.

Proof. Let $\{n_i\}$ and $\{m_i\}$ be sequences of natural numbers such that

$$h = \liminf_{i \to \infty} \inf_{m=0,1,2,\dots} \sum_{k=1}^{\infty} t_{n_i,k} \cdot 2^{p-1} \{ \alpha_{k+m_i}^p + \beta_{k+m_i}^p \} < 1 + c_p.$$

For any $z_0 \in K$, we can inductively define a sequence $\{z_j\}$ in the following manner: z_j is the unique asymptotic center in K of the sequence $\{T^n z_{j-1}\}_{n\geq 1}$, i.e., z_j is the unique point in K that minimizes the functional

$$r_{j-1}(x) = \limsup_{i \to \infty} \sum_{k=1}^{\infty} t_{n_i,k} \cdot ||x - T^{k+m_i} z_{j-1}||^p$$

over x in K. Using (2), after a simple calculation, for each $x, y \in K$, $k > N \ge 1$, we have

$$||T^{N}x - T^{k}y|| \le \frac{a_{N} + b_{N} + c_{N}}{1 - b_{N} - c_{N}} \cdot ||x - T^{k-N}y|| + \frac{2b_{N} + 2c_{N}}{1 - b_{N} - c_{N}} \cdot ||x - T^{k}y||$$

$$= \alpha_{N} \cdot ||x - T^{k-N}y|| + \beta_{N} \cdot ||x - T^{k}y||$$

$$(4)$$

In view of inequality (1), for any fixed $N, k, m_i \in \mathbb{N}$ and $0 \le \lambda \le 1$, we have

$$\begin{aligned} & \|\lambda z_{j} + (1-\lambda) \cdot T^{N} z_{j} - T^{k+m_{i}} z_{j-1} \|^{p} \\ & = \|\lambda (z_{j} - T^{k+m_{i}} z_{j-1}) + (1-\lambda) (T^{N} z_{j} - T^{k+m_{i}} z_{j-1}) \|^{p} \\ & \leq \lambda \cdot \|z_{j} - T^{k+m_{i}} z_{j-1} \|^{p} + (1-\lambda) \cdot \|T^{N} z_{j} - T^{k+m_{i}} z_{j-1} \|^{p} \\ & - c_{p} \cdot \omega_{p}(\lambda) \cdot \|z_{j} - T^{N} z_{j} \|^{p}. \end{aligned}$$

Multiplying both sides of this inequality by suitable elements of the matrix A and summing, we have

$$\sum_{k=1}^{\infty} t_{n_{i},k} \cdot ||\lambda z_{j} + (1-\lambda)T^{N}z_{j} - T^{k+m_{i}}z_{j-1}||^{p}$$

$$\leq \lambda \cdot \sum_{k=1}^{\infty} t_{n_{i},k} \cdot ||z_{j} - T^{k+m_{i}}z_{j-1}||^{p}$$

$$+ (1-\lambda) \cdot \sum_{k=1}^{\infty} t_{n_{i},k} \cdot ||T^{N}z_{j} - T^{k+m_{i}}z_{j-1}||^{p}$$

$$- c_{p} \cdot \omega_{p}(\lambda) \cdot ||z_{j} - T^{N}z_{j}||^{p} \quad \text{for } i = 1, 2, \dots$$

Taking the limit superior on each side as $i \to \infty$, we obtain

$$\lim_{i \to \infty} \sup_{k=1}^{\infty} t_{n_{i},k} \|\lambda z_{j} + (1-\lambda)T^{N} z_{j} - T^{k+m_{i}} z_{j-1}\|^{p}$$

$$\leq \lambda \cdot \lim_{i \to \infty} \sup_{k=1}^{\infty} t_{n_{i},k} \cdot \|z_{j} - T^{k+m_{i}} z_{j-1}\|^{p}$$

$$+ (1-\lambda) \cdot \lim_{i \to \infty} \sup_{k=1}^{\infty} t_{n_{i},k} \cdot \|T^{N} z_{j} - T^{k+m_{i}} z_{j-1}\|^{p}$$

