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ON THE EULER CHARACTERISTIC OF THE

SPACE SATISFYING CONDITION (T**)

SANG-EON HAN

Abstract. In this paper, we prove some results on the Euler characteristic number of a locally
nilpotent space and a space satisfying condition (T**).

1. Introduction

The study of the nilpotent space was begun by A. K. Bousfield, P. Hilton, G. Mislin
and others (7 ,8]. Especially, the Euler characteristic of the nilpotent space was studied
by R.H. Lewis (10].
In this paper, we define the condition (T*) and (T**) and the locally nilpotent spaces

as the.extensive concept of the nilpotent space. Euler characteristic number of the spaces
with relation to the conditions (T*) and (T**) will be studied.
Furthermore, we study the homotopy equivalent conditions of the locally nilpotent

spaces and spaces satisfying condition (T**).
We work in the category of the topological spaces having the homotoppy type of

connected CW-complexes with base point and denote as the T.

2. Some Properties of the Condition (T**)

In this section, we define the locally nilpotent space and condition (T*) and condition
(T**) and study their properties respectively.
We recall that locally nilpotent group is the group whose finitely generated subgroups

are nilpotent groups (12].
And we denote the category of nilpotent spaces and continuous maps as TN.
Now we extend the concept of the nilpotent space like followings.

Definition 2 .1. A space X(E T) is said to be a locally nilpotent space if

(1) 1r1 (X) is a locally nilpotent group,
(2) the action 1r1 (X) x 7rn(X) -+ 1rn(X) is nilpotent for all n 2: 2 [l].
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And we denote the category of locally nilpotent spaces and continuous maps as TLN.
We know that the category TN is full subcategory of TLN.
Generally, for a group G and a fixed g E G, we denote by [g, G] the subgroup of

G generated by all commutators [g, a] which means g五万a where a E G. Since
[g, a]b = [g, b] 一一 1[g, ab] for each a, b E G (where ab = b-1ab), [g, G] is a normal subgroup
of G.

Definition 2.2. We say that a space X(E T) satisfies condition (T*) if for all
g, t E 町 (X) either g[g,町 (X)] = t[t,1r1(X)] or g[g,1r1(X)] n t[t,1r1(X)] =¢.
Now we define the effective concept with respect to the locally nilpotent space.

Definition 2.3. For X E T, we say that X satisfies the condition (T**) if for all
g(=/= 1) E 1r1 (X), then g (/. [g氝1(X)].
Since the [g氝1 (X)] is a normal subgroup of 町 (X), condition (T**) is homotopy

mvanant property.
In fibration F -+ E -+ B, any path a : I -+. B and singular q-complex g : 6. q -+
尸(a(O)) determine a map G : 幻 x I -+ E over a o p乃 ：6.q x I -+ I -+ B and
extending Go= g: 6.q x {O}-+ E. if a is a loop, then G1 : 6.q x {1}-+ Eis a q-simplex
in p-1(a(l)) = p-1(a(O)). Now do elements of 町 (B) operate on H*(F) [9].

Definition 2.4. A fibration F -+ E -+ B is said to be quasi-hilpotent if the action
of町 (B) on H*(F) is nilpotent, * 2: 0.

Lemma 2.5. For X E TLN, X satisfies the condition (I'**}.

Proof. (Step l); first, we assert that X satisfies the condition (T*). Since 町 (X) is
a locally nilpotent group, suppose c E a[a, rr1 (X)] n b[b, rr1 (X)] for some a, b, c E 1r1 (X).
We only show that a[a,町 (X)] = b[b, 1r1 (X)]. If b E a[a,町 (x)] (for a,b E 町 (X)) then
b[b潢1(x)] C a[a,町 (X)]. We know that

c[c, 1r1 (X)] C a[a, 町 (X)] n b[b, 町 (X)] (*)

Clearly,. c = h-1a for some h = IT訌a,gir E [a,1r1(X)](gi E 而 (X厄 ＝士1). Let
G1 =< a, 91, ... , 9m >. Since a = he, h 三 rr:1 [h, 9i]Ei modulo [c, G1J, that is, h =n:凈 ，9i]Ei in 菡幻. However, since the latter group is nilpotent, it follows that h = l
in矗 and h E [c, Gi]. Therefore, a = he E c[c,町 (X)] and we get a[a,町 (X)] C
c[c,1r1(X)] [2]. It follows from(*) that a[a,1r1(X)] = c[c,町 (X)].
Similary, b[b氝1 (X)) = c[c, 1r1 (X)] and consequently, a[a氝1 (X)) = b[b, 1r1 (X)]. Thus

XE TLN, X satisfies the condition (T*).
(Step 2); next, we assert that X above satisfies the condition (T**). Assume that

g E [g, 1r1 (X)] for some (g =I= 1) E 町 (X). Then g-1 E [g, 1r1 (X)) and 1 E g[g,町 (X)].
Thus g[g, 1r1 (X)] n 1[1氝1 (X)] =I=¢. Since X satisfies the condition (T*) by (Step 1),
g[g,rr1(X)] = 1. Since g E g[g,町 (X)], we have a contradiction.

Remark. If X(E T) satisfies the condition (T*), then X satisfies condition (T**).
But the converse statement need not be true in general [6].
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Theorem 2.6. For X E TLN, if b E [a,1r1(X)] then a[a,1r1(X)] = b[b,1r1(_x)], for
a,b E 町 (X).

