TAMKANG JOURNAL OF MATHEMATICS
Volume 29, Number 3, Aunumn 1998

ON WARPED PRODUCT MANIFOLDS
—CONFORMAL FLATNESS AND CONSTANT SCALAR
CURVATURE PROBLEM

KWANG-WU YANG

Abstract. In this paper, we study some geometric properties on doubly or singly warped-
product manifolds. In general, on a fixed topological product manifold, the problem for finding
warped-product metrics satisfying certain curvature conditions are finally reduced to find positive
solutions of linear or non-linear differential equations. Here, we are mainly interested in the
following problems on essentially warped-product manifolds: one is the sufficient and necessary
conditions for conformal flatness, and the other is to find warped-product metrics so that their
scalar curvatures are contants.

1. Introduction

Since the famous work of B. L. Bishop and B. O'Neill [2], the method of warped-
product had been studied, and proved to be important for constructing new metrics
explicitly. In general, if (M™,g) and (N™,h) are smooth manifolds, Riemannian or
pseudo-Riemannian, and f : M — R and ¢ : N = R are positive smooth functions. The

doubly warped-product metric § = g¢ Xy h on the (topological) product space M x N is
defined by :

g(p,q) (X: Y) = ¢(Q)9P(ﬂ-* (X)aﬂ'*(Y)) + f(P)hq(O’, (X),O'*(Y}),

where (p,q) € MxN,m: MxN — M and o : M xN — N being the natural projections.
We shall denote this new manifold by (M x N, gs X s h), or simply My X N if there is
no confusions on metrics. If it is the case ¢ = 1, we obtain a (singly) warped-product
manifold (M x N,g xzh) or M x¢ N.

It is useful to establish the elementary formulae and equations relating the geometric
objects between g, h, and g4 x s h. Standing on this situation, one consider the following
problems: Among the warped=product metrics, find one to satisfy certain geometric
or topological conditions. For example, find a metric which is locally symmetric, or
conformally flat, or whose scalar curvature is a constant, etc. We shall generalize a result
of M. Hotlds ([13], Lemma 1) so that in all dimensions, it is necessary that M and NN are
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conformally flat if My x s N does (Theorem 4). On the other hand, we shall see, after
general arguments, that one cannot obtain metrics satisfying some curvature conditions
by using warped=product constructions. For instance, if M and N are 2-dimensional
compact Riemannian manifolds without boundaries such that y(M )x(N) > 0, then
Mgy x§ N cannot be conformally flat, no matter whether ¢ and f are constant functions
ro not (Theorem 3). |

We shall prove in Theorem 1 that an essentially (i.e., the warpping functions are
not constants) doubly warped-product manifold cannot have constant scalar curvature
except possibly for zero. On the other hand, the constant scalar curvature problem on
singly warped-product cases have very different and more interesting results. In [10], F.
Dobarro and E. Lami-Dozo looked for warpping functions such that a singly warped-
product manifold has constant scalar curvature and then determined which constants
will be attained. Following their works, we obtain a lot of results for the essential case
(Corollary 2; Theorem 11).

2. Doubly Warped-Product Manifolds

2.1. Notaion and Formulae

Let (M, g) = (M™,g)sxs(N™, h) be a doubly warped-product Riemannian manifold,
where dimM = m, dimN = n, and f and ¢ are positive smooth functions defined on
M and N, respectively. The components of geometric objects on M, N, and M will be
labeled as in the following table:

Manifold M N M
Local coordinate (%) | ) | (z?,y%)
Metric tensor 9ij | hap | GaB
Levi-Civita connection D v D
Riemann-Christoffel symbols Tie | HE, | Tho
Riemann curvature-tensor i | K35 | Béep
Ricci curvature tensor Rij | Kap | Ran
Scalar curvature R K R
‘where, now and in the sequel, the ranges of indices are 1 < 4,7, k,1,... < m;

m+1<a,B8,746,...<m+n; 1< A,B,C,D,... < m+n. We also use the
following abbreviations:

. a 0 ij
%= Oa=g5 Di=Do, Va=Va, Auf=g'Dif;,
af 0¢

fi=gg Pe=ga F=1fg? ¥ =6ah, Any=hPV,,
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= fj 0; = the gradient vector field of f,
= ¢P 95 = the gradient vector field of ¢,

where (¢9) = (gi;) 7%, (h®?) = (hag)™!, and we use the convention for summing
the repeated indices.