$$- c_{p} \cdot \omega_{p}(\lambda) \cdot \|z_{j} - T^{N} z_{j}\|^{p}$$

and

$$\begin{split} &c_{p} \cdot \omega_{p}(\lambda) \cdot \|z_{j} - T^{N}z_{j}\|^{p} \\ &\leq \lambda \cdot \limsup_{i \to \infty} \sum_{k=1}^{\infty} t_{n_{i},k} \cdot \|z_{j} - T^{k+m_{i}}z_{j-1}\|^{p} \\ &\quad + (1-\lambda) \limsup_{i \to \infty} \sum_{k=1}^{\infty} t_{n_{i},k} \cdot \|T^{N}z_{j} - T^{k+m_{i}}z_{j-1}\|^{p} \\ &\quad - \limsup_{i \to \infty} \sum_{k=1}^{\infty} t_{n_{i},k} \cdot \|\lambda z_{j} + (1-\lambda)T^{N}z_{j} - T^{k+m_{i}}z_{j-1}\|^{p} \\ &\leq (1-\lambda) \cdot \limsup_{i \to \infty} \sum_{k=1}^{\infty} t_{n_{i},k} \cdot \|T^{N}z_{j} - T^{k+m_{i}}z_{j-1}\|^{p} \\ &\quad - (1-\lambda) \cdot \limsup_{i \to \infty} \sum_{k=1}^{\infty} t_{n_{i},k} \cdot \|z_{j} - T^{k+m_{i}}z_{j-1}\|^{p} \end{split}$$

and

$$c_{p} \cdot [\lambda(1-\lambda)^{p-1} + \lambda^{p}] \cdot ||z_{j} - T^{N}z_{j}||^{p}$$

$$\leq \limsup_{i \to \infty} \sum_{k=1}^{\infty} t_{n_{i},k} \cdot ||T^{N}z_{j} - T^{k+m_{i}}z_{j-1}||^{p}$$

$$- \limsup_{i \to \infty} \sum_{k=1}^{\infty} t_{n_{i},k} \cdot ||z_{j} - T^{k+m_{i}}z_{j-1}||^{p}.$$

Taking $\lambda = 1$, we get

$$c_{p} \cdot ||z_{j} - T^{N} z_{j}||^{p} \leq \limsup_{i \to \infty} \sum_{k=1}^{\infty} t_{n_{i},k} \cdot ||T^{N} z_{j} - T^{k+m_{i}} z_{j-1}||^{p}$$
$$- \limsup_{i \to \infty} \sum_{k=1}^{\infty} t_{n_{i},k} \cdot ||z_{j} - T^{k+m_{i}} z_{j-1}||^{p}.$$

