A RESULT ON BEST APPROXIMATION

NASEER SHAHZAD

Abstract. Using a common fixed point theorem for noncommuting mappings of Pant [4], we improve and extend a result of Sahab, Khan and Sessa [5] on best approximation.

Throughout this paper, E denotes a normed space. A subset C of E is said to be starshaped with respect to a point $p \in C$ if, for each $x \in C$, the segment joining x to p is contained in C (that is, $\lambda x + (1 - \lambda) \ p \in C$ for each $x \in C$ and real λ with $0 \leq \lambda \leq 1$). $C \subset E$ is said to be starshaped if it is starshaped with respect to one of its elemnts. A convex set obviously starshaped. A mapping $T : E \to E$ is nonexpansive on E (resp. on a subset C of E) if $||Tx - Ty|| \leq ||x - y||$ for all $x, y \in E$ (resp. for all $x, y \in C$). The set of fixed points of T in E is denoted by F(T). Suppose $\hat{x} \in E$. An element $y \in C$ is called an element of best approximation of \hat{x} if we have $||\hat{x} - y|| = \inf_{z \in C} ||\hat{x} - z||$. We will denote by $P_c(\hat{x})$ the set of all such elements y. We denote the boundary of C by ∂C .

In 1969, Brosowski [1] obtained the following result which generalizes a theorem of Meinardus [3]:

Theorem 1. Let $T: E \to E$ be a linear and nonexpansive operator on E. Let C be a T-invariant subset of E and let $\hat{x} \in F(T)$. If $P_c(\hat{x})$ is nonempty, compact, and convex then $P_c(\hat{x}) \cap F(T) \neq \phi$.

In 1979, Singh [6] observed that the linearity of the operator T and the convexity of $P_c(\hat{x})$ in Theorem 1 can be relaxed and gave the following extension of it.

Theorem 2. Let $T : E \to E$ be a nonexpansive operator on E. Let C be a T-invariant subset of E and let $\hat{x} \in F(T)$. If $P_c(\hat{x})$ is nonempty, compact, and starshaped, then $P_c(\hat{x}) \cap F(T) \neq \phi$.

Singh [7] showed that if $D' = P_c(\hat{x}) \cup \{\hat{x}\}$, then Theorem 2 remains valid for T satisfying the condition of nonexpansiveness only on D'. Recently, Sahab, Khan and Sessa [5] generalized Theorem 2 with the following result.

Theorem 3. Let $T, I: E \to E$ be operators, C be a subset of E such that $T: \partial C \to C$, and $\hat{x} \in F(T) \cap F(I)$. Further T and I satisfy

$$||Tx - Ty|| \le ||Ix - Iy|| \tag{1}$$

for all $x, y \in D' = P_c(\hat{x}) \cup \{\hat{x}\}$ and let I be linear, continuous on $P_c(\hat{x})$, and ITx = TIxfor all $x \in P_c(\hat{x})$. If $P_c(\hat{x})$ is nonempty, compact and starshaped with respect to a point $p \in F(I)$ and if $I(P_c(\hat{x})) = P_c(\hat{x})$, then $P_c(\hat{x}) \cap F(T) \cap F(I) \neq \phi$.

Received December 15, 1997.

Remark 4. In Theorem 3, the hypothesis that I is continuous implies that T is continuous. In [5] Sahab, Khan and Sessa used the continuity of both T and I.

We need the following preliminary definitions and results.

Let (X, d) be a metric space and let T and I be self-mappings of X. The mappings T and I will be called R-weakly commuting on X, provided there exists some positive real number R such that

$$d(TIx, ITx) \le Rd(Tx, Ix)$$

for each $x \in X$. T and I will be called R-weakly commuting and a point x if $d(TIx, ITx) \leq R \ d(Tx, Ix)$ for some R > 0. Obviously, weak commutativity implies R-weak commutativity. However, R-weak commutativity implies weak commutativity only when $R \leq 1$. For details of the above see Pant [4].

The following is a consequence of Theorem 1 of Pant [4].

Theorem 5. Let (X,d) be a complete metric space and let $T, I : X \to X$ be R-weakly commuting mappings such that $T(X) \subseteq I(X)$, and d(Tx,Ty) < d(Ix,Iy)whenever $Ix \neq Iy$. If either T or I is continuous, then $F(T) \cap F(I)$ is singleton.

Let us continue this paper by observing that even if in Theorem 3 the conditions of continuity and commutativity of operators are somewhat relaxed, the assertion of Theorem 3 remains valid. Thus we get the following interesting result, which is new in the sense that, unlike other authors (see Remark 4), we do not require both T and I to be continuous.

Theorem 6. Let $T, I: E \to E$ be operators, C be a subset of E such that $T: \partial C \to C$, and $\hat{x} \in F(T) \cap F(I)$. Further T and I satisfy (1) on $D' = P_c(\hat{x}) \cup \{\hat{x}\}$ and let I be linear on $P_c(\hat{x})$ and T, I be R-weakly commuting on $P_c(\hat{x})$. If $P_c(\hat{x})$ is nonempty, compact and starshaped with respect of $p \in F(I)$, if $I(P_c(\hat{x})) = P_c(\hat{x})$, and if either T or I is continuous, then $P_c(\hat{x}) \cap F(T) \cap F(I) \neq \phi$.