The quantities defined below and equations from (1) to (7), except for (5),
were firstly established by M. Hotlds [13] (One should note here that we adopt
the convention of notations of the Riemann curvature tensors as in [14], so the

following equations are not all the same as in [13]).

Gijkl = gikgit — 9itdik 3 Gapys = havhps — hashpy

il —1 1
Tz'j 2f ( fj ffzfg) aﬁ 2 (Vat;bﬁ - ﬁﬁba‘#’ﬁ)
tr(T) = g9 Tij ; tr(T") = h*Tgg
i ”F“2 1 af “‘I’||2
I= 4f2 Jf%fJ 42 I = 4¢,2h $ats = 42

J = fl(n —1)I —tr(T)]; ' = ¢[(m — 1)I' — tr(T")]

where ||-|| is the length of vector fields. Note that, tr(T) = [ (A f)/(2f)]+1 and
tr(T") = [-(An¢)/(2¢)] + I'. Thus, using the formulae I';, = *(8jquk + Brgji —
di9jk)/2, etc, the Riemann-Christoffel symbols between M, N, and My x s N are
related as

=T 15, = Hgy Ty = o8 o

~ 1 o =1 . - '
rgk = é?.fkdgu 1,'6'7 = _ias-fzh‘,@’}': _?k 7¢agjk'

Passing through direct computations, the only non-vanishing components of the
Riemann curvature tensor on M are

. R I|‘I)|l2 Btk IFI? .,
ikl = ORijri — i Gkt Rapii= [ ap1s = 5 Capres (2)

& - )
Rigrs = fTihps + ¢Tgsgik,  Rijks = ¢f (figik — figjx),

Raﬁ'yl == Zif_:b(‘;bﬁha'y - ¢ahﬁ7)-
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It follows from the contracting processes that the only non-vanishing components

of the Ricci curvature tensor on M are

~ J’ ~ J
Rij = Rij +nTy; — 9 Rop = Kop + mTpy - Ehaﬁ: (3)
~ m+n—2

Hence the scalar curvatures of M, N, and M are related as

. I :
K= E[R —n(n — 1) + 2n(tr(T))] + %[K —m(m — DI+ 2m(@r(T))]. (4)
Now let W, C, and W be the Weyl conformal curvature tensors on M, N,

and M, respectively. That is

1
Wijki N Rijri — m(gz’kle + gj1Rir — guRjx — gixRat) (5)
R
Hm = D)(m =) Gkt

and similar expressions for those of Cyg, and Wapcp. Therefore, the only
non-vanishing components of W are

1

Wijkl = ¢[Rijkt - m—“““——+ n—2 (gikRjt -+ leRik — gz'lek — gijfit)] (6)
. ne :
~ =9 9T+ giTie — gaTik — 9 Ta)
121 2¢J’ 2R |
“Gijkl[ — - » ],
4f  (m+n-2)f (m+n-1)(m+n-2)

hay Kps + hps Koy — has Ky — hgyKas))|

W0676'= f[Kaﬁ'yé - m(

mf
S m+tn-—2 (hayTgs + hpsTy = hasTh.y + hﬁ»ch'u;)
_or . JUEIE 2fJ 2R
aﬁ’yd’[ 4 = — — ],
¢ (m+n-2)¢ (m+n-1)(m+n-—2)
= 1
Wiﬁ‘ka = -—m I 2{[(??, — Q)Té(; = Kﬁg]qﬁgik ~}- [(m — Z)Tik — Rfik]fhfﬁa
___feR
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Finally, the non-vanishing components of those of DgRapcp are

llel?