In view of inequality (4), we have

$$\begin{split} &c_{p}\cdot\|z_{j}-T^{N}z_{j}\|^{p}\\ &\leq \limsup_{i\to\infty}\Big[\sum_{k=1}^{N}t_{n_{i},k}\cdot\|T^{N}z_{j}-T^{k+m_{i}}z_{j-1}\|^{p}\\ &+\sum_{k=N+1}^{\infty}t_{n_{i},k}\{\alpha N\cdot\|z_{j}-T^{k-N+m_{i}}z_{j-1}\|+\beta_{N}\cdot\|z_{j}-T^{k+m_{i}}z_{j-1}\|\}^{p}\Big]\\ &-\limsup_{i\to\infty}\sum_{k=1}^{\infty}t_{n_{i},k}\cdot\|z_{j}-T^{k+m_{i}}z_{j-1}\|^{p}\\ &\leq \limsup_{i\to\infty}\Big[\sum_{k=N+1}^{N}t_{n_{i},k}\cdot\|T^{N}z_{j}-T^{k+m_{i}}z_{j-1}\|^{p}\\ &+2^{p-1}\Big\{\alpha_{N}^{p}\sum_{k=N+1}^{\infty}t_{n_{i},k}\cdot\|z_{j}-T^{k+m_{i}}z_{j-1}\|^{p}\Big\}\Big]\\ &-\limsup_{i\to\infty}\sum_{k=1}^{\infty}t_{n_{i},k}\cdot\|z_{j}-T^{k+m_{i}}z_{j-1}\|^{p}\\ &\leq \limsup_{i\to\infty}\Big[\sum_{k=1}^{N}t_{n_{i},k}\cdot\|T^{N}z_{j}-T^{k+m_{i}}z_{j-1}\|^{p}\\ &+2^{p-1}\Big\{\alpha_{N}^{p}\sum_{k=1}^{\infty}t_{n_{i},k}\cdot\|z_{j}-T^{k+m_{i}}z_{j-1}\|^{p}\\ &+\beta_{N}^{p}\sum_{k=N+1}^{\infty}t_{n_{i},k}\cdot\|z_{j}-T^{k+m_{i}}z_{j-1}\|^{p}\Big\}\Big]\\ &-\limsup_{i\to\infty}\sum_{k=1}^{\infty}t_{n_{i},k}\cdot\|z_{j}-T^{k+m_{i}}z_{j-1}\|^{p}\\ &+\beta_{N}^{p}\sum_{k=1}^{\infty}t_{n_{i},k}\cdot\|T^{N}z_{j}-T^{k+m_{i}}z_{j-1}\|^{p}\\ &=\limsup_{i\to\infty}\Big[\sum_{k=1}^{N}t_{n_{i},k}\cdot\|T^{N}z_{j}-T^{k+m_{i}}z_{j-1}\|^{p}\\ &+2^{p-1}\Big\{\alpha_{N}^{p}\cdot\Big(\sum_{k=1}^{\infty}t_{n_{i},k}\cdot\|z_{j}-T^{k+m_{i}}z_{j-1}\|^{p}\\ &-\sum_{k=1}^{\infty}(t_{n_{1},k}-t_{n_{i},k+N})\cdot\|z_{j}-T^{k+m_{i}}z_{j-1}\|^{p}\Big)\\ &+\beta_{N}^{p}\Big(\sum_{k=1}^{\infty}t_{n_{i},k}\cdot\|z_{j}-T^{k+m_{i}}z_{j-1}\|^{p}-\sum_{k=1}^{N}t_{n_{i},k}\|z_{j}-T^{k+m_{i}}z_{j-1}\|^{p}\Big)\Big\}\Big] \end{split}$$

$$-\limsup_{i \to \infty} \sum_{k=1}^{\infty} t_{n_{i},k} \cdot ||z_{j} - T^{k+m_{i}} z_{j-1}||^{p}$$

$$\leq \left[2^{p-1} (\alpha_{N}^{p} + \beta_{N}^{p}) - 1\right] \cdot \limsup_{i \to \infty} \sum_{k=1}^{\infty} t_{n_{i},k} \cdot ||z_{j} - T^{k+m_{i}} z_{i-1}||^{p}$$

(i)
$$\sum_{k=1}^{N} t_{n_i,k} \cdot ||T^N z_j - T^{k+m_i} z_{j-1}||^p \to 0 \text{ as } i \to +\infty,$$

(ii) $\sum_{k=1}^{\infty} (t_{n_i,k} - t_{n_i,k+N}) \cdot ||z_j - T^{k+m_i} z_{j-1}||^p \to 0 \text{ as } i \to +\infty,$

(iii) $r_{j-1}(z_j) \leq r_{j-1}(z_{j-1})$. For any fixed $N \in \mathbb{N}$, we have

$$||z_j - T^N z_j||^p \le [2^{p-1}(\alpha_N^p + \beta_N^p) - 1] \cdot r_{j-1}(z_{j-1}).$$

We multiply this inequality for $N = k + m_i$ by suitable elements $t_{n_i,k}$ for $k = 1, 2, \ldots$ Summing up these inequalities and taking the limit superior on each side as $i \to +\infty$, we obtain

$$c_{p} \cdot \limsup_{i \to \infty} \sum_{k=1}^{\infty} t_{n_{i},k} \cdot ||z_{j} - T^{k+m_{i}} z_{j}||^{p}$$

$$\leq \lim_{i \to \infty} \sum_{k=1}^{\infty} t_{n_{i},k} \cdot \{2^{p-1} (\alpha_{k+m_{i}}^{p} + \beta_{k+m_{i}}^{p}) - 1\} \cdot r_{j-1}(z_{j-1})$$

and

$$r_j(z_j) \le B \cdot r_{j-1}(z_{j-1}),$$

where

$$B = \frac{1}{c_p} \left[\lim_{i \to \infty} \sum_{k=1}^{\infty} t_{n_i,k} \cdot \left\{ 2^{p-1} (\alpha_{k+m_i}^p + \beta_{k+m_i}^p) - 1 \right\} \right] < 1.$$

