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ON THE EULER CHARACTERISTIC OF THE
SPACE SATISFYING CONDITION (7**)

SANG-EON HAN

Abstract. In this paper, we prove some results on the Euler characteristic number of a locally
nilpotent space and a space satisfying condition (7*").

1. Introduction

The study of the nilpotent space was begun by A. K. Bousfield, P. Hilton, G. Mislin
and others [7,8]. Especially, the Euler characteristic of the nilpotent space was studied
by R. H. Lewis [10]. :

In this paper, we define the condition (7*) and (7**) and the locally nilpotent spaces
as the extensive concept of the nilpotent space. Euler characteristic number of the spaces
with relation to the conditions (7*) and (7**) will be studied.

Furthermore, we study the homotopy equivalent conditions of the locally nilpotent
spaces and spaces satisfying condition (7**).

We work in the category of the topological spaces having the homotoppy type of
connected CW-complexes with base point and denote as the T'.

2. Some Properties of the Condition (7**)

In this section, we define the locally nilpotent space and condition (7*) and condition
(T**) and study their properties respectively.

We recall that locally nilpotent group is the group whose finitely generated subgroups
are nilpotent groups [12].

And we denote the category of nilpotent spaces and continuous maps as Ty .

Now we extend the concept of the nilpotent space like followings.

Definition 2.1. A space X (€ T) is said to be a locally nilpotent space if

(1) m(X) is a locally nilpotent group,
(2) the action 71 (X) X mp(X) — 7, (X) is nilpotent for all n > 2 [1].
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And we denote the category of locally nilpotent spaces and continuous maps as T n.

We know that the category Ty is full subcategory of T n.

Generally, for a group G and a fixed g € G, we denote by [g,G] the subgroup of
G generated by all commutators [g,a] which means g~'a~'ga where a € G. Since
[9,a]® = [g,b]"![g, ab] for each a,b € G (where a® = b~'ab), [g9,G] is a normal subgroup
of G.

Definition 2.2. We say that a space X (€ T) satisfies condition (7*) if for all
g,t € m1(X) either g[g, m (X)] = t[t, m1 (X)] or g[g, m1 (X)] Ntt, 7 (X)] = ¢.
Now we define the effective concept with respect to the locally nilpotent space.

Definition 2.3. For X € T, we say that X satisfies the condition (7**) if for all
g(# 1) € m(X), then g ¢ [g, m (X)].

Since the [g,71(X)] is a normal subgroup of m;(X), condition (T**) is homotopy
invariant property.

In fibration ¥ —+ E — B, any path a : I —.B and singular g-complex g : A? —
p~}(a(0)) determine a map G : A x I — E over aopry : AY X I - I — B and
extending Go = g : A? x {0} = E. if a is a loop, then G; : A? x {1} — E is a g-simplex
in p~}(a(1)) = p~((0)). Now do elements of 7, (B) operate on H,.(F) [9].

Definition 2.4. A fibration ' -+ E — B is said to be quasi-hilpotent if the action
of m1(B) on H,(F) is nilpotent, * > 0.

Lemma 2.5. For X € Trn, X satisfies the condition (T**).

Proof. (Step 1); first, we assert that X satisfies the condition (7*). Since m;(X) is
a locally nilpotent group, suppose ¢ € ala, w1 (X)] N b[b, 71 (X)] for some a,b,c € m1(X).
We only show that a[a,m1(X)] = b[b, m1(X)]. If b € ala,m (z)] (for a,b € (X)) then
b[b, m1(z)] C ala, ™ (X)]. We know that

cle, ™ (X)] C ala, 71 (X)] N b[b, m1 (X)) (%)

Clearly, ¢ = h™'a for some h = [[;2,[a,9:]% € [a,m1(X)](9: € m1(X),e&;i = £1). Let
Gi1 =< a,01,.--,9m >. Since a = he, h = [[;2,[h, g:]% modulo [c,G], that is, h =
[T, [k, gi]% in e, However, since the latter group is nilpotent, it follows that h = 1
in [c_GGll—I and h € [c,G1]). Therefore, a = hc € cle,m1(X)] and we get ala,m1(X)] C
cle,m(X)] [2]. It follows from (x) that a[a, 1 (X)] = c[e, 71 (X)]-

Similary, b[b, 71 (X )] = ¢[e, m1(X)] and consequently, a[a, 71 (X)] = b[b, 1 (X)]. Thus
X € Ty, X satisfies the condition (7*).

(Step 2); next, we assert that X above satisfies the condition (7**). Assume that
g € [g,m(X)] for some (g # 1) € m1(X). Then ¢! € [g,m(X)] and 1 € g[g, m (X))
Thus g[g, m1(X)] N 1[1,7(X)] # ¢. Since X satisfies the condition (T*) by (Step 1),
9[g, m(X)] = 1. Since g € g[g, 71 (X)], we have a contradiction.