DhRijki = ¢DpRijet + o5 877 (2/nGijk (7)
+fiGrjr + ;G zhkzl + feGijr + [iGijkn),

DeRopys = fVeKapys + HSQSIL (26 Gapye
+0aGepys + 968G acys + SvGapes + $6Gapye),

D.Riju = [fﬁe 37kl + d}z (8: 1) Gijki
+£%(fz'fkgjz + fifigik — fifigjx — fjfkgil)]a

2
DhRaﬁ'yé = [fn.Ka,B'yé + f;b (ahI)Gaﬁ'yJ

+ L2 (atohas + dadahos — dadoha = Sotohos))
DpRijks = -J;—ﬁ—(fz'gjk — [igjk) — %(361')@'3%
+ﬂ(gthik — gixTjn + gjkTih — 9inTjr — Rijkn),

oL 2
DeRa,G'y = fl¢£ ((ﬁah’ﬂ'}' ¢‘ﬁha'y) f¢(al ) afvye

fl (hga - hQ,YTfje - hﬁ'ch’xs - haeTf,,y s KopBvye),
-~ T’ h
D¢R;jks = ¢f (figix — figi) + ?sé(fiTjk — fiTix + Rijuf*)
1
8f¢(fzgjk £i9ik) (12112 hes + 2¢: b5),

- T;
D Bagy = L2 "‘(qbahﬁnf bohar) + 2t ($aThy = $6Tay + Kapysd’)

($ahgy — Bghay) (1F|I2ght + 2f111),

W
.. d||2h
DpRigrs = fhgsDpTix + I‘I‘#(ﬂghk + fkgin)
fngi ¢>ﬁ¢5
2
D.Rigis = $9ix VeTps + ”Sllc—¢g”“(¢ﬁhsa_+ dshse)
¢ehgs fifk
_dehen (g o B
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Clearyly, it follows from the last equation in (3) that a doubly warped-product
manifold My x ¢ N is never Einstein if both of the warpping functions f and ¢ are

not constant. In particular, it’s never a space of constant curvature. Actually,
we have

Theorem 1. If M = Mgy x¢ N has constant scalar curvature R, where f and
¢ are not constant functions, then R = 0.

Proof. Suppose that R is a non-zero constant. It follows from (4) that

0= ¢R
= Gk[R — n(n — 1)I + 2n(tr(T))] - %[K —m(m — 1)I" + 2m(tr(T"))].
Since fi/f? and the function in the first bracket are those déﬁned on M, while
the function in the second bracket and ¢ are defined on N , we see that, in virtue

of fk 5—{: 0, . 7
¢[K —m(m ~ 1)I' + 2m(tr(T"))] = constant.

Similarly, by f8,R = 0 and e # 0, we have
f[R —n(n — 1)I + 2n(tr(T))] = constant.

Adding these two constants together then going back to (4), we find that ¢f R is
a constant. However, since R # 0 is itself a constant, this implies that both of f
and ¢ are constants, which is a contradiction. Therefore R = 0.

Remark. It would be an interesting problem to determine whether there
does exist an essentially doubly warped-product manifold with vanishing scalar
curvature or not.

2.2. Conformal Flatness _

A Riemannian manifold (M, g) is called conformally flat if g is locally con-
formally equivalent to the Euclidean metric. Thus for dim M > 4, (M,g) is
conformally flat if its Weyl conformal curvature tensor vanishes identically. For

dim M = 3, we need the following classical result due to H. Weyl. (c.f. [17], p.
21)

Theorem 2. Let (M, g) be a 3-dimensional Riemannian manifold with Ricci
curvature tensor R;; and scalar curvature R. Then (M,g) is conformally flat if
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and only if
1
DyR;j — DjRy = Z(gijakR — 9ik0; R)
holds for all i, j, and k.
The following lemma, due to M. Hotlds, will play an important role in the rest

of this thesis. For the proof, see [13]. Now, let M = My x; N, dim M = m, dim
N =n.

Lemma 1. (i) If W,-jk; =0, then

n(n = 1)f[R — m(m — 1)I — 2(m — 1)tr(T)] (8)
+m(m — 1)g[K — n(n - 1)I' = 2(n — 1)tr(T')] =0
Ry — (m — 2)Tik = Z2[R — (m - 2)tr(T)]. (9)

Furthermore, if m > 1, then

R
(m = 2)Rijie = (g st + gjuRix — guRjk — giuRa) — —— Gijit- (10)
(i) If Wopgys = 0, then (8) still holds and
h
Kap — (n — 2)Tag = —2[K — (n—~ 2)tr(T")]. (12)

Simalarly, for n > 1, we have

K
(n ~ 2)Kapys = (hayKps + hpsKay = hasKpy = hgyKas) = —Capys-  (12)

(i33) If Wijk; == Wagn,g =0, then Wigk,j = 0. Consequently, M is conformally flat
provided m +n > 4. 7
For dimM =dimN = 2, we have the following topological obstruction result:

Theorem 3. Let (M, g) and (N, k) be 2-dimensional compact surfaces without
boundaries. If My x ¢ N is conformally flat, then x(M)x(N) < 0 with equality
holds if and only if M and N are homeomorphic to T?—the 2-torus, where X is
the Eular-Poincaré characteristic number.