In a similar way, we obtain

$$r_j(z_j) \le B^j \cdot r_0(z_0), \quad j = 1, 2, \dots$$

Next, we show the convergence of the sequence $\{z_j\}$. For a fixed $N \in \mathbb{N}$, we have

$$||z_{j+1} - z_j||^p \le 2^{p-1} (||z_{j+1} - T^N z_j||^p + ||T^N z_j - z_j||^p)$$

We multiply this inequality for $N = k + m_i$ by suitable elements $t_{n_i,k}$ for $k = 1, 2, \ldots$ Summing up these inequalities and taking the limit superior on each side as $i \to +\infty$, we obtain

$$||z_{j+1} - z_j||^p \le 2^{p-1} [\limsup_{i \to \infty} \sum_{k=1}^{\infty} t_{n_i,k} \cdot ||z_{j+1} - T^N z_j||^p$$

$$+ \limsup_{i \to \infty} \sum_{k=1}^{\infty} t_{n_i,k} \cdot ||T^N z_j - z_j||^p]$$

$$= 2^{p-1} \cdot (r_j(z_{j+1}) + r_j(z_j))$$

$$\le 2^p \cdot r_j(z_j)$$

$$\le 2^p \cdot B^j \cdot r_0(z_0)$$

and

194

$$||z_{j+1} - z_j|| \le 2[B^j \cdot r_0(z_0)]^{\frac{1}{p}} \to 0 \text{ as } j \to +\infty,$$

which show that $\{z_j\}$ is a Cauchy sequence. Let $z = \lim_{j \to \infty} z_j$. For fixed $N \in \mathbb{N}$, we have

$$\begin{split} & ||z - T^N z|| \\ & \leq ||z - z_j|| + ||z_j - T^N z_j|| + ||T^N z_j - T^N z|| \\ & \leq \frac{1 + a_N + 2c_N}{1 - b_N - c_N} \cdot ||z - z_j|| + \frac{1 + b_N - c_N}{1 - b_N - c_N} \cdot ||z_j - T^N z_j|| \end{split}$$

or

$$\begin{split} & \|z - T^N z\|^p \\ & \leq 2^{p-1} \cdot \left[\left(\frac{1 + a_N + 2c_N}{1 - b_N - c_N} \right)^p \cdot \|z - z_j\|^p + \left(\frac{1 + b_N + c_N}{1 - b_N - c_n} \right)^p \cdot \|z_j - T^N z_j\|^p \right] \\ & \leq 2^{p-1} \cdot \left[\left(\frac{1 + a_N + 2c_N}{1 - b_N - c_N} \right)^p \cdot \|z - z_j\|^p + 2^p \cdot \|z_j - T^N z_j\|^p \right]. \end{split}$$

We multiply this inequality for $N=k+m_i$ by suitable elements $t_{n_i,k}$ for $k=1,2,\ldots$ Summing up these inequalities, we obtain

$$\sum_{k=1}^{\infty} t_{n_{i},k} \cdot ||z - T^{k+m_{i}}z||^{p}$$

$$\leq 2^{p-1} \Big[||z - z_{j}||^{p} \cdot \sum_{k=1}^{\infty} t_{n_{i},k} \cdot \Big(\frac{1 + a_{k+m_{i}} + 2c_{k+m_{i}}}{1 - b_{k+m_{i}} - c_{k+m_{i}}} \Big)^{p} + 2^{p} \cdot \sum_{k=1}^{\infty} t_{n_{i},k} ||z_{j} - T^{k+m_{i}}z_{j}||^{p} \Big].$$