Proof. First, we show that $T: P_c(\hat{x}) \to P_c(\hat{x})$. Let $y \in P_c(\hat{x})$ and hence $Iy \in P_c(\hat{x})$ since $I(P_c(\hat{x})) = P_c(\hat{x})$. Then $y \in \partial C$ (see Hicks and Humphries [2]) implying that $Ty \in C$, since $T: \partial C \to C$. It follows from (1) that

$$||Ty - \hat{x}|| = ||Ty - T\hat{x}|| \le ||Iy - I\hat{x}|| = ||Iy - \hat{x}||$$

and therefore $Ty \in P_c(\hat{x})$.

Let us define a sequence of maps T_n :

$$T_n x = (1 - k_n)p + k_n T x,$$

where k_n is a fixed sequence of positive numbers less than 1 and converging to 1. Each T_n maps $P_c(\hat{x})$ into itself because $T: P_c(\hat{x}) \to P_c(\hat{x})$ and $P_c(\hat{x})$ is starshaped with respect to p. Since I is linear and R-weakly commutes with T on $P_c(\hat{x})$, we have

$$T_n Ix = (1 - k_n) Ip + k_n T Ix,$$

$$IT_n x = (1 - k_n) Ip + k_n ITx$$

and

$$||T_nIx - IT_nx|| = k_n||TIx - ITx||$$

$$\leq k_nR||Tx - Ix||$$

$$< R||Tx - Ix||$$

for all $x \in P_c(\hat{x})$. Thus T_n and I are R-weakly commuting on $P_c(\hat{x})$ for each n and $T_n(P_c(\hat{x})) \subseteq I(P_c(\hat{x}))$. Also, we have

$$||T_n x - T_n y|| = k_n ||Tx - Ty|| \le k_n ||Ix - Iy|| < ||Ix - Iy||$$

whenever $Ix \neq Iy$.

Since either T or I is continuous, according to Theorem 5 $F(T_n) \cap F(I) = \{x_n\}$ for each n. Since $P_c(\hat{x})$ is compact, $\{x_n\}$ has a subsequence $\{X_{n_i}\} \to z$ (say) in $P_c(\hat{x})$.

Let us suppose that the mapping T is continuous. Since

$$x_{n_i} = T_{n_i} x_{n_i} = (1 - k_{n_i}) p + k_{n_i} T x_{n_i},$$

we have, as $i \to \infty$, that z = Tz, that is $z \in P_c(\hat{x}) \cap F(T)$. Since T_n and I are R-weakly commuting, we have that

$$||T_{n_i}Ix_{n_i} - IT_{n_i}x_{n_i}|| \le R||T_{n_i}x_{n_i} - Ix_{n_i}||.$$

On letting $i \to \infty$, the above inequality yields $IT_{n_i}x_{n_i} \to Tz = z$ since $T_{n_i}x_{n_i} = Ix_{n_i} = x_{n_i}$. Since $T(P_c(\hat{x})) \subseteq P_c(\hat{x}) = I(P_c(\hat{x}))$ it follows from z = Tz that there exists $z_1 \in P_c(\hat{x})$ such that $z = Tz = Iz_1$. Now

$$||TT_{n_i}x_{n_i} - Tz_1|| \le ||IT_{n_i}x_{n_i} - Iz_1||.$$

This inequality on letting $i \to \infty$ implies that $Tz = Tz_1$ since $IT_{n_i}x_{n_i} \to Tz$ and $Tz = Tz_1$.

Thus $z = Tz = Tz_1 = Iz_1$. This in turn implies that

$$||Tz - Iz|| = ||TIz_1 - ITz_1|| \le R||Tz_1 - Iz_1|| = 0,$$

that is, z = Tz = Iz and hence

$$P_c(\hat{x}) \cap F(T) \cap F(I) \neq \phi.$$

The same conclusion is found when I is assumed to be continuous since continuity of I implies continuity of T.

We have improved and extended Theorem 3([5]) for noncommuting maps.

NASEER SHAHZAD

References

- B. Brosowski, "Fixpunktsatze in der approximations-theorie," Mathematica (Cluj), 11(1969), 195-220.
- [2] T. L. Hicks and M. D. Humphries, "A note on fixed point theorems," J. Approx. Theory, 34(1982), 221-225.
- [3] G. Meinardus, "Invarianz bei linearen approximationen," Arch. Rational Mech. Anal., 14(1963), 301-303.
- [4] R. P. Pant, "Common fixed points of noncommuting mapping," J. Math. Anal. Appl., 188(1994), 436-440.
- [5] S. A. Sahab, M. S. Khan and S. Sessa, "A result in best approximation theory," J. Approx. Theory, 55(1988), 349-351.
- S. P. Singh, "An application of a fixed point theorem to approximation theory," J. Approx. Theory, 25(1979), 89-90.
- [7] S. P. Singh, "Applications of fixed point theorems in approximation theory," in Applied Nonlinear Analysis, (V. Lakshmikantham, Ed.), Academic Press, New York, 389-394, 1979.

Department of Mathematics, Quaid-i-Azam University, Islamabad-Pakistan.