Proof. It follows from (8) that for some A € R

fIR-2I —2tr(T)] = X, ¢[K —2I' — 2tr(T")] = —A.
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which , in virtue of definitions of I, I', tr(T), tr(T"), are equivalent to

B = Bglln f) = % K ~ Ag{lag) = ‘f

Integrating these equations on M and N , respectively, then applying the Stoke’s
Theorem and Gauss-Bonnet formula, we find

drx (M) = /\/M -J];—, drx(N) = —=A . %

Therefore, we have

_\2
X(M)x(N) = 16;([% %)(/N%) <o.

Finally, x(M)x(N) = 0 if and only if A = 0, which is equivalent to x(M) =
X(N) =0, thus M and N are topological 2-torus.

Theorem 4. Let My xy N be conformally flat. Then M and N are also
conformally flat.

Proof. It is trivial if dimM =dimN = 1. For dimM =dimN = 2, it follows
from the existence of isothermal coordinates. Thus it suffices to show for dim
M > 3 and dimN > 3. Firstly, It follows from (10) and (12) that M and N are
conformally flat if dimM > 4 and dimN > 4.

Next, for dimM = m = 3, it follows from (9) that

1
DyRij — DjRik = 3(9i0k R — 905 R) + (D Ti; — D;Tix) (13)
1
—g[gijakf?‘(T) — gix 0jtr(T))].
Applying the Ricci identity and (9), (10), we get

1
DTy — 1T, = —ﬁ(gikRjzfl — gij Ruif) (14)

1
+§f(fj9z'k — frgiz)[R + 2tr(T)).
On the other hand, in virtue of (8), we have

1 . 1
g[gz‘jdktT(T) = gl (T = E(QijakR — gitO; R) (15)

1 1
—E(gijakir — 9k 0;I) + I—Q‘J—c(fkgz'j ~ figik).
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Therefore, substituting (14) and (15) into (13), then by Theorem 2, we see that

M is conformally flat. A similar argument shows that N is also conformally flat
if dimN = 3.

Theorem 5. Let L be an interval in the real line R with the standard Eu-
clidean metric. Then Ly x5 N™ (n > 3) is conformally flat if and only if N is
conformally flat and ¢ satisfies the equation (11).

Proof. It suffices to show that if N is conformally flat and (11) holds, then
Ly x ¢ N is conformally flat.

Note that, (12) holds whenever (i) n = 3, or (ii) n > 4 and N is conformally
flat. Therefore, substituting (11) and (12) into the right hand side of the second
equation in (6), we see that Wa[;w = 0. Moreover, since dimL = 1, Wg‘jkl = 0.
Hence by (iii) of Lemma 1, Ly x s N is conformally flat.

2.3. Conformally Symmetric Doubly Warped-Product Manifolds

A Riemannian manifold (M, g), with dimM > 4, is said to be conformally sym-
metric if its Weyl conformal curvature tensor W is parallel, that is, Dy Wjjz = 0
for all 4, 7,k,I, and h. This was firstly studied by M. C. Chaki and B. Gupta
[4]. clearly, conformally flat or locally symmetric manifolds are conformally sym-
metric. A conformally symmetric manifold is said to be essential if it’s neither
conformally flat nor locally symmetric. This class of manifolds had been deeply
studied by A. Derdzinski and W. Roter [7], [8], [16]. Using their method, M.
Hotlos [13] firstly proved the result described in Theorem 6. We shall give a
simple and direct proof by applying some observations to DeWagep.