Taking the limit superior on each side as $i \to +\infty$, we get

$$\lim_{i \to \infty} \sup_{k=1}^{\infty} t_{n_{i},k} \cdot ||z - T^{k+m_{i}}z||^{p}$$

$$\leq 2^{p-1} \cdot \left[||z - z_{j}||^{p} \cdot \lim_{i \to \infty} \sup_{k=1}^{\infty} t_{n_{i},k} \cdot \left(\frac{1 + a_{k+m_{i}} + 2c_{k+m_{i}}}{1 - b_{k+m_{i}} - c_{k+m_{i}}} \right)^{p} + 2^{p} \cdot \lim_{i \to \infty} \sup_{k=1}^{\infty} t_{n_{i},k} ||z_{j} - T^{k+m_{i}}z_{j}||^{p} \right]$$

$$\leq 2^{p-1} \cdot \left[||z - z_{j}||^{p} \cdot \lim_{i \to \infty} \sup_{k=1}^{\infty} t_{n_{i},k} \cdot \left(\frac{1 + a_{k+m_{i}} + 2c_{k+m_{i}}}{1 - b_{k+m_{i}} - c_{k+m_{i}}} \right)^{p} + 2^{p} \cdot B^{j} r_{0}(z_{0}) \right]$$

$$\to 0 \text{ as } j \to +\infty$$

Therefore,

$$\limsup_{i \to \infty} \sum_{k=1}^{\infty} t_{n_i,k} \cdot ||z - T^{k+m_i}z||^p = 0.$$

This implies that $T_z = z$. Indeed, for any $\varepsilon > 0$ there exists natural numbers n, n + 1 such that

$$||z - T^n z|| < \varepsilon$$
 and $||z - T^{n+1} z|| < \varepsilon$.

Otherwise, we have for any n and m.

$$\sum_{k=1}^{\infty} t_{n,k} \cdot ||z - T^{k+m}z||^p \ge \frac{1}{2} \varepsilon^p$$

and hence

$$\limsup_{i\to\infty}\sum_{k=1}^{\infty}t_{n_i,k}\cdot\|z-T^{k+m_i}z\|^p\geq \limsup_{i\to\infty}\sum_{k=1}^{\infty}t_{n_i,k}\cdot\|z-T^{k+m_i}z\|^p\geq \frac{1}{2}\varepsilon^p.$$

Thus for every natural number l there exists a natural number n_1 such that

$$||z - T^{n_l}z|| < \frac{1}{l} \text{ and } ||z - T^{n_l+1}z|| < \frac{1}{l}.$$

It follows that

$$T^{n_l}z \to z$$
 and $T^{n_l+1} \to z$ as $l \to \infty$.

Since T is continuous, we have

$$T_z = T(\lim_{l \to \infty} T^{n_l} z) = \lim_{l \to \infty} T^{n_l + 1} z = z.$$

This completes the proof.

3. Some Applications

In a Hilbert space H, the following identity holds:

$$||\lambda x + (1 - \lambda)y||^2 = \lambda ||x||^2 + (1 - \lambda)||y||^2 - \lambda (1 - \lambda)||x - y||^2$$
(5)

for all x, y in H and $\lambda \in [0, 1]$.

By (5), we immediately obtain from Theorem 1 the following:

Corollary 1. Let K be a nonempty bounded closed convex subset of a Hilbert space H and $A = [t_{n,k}]_{n,k\geq 1}$ a strongly ergodic matrix. If $T: K \to K$ is a continuous generalized Lipschitzian mapping such that

$$\liminf_{i \to \infty} \inf_{m=0,1,2,\dots} \sum_{k=1}^{\infty} t_{n,k} \cdot (\alpha_{n+m}^2 + \beta_{k+m}^2) < 1,$$

then T has a fixed point in K.

If 1 , then we have for all <math>x, y in L^P and $\lambda \in [0, 1]$

$$||\lambda x + (1 - \lambda)y||^2 \le \lambda ||x||^2 + (1 - \lambda)||y||^2 - \lambda (1 - \lambda) \cdot (p - 1)||x - y||^2$$
(6)

(The inequality (6) is contained in Lim, Xu and Xu [10] and Smarzewski [14].)

