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A RESULT ON BEST APPROXIMATION

NASEER SHAHZAD

Abstract. Using a common fixed point theorem for noncommuting mappings of Pant [4], we
improve and extend a result of Sahab, Khan and Sessa [5] on best approximation.

Throughout this paper, E denotes a normed space. A subset C of E is said to be
starshaped with respect to a point p € C if, for each z € C, the segment joining z to p is
contained in C (that is , Az + (1 — ) p € C for each z € C and real A with 0 <ALl
C C FE is said to be starshaped if it is starshaped with respect to one of its elemnts. A
convex set obviously starshaped. A mapping T': E — E is nonexpansive on E (resp. on
a subset C of E) if || Tz — Ty|| < ||z — y|| for all z,y € E (resp. for all z,y € C). The
set of fixed points of T' in E is denoted by F(T) . Suppose # € E. An element yeCis
called an element of best approximation of # if we have I£ — y|| = inf,ec || — 2||. We
will denote by P,(%) the set of all such elements y. We denote the boundary of C by 8C.

In 1969, Brosowski [1] obtained the following result which generalizes a theorem of
Meinardus [3]:

Theorem 1. Let T : E = E be a linear and nonezxpansive operator on E. Let C be
a T-invariant subset of E and let & € F(T). If P.(£) is nonempty, compact, and convex
then P.(Z) N F(T) # ¢.

In 1979, Singh [6] observed that the linearity of the operator 7' and the convexity of
F¢(2) in Theorem 1 can be relaxed and gave the following extension of it.

Theorem 2. Let T : E — E be a nonezpansive operator on E. Let C be a T-
invariant subset of E and let & € F(T). If P,(2) is nonempty, compact, and starshaped,
then Po(2) N F(T) # ¢.

Singh [7] showed that if D' = P,(2) U {#}, then Theorem 2 remains valid for T
satisfying the condition of nonexpansiveness only on D'. Recently, Sahab, Khan and
Sessa [5] generalized Theorem 2 with the following result.

Theorem 3. Let T, I : E — E' be operators, C be a subset of E such that T : C —
C, and £ € F(T)NF(I). Further T and I satisfy

Tz — Ty|| < |11z - Iy|| (1)

for aliz,y € D' = P.(£)U{%} and let I be linear, continuous on P.(%), and ITz =TIz
for all z € P.(2). If P.(Z) is nonempty, compact and starshaped with respect to a point
p € F(I) and if I(Pe(%)) = Py(2), then P.(2) N F(T) N F(I) # 6.
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Remark 4. In Theorem 3, the hypothesis that I is continuous implies that T is
continuous. In [5] Sahab, Khan and Sessa used the continuity of both 7" and I.
We need the following preliminary definitions and results.
Let (X, d) be a metric space and let T' and I be self-mappings of X. The mappings
T and I will be called R-weakly commuting on X, provided there exists some positive
real number R such that
d(TIz,ITz) < Rd(Tz,Ix)

for each z € X. T and I will be called R-weakly commuting and a point z if
d(TIz,ITz) < R d(Tz,Iz) for some R > 0. Obviously, weak commutativity implies
R-weak commutativity. However, R-weak commutativity implies weak commutativity
only when R < 1. For details of the above see Pant [4].
The following is a consequence of Theorem 1 of Pant [4].

Theorem 5. Let (X,d) be a complete metric space and let T, I : X — X be
R-weakly commuting mappings such that T(X) C I(X), and d(Tz,Ty) < d(Iz,Iy)
whenever Ix # Iy. If either T or I is continuous, then F(T) N F(I) is singleton.

Let us continue this paper by observing that even if in Theorem 3 the conditions
of continuity and commutativity of operators are somewhat relaxed, the assertion of
Theorem 3 remains valid. Thus we get the following interesting result, which is new in
the sense that, unlike other authors (see Remark 4), we do not require both T" and I to
be continuous.

Theorem 6. Let'T, I : E — E be operators, C be a subset of E such that T : 6C —
C,and 2 € F(T)N F(I). Further T and I satisfy (1) on D' = P,(£) U {2} and let I
be linear on P.(Z) and T, I be R-weakly commuting on P,(£). If P.(%) is nonempty,
compact and starshaped with respect ot p € F(I), if I(P.(%)) = P.(&), and if either T or
I is continuous, then P.(Z) N F(T)NF(I) # ¢.

Proof. First, we show that T : P.(£) & P.(£). Let y € P.(£) and hence Iy € P.(%)
since I(F.(2)) = P.(Z). Then y € OC (see Hicks and Humphries [2]) implying that
Tye C,since T : 0C — C. It follows from (1) that

ITy — || = ITy - T2l < |1y — IZ]| = ||Iy - %]
and therefore T'y € P.(%).
Let us define a sequence of maps T},:

The = (1 =k,)p+ kuTz,

where ki, is a fixed sequence of positive numbers less than 1 and converging to 1. Each T},
maps P(%) into itself because T : P.(Z) — P.(2) and P,(%) is starshaped with respect
to p. Since I is linear and R-weakly commutes with T on P.(£), we have

Tplzx = (1= kp)Ip+ k,TIz,
IThx = (1 —kp)Ip+ kn,ITzx
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and

| Tnlz — IThz|| = k|| T 1z — ITx||
< kaR||Tz — Iz|
< R||Tz — Iz||

for all z € P.(£). Thus T, and I are R-weakly commuting on P,(%) for each n and
Th(P.(Z)) C I(P.(£)). Also, we have

Tz — Tnyll = kallTz — Tyl| < knllIz — Iy|| < |1z - Iy

whenever Iz # Iy.

Since either T or I is continuous, according to Theorem 5 F(T,) N F(I) = {z,} for
each n. Since P.(Z) is compact, {z,} has a subsequence {X,,} = z (say) in P.(%).

Let us suppose that the mapping 7T is continuous. Since

mn‘, = Tn.- wﬂ,‘ - (1 o kn'. )p + kaxn,-,

we have, as i — oo, that z = T'z, that is z € P,(£) N F(T). Since T}, and I are R-weakly
commuting, we have that

| Tn; Izn; — ITh zq,|| < R”Tnsxne ~ Izq. |-

On letting i — oo, the above inequality yields IT,,z,, = Tz = z since Tp.z,, =
Ity = zn,. Since T(P,(Z)) C P.(£) = I(P.(%)) it follows from z = Tz that there exists
21 € P.(Z) such that z =Tz = Iz;. Now

|TTh;Tn; — Tz1|| < || ITn,;Zn;, — I21]|.

This inequality on letting ¢ — oo implies that Tz = Tz since ITy,z,, — Tz and
T2=Tx,
Thus 2 =Tz =Tz, = Iz;. This in turn implies that

|\Tz—1Iz|| =||TIz; — ITz|| < R||Tz — Iz]|| =0,
that is, 2 = Tz = Iz and hence
PAB) NPTV FL) # ¢

The same conclusion is found when I is assumed to be continuous since continuity of I
implies continuity of T'.
We have improved and extended Theorem 3([5]) for noncommuting maps.
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