Lemma 2. On My x; N, the followings hold:

¢2Gukla {QS[K n(n — 1)I' = 2(7‘!. = 1)tr T'r
(m+n—-1)(m+n-—2)f

s {f[R—m(m—1)I-2(m—1)tr(T)]}
(m+n-1)(m+n—2)¢

¢D£Wijkl:_¢ewz )]} (16)

.. - f2G'
thWa,B'yd' = —fhWaﬁ'yﬁ Ll

(17)

Theorem 6. Let My x s N be conformally symmetric. Then it is conformally

flat.

-Proof. By assumption, DgWagep = 0. Tt follows from direct calculations
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that
0= lf)hwz'jkl
¢
= 0pf - G YK _ n(n— )1 — 2(n - 1)ir(T),

72
where f is a function defined on M. Thus we find
¢[K —n(n — 1)I' = 2(n — 1)tr(T")] = constant. (18)
Similarly, in virtue of (f)gﬁf'amg) /f =0, we have
fIR —m(m — 1)I — 2(m — 1)¢r(T")] = constant. (19)

Finally, we substitute (18) and (19) into (16) and (17), respectively. Then, by
our assumption, we get ¢5Wijkg = 0 and thVag.ra = 0. Since f and ¢ are not

constant functions, we see that Wiy = Wagys = 0, which, by (iii) of Lemma 1,
implies that My x ¢ N is conformally flat.

3. Singly Warped-Product Manifolds

In this section, we study some problems on singly warped-product manifolds.
More precisely, we consider problems on M x ¢ N. It seems to be a special (hence
simpler) case of that on My x ¢ N, however, we shall see that at the same time,
we lose some equations under considerations. Throﬁghout this section, (M ,9)
will be the warped-product manifold (M™ x N™,g x ¢ h).

3.1. Elementary Formulae

Although all of the formulae and equations for geometric objects on (M, §) can
be obtained by taking ¢ = 1 in Subsection 2. 1, we list some of them below for
the sake of convenience. The possible non-vanishing components of the Riemann
curvature tensor on M are

- ~ Fl? -
Rijki = Rijkt, Rapys = [Kapys — % apysr Rigrs = [Tixhgs,  (20)

which implies that the non-vanishing components of the Ricci curvature tensor
on M are

Rij = Rij +nTyj, Rap= Kog — Jhag. (21)



ON WARPED PRODUCT MANIFOLDS CURVATURE PROBLEM 213

The scalar curvature of M are given by

R= -I?{ + R —n[(n — 1)I - 2tr(T)). (22)

Moreover, the Weyl conformal curvature tensor W on M has non-vanishing
components of the same kinds as on doubly warped-product case, say

- 1
Wijki = Rijia — PeE— (9ikRji + gjiRik — guRjk — gixRar) (23)
n
~ =2 9Tt + 95Tk — 9aTjk — g;xTu)

RGijki
+ ;
(m+n—-1)(m+n-2)

- 1
Wapys = f[Kaﬁ'yé - m(hmf{ﬂa + hgs Koy — has Ky — hﬁ'yKaJ)]

. IFEI? 2fJ 2R
VS ],
4 m+n—2 (m+n-—1)(m+n-—2)
- 1
Wipks = ————2{l(m — 2)Tix — Rix] fhps — girKps

+[J s ;n%]gikhﬁé}-

3.2. Conformal Flatness

As the similar arguments as Lemma 1 in Subsection 2.2, we have the following
useful criterion for a warped-product manifold M x; N = M to be conformally
flat:

Lemma 3. (i) If ﬁ/}jk; =0, then
m(m — 1)K +n(n - 1)f[R — 2(m — 1)tr(T) — m(m — 1)I] =0, (24)

and
1
Ry —(m—2)T; = ;n‘[R — (m — 2)tr(T)]g;;- (25)
Moreover, if m > 1, then
RGijn
(m = 2)Rije1 = (9icRj1 + gjRik — gaRjk — 9k Rit) — o1 (26)

(i) If Wagys = O then (24) still holds and

K
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Consequently, (N™, h) is Einstein provided m > 1 or n > 3.

(441) If Wijkl = Waﬁ,yé = 0, then Wigk,s = 0. Conseguently, M is conformally
flat provided m +n > 4.

For the case dimM = 1, we choose t = z! to be the arc-length parameter on
the real line R. We have

Theorem 7. Let L be an interval in the real line R with the standard Eu-
clidean metric, and let f be any positive function defined on L. Then L x; N"
(n > 2) is conformally flat if and only if N is a space of constant sectional

curvature.