Assume that $2 and <math>h_p$ is the unique zero of the function $g(x) = -x^{p-1} + (p-1)x + p - 2$ in the interval $(1, \infty)$. Let

$$c_p = (p-1) \cdot (1+h_p)^{2-p} = \frac{1+h_p^{p-1}}{(1+h_p)^{p-1}}.$$

Then we have the following inequality:

$$\|\lambda x + (1 - \lambda)y\|^p \le \lambda \|x\|^p + (1 - \lambda)\|y\|^p = \omega_p(\lambda) \cdot c_p \cdot \|x - y\|^p \tag{7}$$

for all x, y in L^p and $\lambda \in [0, 1]$ (The inequality (7) is essentially due to Lim [9]).

Corollary 2. Let K be a nonempty bounded closed convex subset of $L^p(1 and <math>A = [t_{n,k}]_{n,k \ge 1}$ a strongly ergodic matrix. If $T: K \to K$ is a continuous generalized Lipschitzian mapping such that

$$\liminf_{n \to \infty} \inf_{m=0,1,2,\dots} \sum_{k=1}^{\infty} t_{n,k} \cdot 2(\alpha_{k+m}^2 + \beta_{k+m}^2) < p, \text{ for } 1 < p \le 2$$

and

$$\liminf_{n \to \infty} \inf_{m=0,1,2,\dots} \sum_{k=1}^{\infty} t_{n,k} \cdot 2^{p-1} (\alpha_{k+m}^p + \beta_{k+m}^p) < 1 + c_p, \quad \text{for } p > 2,$$

Then T has a fixed point in K.

Let H^p , 1 , denote the Hardy space [4] of all functions <math>x analytic in unit disc |z| < 1 of the complex plane and such that

$$||x|| = \lim_{r \to 1^{-}} \left(\frac{1}{2\pi} \int_{0}^{2\pi} |x(re^{i\theta})|^{p} d\theta \right)^{\frac{1}{p}} < \infty$$

Now, let Ω be an open subset of \mathbb{R}^n . Denote by $H^{k,p}(\Omega), k \geq 0, 1 , the Sobolev space [1, p. 149] of distributions <math>x$ such that $D^{\alpha}x \in L^p(\Omega)$ for all $|\alpha| = \alpha_1 + \cdots + \alpha_n \leq k$ equipped with the norm.

$$||x|| = \Big(\sum_{|\alpha| \le k} \int_{\Omega} |D^{\alpha} x(\omega)|^p d\omega\Big)^{\frac{1}{p}}.$$

Let $(\Omega_{\alpha}, \sum_{\alpha}, \mu_{\alpha}), \alpha \in \Lambda$, be a sequence of positive measure spaces, where index set Λ is finite or countable. Given a sequence of linear subspaces X_{α} in $L^{p}(\Omega_{\alpha}, \sum_{\alpha}, \mu_{\alpha})$, we

denote by $L_{q,p}, 1 and <math>q = \max\{2, p\}$ [11], the linear space of all sequence $x\{x_{\alpha} \in X_{\alpha} : \alpha \in \Lambda\}$ equipped with the norm

$$||x|| = \left(\sum_{\alpha \in \Lambda} (||x_{\alpha}||_{p,\alpha})^q\right)^{\frac{1}{\epsilon}}.$$

where $\|\cdot\|_{p,\alpha}$ denotes the norm in $L^p(\Omega_\alpha, \sum_\alpha, \mu_\alpha)$.

Finally, let $L_p = L^p(S_1, \sum_i, \mu_i)$ and $L_q = L^q(S_2, \sum_i, \mu_i)$, where $1 , <math>q = \max\{2, p\}$ and (S_i, \sum_i, μ_i) are positive measure spaces. Denote by $L_q(L_p)$ the Banach spaces [3, III. 2.10] of all measureble L_p -value function x on S_2 such that

$$||x|| = \left(\int_{S_2} (||x(s)||_p)^q \mu_2(ds)\right)^{\frac{1}{\epsilon}}.$$