- Remark. If X(€ T) satisfies the condition (7*), then X satisfies condition (™).
But the converse statement need not be true in general [6].
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Theorem 2.6. For X € Trn, if b € [a,m1(X)] then ala, 71 (X)] = b[b, m1(z)], for
a,b e m(X). '

Proof. If b € afa, m(X)] (for a,b € m (X)) then b[b, 71 (X)] C a[a, 71 (X)]. Since X
satisfies the condition (7*) by the (Step 1) of Lemma 2.5, thus our proof is completed
by the following properties; when X satisfies the condition (7*), for each a,b € m (X),
if a[a,m (X)] C b[b, m1(X)] then afa, 71 (X)] = b[b, 1 (X)]. Thus our proof is completed.

3. Euler Characteristic of the Space Satisfying Condition (7**)

In this section, we make results on the Euler characteristic number of the locally
nilpotent spaces and spaces satisfying condition (7**).

Furthermore, we study about the homotopy equivalent conditions of the nonnilpotent
spaces.

Lemma 3.1.[3] Fur finite X, if m (X) contains a torsion free normal abelian subgroup
A # 1 which acts nilpotently on H,(X) where n > 0, then x(X) = 0.

Theorem 3.2. For finite X satisfying condition (T**), if

(1) the action 71 (X) x Hp(X) = Hp(X) is nilpotent where n > 0,
(2) m (X)( 1) is finite,
then x(X) = 0.

Proof. (Step 1); we check the nilpotent property of 7; (X) under the above hypothe-
sis. So assume that m; (X) is not nilpotent, then we don’t have finite upper central series of
71(X). If Z,(m1(X)) denote the n-th center of 71 (X), we can find an integer n such that
Zpy1(m1(X)) = Znu(m1 (X)) © m1(X). It follows that if £ € Z, (w1 (X)), then [z, 71 (X)] €
Zn(m1(X)). Choose any z1 &€ Zn(m1(X)). we know [z1,m1 (X)] € Zn(m1(X)) by above. If
zy € [z1,m1(X)] then we have shown that the condition (7**) does not hold, as required,
so assume z; & [z1,m1(X)]. Then choose z2 € [z1,m1(X)], zZ2 & Zn(m(X)). Since
[1,71(X)] is a normal subgroup of 71 (X), [z2, 71 (X)] C [z1, 71 (X)]. If 22 € [z2, 71 (X)],
we are done.

Otherwise, we have [z2,m1(X)] € [z1,71(X)] but also we noted [z2,m1(X)] &
Zn(m1(X)). So pick z3 € [z2,m(X)], 23 & Zn(m1(X)) and continue. Since m1(X) is
finite, this process must stop. Afer all we have a for which z4(# 1) € [z4,m1(X)]. This
is a contradiction to the fact that X satisfies the condition (7**). Thus we know that
m1(X) is nilpotent group.

(Step 2); when m;(X) is finite, since X satisfies the condition (7**) and by (step

1), m(X) is nilpotent group. Thus X € Tx. Since 7 (X) is finite, x(X) = x(X) and

another property x(X) = |m1(X)|x(X) where | | means the order of m; (X) and X means
the univeral convering space of X [11]. If m(X) # 1, x(X) = 0.

Theorem 3.3. For finitely indezed set {X,,00 € M : finite}, Xo € TN for each o
with 71(Xo) finite then X([[oepr Xo) = 0.



118 SANG-EON HAN

Proof. (Step 1); we know that X, satisfies the condition (7**) by Lemma 2.5. Now
let’s check the finite product property of condition (T**). For set {X,|a € M : finite },
if X, satisfies the condition (7**) for each & € M then [, ¢, X« satisfies the condition
(T**) from the following facts; let G be the group [] aem T1(Xeo) and P, be the projection
of G on m(X,) for any @ € M. Suppose that g € [g,G] for g # 1 in G, there exists
a(€ M) such that P,(g) = g, is not identity in m(X,). Then g, € [ga, ™ (X,)] this is a
contradition to condition (7*) (see Lemma 2.5). Thus [],¢, Xa satisfies the condition
(T**). )

(Step 2); let’s check the finite product property of the nilpotent actions. By the
nilpotent property of H,(X,) under the action 7 (Xa), there is a lower central series of
He ()Z'a) for each a € M. In this finite product space case, we only prove the arbitrary
two product case of Xo, Xg € {Xa}acm. Put the lower central series of H,(X4) and
H,(X3) under the nilpotent action of m; (Xa) and m1(Xg) respectively like followings;
suppose that the nilpotent classes of X, and Xz are n and m respectively. We get the
following:

Huy(Xs) DG 2G50+ DG 3D G = {€}
Hn(Xg) DE2 D E3D--DE; DD Ep = {e}

Now we make the following sequence;

Hoy{Xe) % HalXg) > HalXe) xBs 3G x By D+ D Gy %8 5 Q3% B >
Gj X Eeq D v vr DGy X By Z{C} X {e}(*)

Then the above sequence (*) is lower central series of H,(X,) x Hy(X3) under the
action m1(Xqa) X m1(Xpg) with the componentwise action. Futhermore, the nilpotent
class of Xo x Xp is less than m - n. Thus there is a 71 (][], Xo) nilpotent action on
H( HQEM Xa)’

Since 71 ([]oep Xo) is finite, our proof is completed by Theorem 3.2.