Proof. Firstly, we consider the case n = 2. It follows from Theorem 2 in
Subsection 2. 2 that L xy N is conformally flat if and only if

. . 1 3 3
DcRap —.DBRAC = Z[(acR)f]AB - (0sR)gac], VA,B,C. (28)

A direct computation shows that for any f

S ~ o~ 1 ~. . i
DﬁRal = DlRaﬂ = E[(aﬁR)gal - (alR)gaB]

always holds for m = 1 and n = 2. Moreover, in virtue of f)TRQg = VA,Ka[} and
Kap = %haﬁ (n = 2), we find

.- .. 1 .
DyRap = DpRay = 5[(8yK)hag — (05K )hay]. (29)

Since f).yfiij = DJ-RZ-,, = ( in any case, while for m =1 and n = 2,
0K
af -
Therefore, if N? is a space of constant curvature, (28) holds for an f. On the

other hand, if L x s N2 is conformally flat, then, in view of (28), (29), and (30),
we see that K is a constant.

(30)

110 R ~ (G151, =

Next, we consider the general case n > 3 and show that Wagcp = 0 if and
only if N has constant sectional curvature. The sufficiency being easily follows
from direct calculation. Now we suppose that Wapcp = 0 for all A4, B, C, and D.
By (ii) of Lemma 3, (N™, h) is Einsteinian: K’aﬁ = Khqap/n, K being a constant.
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Furthermore, since m = 1, the second equation of (23) takes a simpler form
X K 3
Wapys = f[Kapys + n(n = 1) Cosre
1

—n—_l—(ha,yKﬁg + hgs Koy ~ has Kgy — hgnyaa)].

Thus, in virtue of Wag,y,; =0 and K,3 = Khqopg/n, we find

K
Kopys = Y —] apys:  (n>3)

Hence (N™, h) is a space of constant sectional curvature. This complete the proof.
For dimM = m > 2, we have

Theorem 8. If M x ¢ N is conformally flat, where dimM > 2 and dimN > 2.
Then M is conformally flat and N is a space of constant sectional curvature.

Proof. Firstly, the conformal flatness of M follows from the same arguments
as in the proof of Theorem 4.

Secondly, by Lemma 3, N is Einstein with (constant) scalar curvature K
satisfying

N ol | N SR
7= =) (B~ 2m = )tr(T) — m(m — 1)1,

Substituting this into the equation Wamg =0, we find K,5,5 = RHK_—I)G;&W
Now, we suppose that dimM > 2, dimN > 2, and that N has constant
sectional curvature K/n(n — 1). A direct calculation shows that

fGapys
m+n—1)(m+n - 2)

Waﬁ'yé = (

This proves the first part of the following theorem.

Theorem 9. Suppose that dimM > 2, dimN > 2, M is conformally flat and
N has constant sectional curvature. Then M X5 N is conformally flat if and only
if W,;jkg = 0, or equivalently, the equations (24) and (25) hold.
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In particular, for dimM = 2, M x; N is conformally flat 1f and only if f
satisfies 3
R (n—2)R
_|_ i
n(n+1) 2n

tr(T) = 0. (31)

Proof. We show the second part, say dimM = m = 2. It follows from a
technique in linear algebra (c.f. [9] also) that

gikAji + gj1Aix — gikAi — gaAjx = tr(A)Gijr (32)

for any symmetric 2-tensor A or (M, g), where tr(A) being taken with respect to
g- Therefore, in view of R;jr = RGjjr1/2 for dimeM = 2, we find

R (n—-2)R
n(n+1) g 2n

Wik = [

- tT(T)] Gijkg.

Hence, by the first part of the theorem, M x; N is conformally flat if and only
if (31) holds.

Corollary 1. Let M be an orientable, compact 2-dimensional surface without
boundary, and let N™(c) be an n-dimensional manifold with constant sectional
curvature c. If there is a positive function f on M such that M x I N"(c) is
conformally flat, then |

2y (M) + ¢ /M‘ - (33)

Proof. By Theorem 9, f satisfies the equation (31), which is equivalent to

say that
c

i)

where R/2 being the Gaussian curvature of M. Hence

1 C
“R4 =
7t 7

Integrating this equation then using the Stoke’s Theorem, we obtain

i

QOur assertion now follows from the Gauss-Bonnet formula.