These spaces are q-uniformly convex with $q = \max\{2, p\}$ [12, 13] and the norm in these spaces satisfies

$$\|\lambda x + (1 - \lambda)y\|^q \le \lambda \|x\|^q + (1 - \lambda)\|y\|^q - d \cdot \omega_q(\lambda) \cdot \|x - y\|^q$$

with a constant

$$d = d_p = \begin{cases} \frac{p-1}{8} & \text{for } 1$$

Here, from Theorem 1, we have the following result:

Corollary 3. Let K be a nonempty bounded closed convex subset of the space E, where $E=H^p$, or $E=H^{k,p}(\Omega)$, or $E=L_{q,p}$, or $E=L_q(L_p)$, and $1 , <math>q=\max\{2,p\}, \ k \geq 0$ and $A=[t_{n,k}]_{n,k\geq 1}$ is a strongly ergodic matrix. If $T:K\to K$ is a continuous generalized Lipschitzian mapping such that

$$\liminf_{n \to \infty} \inf_{m = 0, 1, 2, \dots} \sum_{k = 1}^{\infty} t_{n, k} \cdot 2^{q - 1} \{ \alpha_{k + m}^q + \beta_{k + m}^q \} < 1 + d_p,$$

then T has a fixed point in K.

Acknowledgement

The third author was supported by the Basic Science Research Institute Program, Ministry of Education, Korea, 1997, Project No. BSRI-97-1405.

References

- [1] J. Barros-Neto, "An Introduction to the theory of distribution," Dekker, New York, 1973.
- [2] R. E. Bruck, "On the almost-convergence of iterates of a nonexpansive mapping in Hilbert space and the structure of weak ω -limit set," Israel J. Math., 29(1978), 1-6.

- [3] N. Dunford and J. Schwarz, Linear Operators, Vol. I. Interscience, New York, 1958.
- [4] W. L. Duren, Theory of H^p Spaces, Academic Press, New York., 1970.
- [5] K. Goebel and W. A. Kirk, "A fixed point theorem for asymptotically nonexpansive mappings," Proc. Amer. Math. Soc., 35(1972), 171-174.
- [6] J. Górnicki, "A remark on fixed point theorems for Lipschitzian mappings," J. Math. Anal. Appl., 183(1994), 495-508.
- [7] J. Górnicki and M. Krüppel, "Fixed point theorems for mappings with Lipschizian iterates," Nonlinear Anal. TMA., 19(4) (1992), 353-363.
- [8] E. A. Lifshitz, "Fixed point theorem for operators in strongly convex spaces," Voronez Gos. Univ. Trudy Math. Fak., 16(1975), 23-38 (in Russian).
- [9] Lim, T. C., "On some L^p inequalities in best approximation theory," J. Math. Anal. Appl., 154(1991), 523-528.
- [10] T. C. Lim, H. K. Xu and Z. B. Xu, "An L^p inequalities and its applications to fixed point theory and approximation theory," Progress in Approximation Theory, Academic Press, 1991, 609-624.
- [11] J. Lindenstrauss and L. Tzafriri, "Classical Banach spaces II-Function Spaces," Springer-Verlag, New York, Berlin, 1979.
- [12] B. Prus and R. Smarzewski, "Strongly unique best approximations and centers in uniformly convex spaces," J. Math. Anal. Appl., 121(1987), 10-21.
- [13] R. Smarzewski, "Strongly unique best approximations in Banach spaces II," J. Approx. Theory, 51(1987), 202-217.
- [14] R. Smarzewski, "On the inequality of Bynum and Drew," J. Math. Anal. Appl., 150(1990), 146-150.
- [15] H. K. Xu, "Inequalities in Banach spaces with applications," Nonlinear Anal. TMA., 16(1991), 1127-1138.
- [16] C. Zalinescu, "On uniformly convex function," J. Math. Anal. Appl., 95(1983), 344-374.

Govt. B. H. S. S. Gariaband, Dist. Raipur, M. P. 493889, India. School of Studies in Mathematics, Pt. Ravishankar Shukla, University, Raipur 492010, India. Department of Mathematics, Dong-A University, Pusan 607-714, Korea. (E-mail: jungjs@seunghak.donga.ac.kr)