Remark. For set {Xq|a € M : finite}, X, € Trn for each a € M [5] if and only if
cheM X, € Tin [5]

Corollary 3.4. For set {Xo|la € M : finite}, Xo(€ TLN) is finite oriented space
without boundary then x([], € MX,) =0 if m1(Xo)(# 1) is finite for any o € M.

Proof. Since x([I,epr Xo) = [Iaen X(Xa), by Theorem 3.2 and Theorem 3.3, our
proof is completed.

We recall that a group G satisfies the maximal condition if it has no infinite strictly
increasing chain of subgroups [12].

Theorem 3.5. For finite X (€ Trn), if

(1) m(X) is infinite with the mazimal condition on normal subgroups of m1(X) or

(2) m(X)(#1) is finite,
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then x(X) = 0.

Proof. (Case 1); when m; (X)) is finite, we know that X satisfies the condition (7**)
by the Theorem 2.5. By the similar method of (step 2) of the Theorem 3.2, we get
x(X) =0.

(Case 2); when m(X) is infinite and 71 (X) has maximal condition on normal sub-
groups then m; (X) is finitely generated nilpotent group. Thus 7; (X) has the center group-
of 71 (X) as the infinite normal abelian subgroup which acts nilpotently on H. (X). Then
by Lemma 3.1, we have x(X) =0.

‘Corollary 3.6. For finite X satisfying condition (T**) with m1(X)(# 1) finite,
suppose that

(1) the map f : X — X is a universal covering map,
(2) the action 1 (X) x Hn(X) = Hn(X) is nilpotent for alln >0

then x(X) = 0.

Proof. Since x(X) = |m1(X)|x(X) where | | means the order of 7; (X) and X means
the univeral convering space of X, and by the similar proof of the Theorem 3.5, our proof
is completed.

In fibration Fy — E—J;B,, if reduced homology group H, (Ff) =0, x > 0 we call that
f is an acyclic map, where Fy is a homotopy fiber of f.

Corollary 3.7. Let X(€ Trn) be a finite aspherical polyhedron with 71 (X) is infinite
and has the mazimal condition on normal subgroups of w1 (X) then x(X) = 0.

Proof. See Theorem of S. Rosset [13] and (Step 2) of Theorem 3.5.

Theorem 3.8.For finite X satisfying condition (T**), if

(1) the action 71 (X) X Hn(X) = Hn(X) is nilpotent for alln > 0,
(2) f: X =Y is an acyclic map with 7, (X) finite,

then x(Y) = 0.

Proof. By the (step 1) of the Theorem 3.2, m;(X) is a nilpotent group. Thus
X € Ty. From the fact that f : X — Y is an acyclic map and the classical homotopy

exact sequence of fibration: Fy — X —f+Y, we know that m; (f) is an epimorphism, because
no(Fy) = 0. Furthermore H;(Fy) = W%% = 0 where [,] means the commutator

subgroup. m(F}) is a perfect group and the homomorphic image of a perfect group
is also a perfect group. Thus m(X) = gX 1;( where Pm;(X) means a perfect normal
subgroup of m;(X). Since X € Ty, x(X) = 0 under the above condition and Py (X)
is trivial. Thus 7 (f) is an isomorphism. By use of the Hurewicz Theorem mductlvely,
mi(F¢) = 0. Thus f is a weak homotopy equivalence. By the Whitehead Theorem [4], f

is a homotopy equivalence. Therefore, our proof is completed.

Theorem 3.9. For finite X satisfying condition (T**), if
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1) f: X—>Yis quasi-nilpotent homology equivalence with m1(X) finite,
(2) the action m(X) x Hp(X) = H,(X) is nilpotent for alln >0

Then x(Y) = 0.

Proof. By the (step 1) of the Theorem 3.2, X is a nilpotent space. We know the
homotopy fiber F of f is also nilpotent space. From the fact that f is quasi-nilpotent, Y’
is a nilpotent space. Thus we conclude that f is a nilpotent map. Since f is nilpotent map
and homology equivalence, f is a homotopy equivalence. Thus our proof is completed.

Corollary 3.10. For finite X(€ Trn) if f : X — Y is quasi-nilpotent homology
equivalence with m(X) finite, then x(Y) = 0.

Proof. By Lemma 2.5 and Theorem 3.9, our proof is completed.
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