1
§R+ tr(T)+1I]=0 on M,

1
4 §AM(lnf) =0 on M.
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Example 1. Let S™(1) be the m-sphere with constant sectional curvature 1
and T be the flat 2-trous.

(i) S%(1) x  N™(c) is never conformally flat if ¢ > 0 (c.f. Theorem 3, also [15]);

(it) T2 x ; T? is conformally flat if and only if f is a constant. Therefore, T2 x ;
T? is conformally flat only when the product metric is the ordinary Riemannian
product.

(iii) In general, T? x y N"(c) is conformally flat if and only if ¢ = 0 and f is a
positive constant function on 7°2.
3.3. Warped-Product Manifolds with Constant Scalar Curvature

As we had asserted in Theorem 1 in Subsection 2.1, an essentially doubly
warped-product manifold can only take 0 as its constant scalar curvature. In
this subsection, we study the corresponding results in the case for singly warped-
product manifolds. We start here from the following

Lemma 4. If M x§ N has constant scalar curvature R, then N has constant
scalar curvature K such that
1
n

n..._.

3 2
P =

Aumf + [(R-R)f + K] (34)

holds everywhere on M.

Proof. It follows from the formula (22) that

mn

R-R

-3
Apf+ 7 |1 F|I? +

K
4 n

f=
holds on M x N, K being a function defined on N. Therefore, if R is a constant,
then K is also a constant and (34) holds everywhere on M.

Example 2. Let M be a compact Riemannian manifold without boundary
whose scalar curvature is constant, and let N be a 3-dimensional flat manifold.
By Lemma 4, if M X s N has constant scalar curvature R, then Ay f = F(R- R)f
holds everywhere on M. Integrating this on M and using the Stoke’s Theorem,
we see that R = R. Hence f is a positive harmonic function on M, which
implies that f is a constant function. Therefore, the warped-product M x i N
has constant scalar curvature only when it is an ordinary Riemannian product.

Example 3. Let L be an interval of the real line R with the standard Eu-
clidean metric, and let ¢ be the arc-length parameter on R. If N is a 3-dimensional
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Riemannian manifold with constant scalar curvature K. Then L x¢ N has con-

stant scalar curvature R with f given by

5 K
R=O:f(t)=€t2+at-|—b,

with K > 0,b > 0, and 3a? < 2bK;

R>0:f(t) = %{ + a cos (\/g?t) + bsin (\/ét)

with K > 0, and RVa2 + b2 < K;

R<0:f(t) = % + aexp (\/?t) +bexp ( - :B,Et)

with a,b > 0, and 4abR? > K?2.

Actually, under the assumptions, the equation (34) takes the following simpler

forms, say
R:():(—jgz-fz—f—;-,
" d? K R K
R#0: g (f-5)=—30-F)

The result now follows from the elementary solutions to second order ordinary
differential equations.

Remark. A conformally symmetric manifold with constant scalar curvature
has harmonic curvature (c.f. [4]), in particular, a conformally flat manifold with
constant scalar curvature has harmonic curvature (c.f. [12]). We see that, in
virtue of Theorem 7, all of the 4-dimensional Riemannian manifolds listed in Ex-
ample 3 have harmonic curvatures, provided N is replaced by 3-manifold with
constant sectional curvature. Moreover, the Ricci curvature tensor of them have
the properties that they are not parallel and have at each point exactly two dis-
tinct eigenvalues. Manifolds with harmonic curvature and these prbperties had
been studied and classified by A. Derdzindki [5], [6].. These are the earliest ex-
plicit examples answering negatively to the well-known Bourguignon’s conjecture
[3], which asserts that a compact Riemannian manifold with harmonic Riemann
curvature tensor must have parallel Ricci curvature tensor.
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Lemma 5. M™ x; N™(m,n, > 1) has scalar curvature R satisfying

4n
n+1

AMU—RU—Ku:_ﬁ + Ru =0, (35)

where u = fﬂ4ﬂ-. In particular, if K = 0 and M is a compact Riemannian
menifold without boundary whose scalar curvature R is constant, then u (hence
f) is a positive constant and R = R. (c.f. Ezample 2)

For more details about the scalar curvature of a warped-product manifold,
see [10], where the authors looked for warpping functions such that the warped-
product manifolds have constant scalar curvature and then determined which
constants will be attained. The main results are sketched as followings.

Let (M™,g) be a compact and connected Riemannian manifold and (N™, h)
be a Riemannian manifold with constant scalar curvature K. Firstly one consider
the elliptic linear operator L on M given by

4n
n+1

Lu=-—

Apu+ Ru, ue C®(M)

where R is the scalar curvature of M. It is well known that the linear eigenvalue
problem Lu = Au on M has a positive solution, called principal eigenfunction,
u; with principal eigenvalue A; given by

T

@ 4n 2 2 1 BAYF o
A —mf{/M( 7 IDvIP + Ry )dVylv € H (M),fM'u av, =1},

where H'(M) = {v € L*(M)||Dv||? € LY(M)} is the Sobolev space (c.f. [1]).
u; is uniquely determined up to a positive multiplicative constant. We shall call

(u1, A1) the principal eigenpair of L when u; is chosen so that it has maximum
1.

Theorem 10. [10] Let M be compact and connected with scalar curvature R
and N has constant scalar curvature K and dimN =n > 3.

(1) If K = 0, then there is positive function f € C®°(M) such that M x; N
has constant scalar curvature R = ). f is unique up to a positive multiplicative
constant. '

(1) If K < 0, then for each A < )i, there is a unique positive function
f € C®°(M) such that M x§ N has constant scalar curvature R = M. No constant
> A1 may be the scalar curvature of M xy N for any f.
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(199) If K > 0, then there is a § > 0 such that for each A € (A1, A1+3), there is
a positive function f € C®(M) such that M x § N has constant scalar curvature
A. No constant < A\ may be the scalar curvature of M xy N for any f.

It follows from the uniqueness results in Theorem 10 that we have

Corollary 2. Let M, N be as in Theorem 10 with K < 0, and let f = w
be such that M x ; N has constanit scalar curvature. Then M X 5 N is essential if
and only if R is not a constant.

Going back to our Example 3, we see that, when K > 0, there are essentially
warped-product manifolds M X ; N having constant scalar curvature even if the
base manifolds have constant scalar curvature R. Actually, in [10], the authors
had shown that for n = 3, K > 0, and )\, as before, each constant A € (A1, +00)
is the constant scalar curvature of M x f N for.some f if and only if the scalar
curvature R on M is constant. For the special case of dimM = 1, for example
M = S with the standard metric, given an eigenvalue pg(k > 2) of (—3Ajs), the
authors obtained uncountable positive solutions f such that M x 7 N has py, as
its scalar curvature. This generalized a result obtained by N. Ejiri with M = 81,
N = S% and k = 3. (c.f. [11]). Here we are interesting in the essential case. We
have

Theorem 11. Let (M™,g) be compact and connected with constant scalar
curvature R, and let (N, h) be 3-dimensional with constant scalar curvature K >
0. If the warped-product manifold M x s N has constant scalar curvature R, then
M x ¢ N is essential if and only if R=R+ 3ur(k > 2), where 0 = py < pg <
p3 < --- are the eigenvalues of —Ap (that is, the kernel of (—Ap + pil) is not
trivial).

Proof. Since R is a constant, the principal eigenvalue of L = —3A; + RI is
A1 = R. It follows from Theorem 3.5 in [10] that each constant A > R can be the
scalar curvature of M Xy N, for some positive function f € C®°(M). Indeed, f
can be chosen to be the constant function f, = K/(A — R).

Now, for the same A, if there is a non-constant positive function. feC®(M)
such that M x; N has constant scalar curvature A, then

Lfe+K =Xf., and Lf+K = \f,

which implies —3Ap(f — fo) = (A — R)(f = fc). Therefore A = R+ 3y, for some
k > 2, since A > R. |
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Conversely, let ¢ € C°°(M) be a (non-constant) eigenfunction of —A,, cor-

responding to ux(k > 2). Then for ¢ > 0 small enough, the non-constant function
[ =1tdr+ (3uk) K € C*®(M) is positive and, by a direct computation, it solves
Lf+ K = (R+3ux)f. Hence M x; N has constant scalar curvature R + 3uy.
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