Proof. If b E a[a, 町 (X)) (for a, b E 町 (X)) then b[b,町 (X)] C a[a, 1r1 (X)). Since X
satisfies the condition (T*) by the (Step 1) of Lemma 2.5, thus our proof is completed
by the following properties; when X satisfies the condition (T*), for each a, b E 町 (X),
if a[a, 1r1 (X)] C b[b,町 (X)) then a[a氝1 (X)) = b[b,町 (X)). Thus our proof is completed.

3. Euler Characteristic of the Space Satisfying Condition (T**)

In this section, we make results on the Euler characteristic number of the locally
nilpotent spaces and spaces satisfying condition (T**).
Furthermore, we study about the homotopy equivalent conditions of the nonnilpotent

spaces.

Lemma 3.1.[3] Fur finite X, if 1r1 (X) contains a torsion free normal abelian subgroup
A =I- 1 which acts nilpotently on Hn戊 ）where n~0, then x(X) = 0.
Theorem 3.2. For finite X satisfying condition _(T**}, if

(1) the action 1r1 (X) x Hn(X) -+ H氙 ）is nilpotent where n~0,
(2) 1r1(X)(:/-1) is finite,

then x(X) = 0.
Proof. (Step 1); we check the nilpotent property of 叨 (X) under the above hypothe­

sis. So assume that 町 (X) is not nilpotent, then we don't have finite upper central series of
町 (X). If Zn伍 (X)) denote the n-th center of 1r1 (X), we can find an integer n such that
Zn+l (1r1 (X)) = Zn(1r1 (X))~7r1 (X). It follows that if x <t Z从1r1(X)), then (x,1r1(X)] i
Zn(1r1(X)). Choose any X1 <t Zn缶 (X)). we know [x1,1r1(X)] i Zn(1r1(X)) by above. If
x1 E [x1, 1r1 (X)] then we have shown that the condition (T**) does not hold, as required,
so assume x1 <t [x1, 1r1 (X)]. Then choose x2 E [x1, 1r1 (X)], x2 <t Zn(1r1 (X)). Since
[x1, 1r1 (X)] is a normal subgroup of叨 (X), [x鉛 1r1 (X)] 戶 [x1,1r1(X)]. Ifx2 E [x亡 1 (X)],
we are done.
Otherwise, we have (x2,1r1(X)]~[x1,1r1(X)] but also we noted [x2,1r1(X)] i

Zn(1r1(X)). So pick X3 E [x2渲1(X)], x3 <t Zn(1r1(X)) and continue. Since 1r1(X) is
finite, this process must stop. Afer all we have a for which x。(:/- 1) E (x0,1r1(X)]. This
is a contradiction to the fact that X satisfies the condition (T**). Thus we know that
町 (X) is nilpotent group.

(Step 2); when 1r1 (X) is finite, since X satisfies the condition (T**) and by (step
1), 1r1(X) is nilpotent group. Thus X E TN. Since 町 (X) is finite, x戊 ）= x(X) and
another property X汶）＝屆 (X)lx(X) where 11 means the order of 1r1 (X) and X means
the univeral convering space of X (11]. If 1r1 (X) -:/= 1, x(X) = 0.
Theorem 3.3. For finitely indexed set {Xa, a E i\1: finite}, X。E TLN for each a

with 1r1 (X。) finite then x(ITaEM Xa) = 0.
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Proof. (Step 1); we know that X。satisfies the condition (T**) by Lemma 2.5. Now
let's check the finite product property of condition (T**). For set {X。la E M : finite },
if X。satisfies the condition (T**) for each a E M then TIQEM芯 satisfies the condition
(T**) from the following facts; let G be the group TI。EM 町 (X。) and凡 be the projection
of G on 町 (X。) for any a E M. Suppose that g E (g, G] for g i= 1 in G, there exists
a(E M) such that 凡 (g) = g。is not identity in 1r1 (X註 Theng。E (go, 町 (X。)] this is a
contradition to condition (T**) (see Lemma 2.5). Thus TiaEM X。satisfies the condition
(T**).

(Step 2); let's check the finite product property of the nilpotent actions. By the
nilpotent property of Hn(辶 ）under the action 町 (X。) ，there is a lower central series of
H氙 。）for each a E M. In this finite product space case, we only prove the arbitrary
two product case of X。, X13 E {X。}aEM·Put the lower central series of Hn(辶 ）and
Hn(心）under the·nilpotent action of 町 (X。) and 町 (X13) respectively like followings;
suppose that the nilpotent classes of X。and X13 are n and m respectively. We get the
following:

比(x。) :J G2 :J G3 :J· · ·:J Gi :J· · ·:J Gn = {e}
Hn(心）3 屆 3 恥 :::) ···:) Ei :J· · ·:J Em = {e}

Now we make the following _sequence;
Hn崮 ）X Hn(心）::) Hn(X。) X E2 ::) G2 X E2 ::)· · ·::) Gj-1 X Ei ::) Gj X Ei ::)

Gj X Ei+ 1 ::)· · ·::) Gn X Em = {e} X {e}· · ·(*).
Then the above sequence (*) is lower central series of Hn (X。) x Hn(X13) under the

action 1r1 (Xa) x 町 (X13) with the componentwise action. Futhermore, the nilpotent
class of X。x X13 is less than m·n. Thus there is a 町 (TiaEMX。) nilpotent action on
H(TiaEM 嵓 ）．
Since 1r1 (TiaEM辶）is finite, our proof is completed by Theorem 3.2.

Remark. For set {X。恒 E M : finite}, X。E TLN for each a E M [5] if and only if
TiaEMX。E TLN [5].

Corollary 3.4. For set {X。la E M : finite}, X。(E TLN) is finite oriented space
without boundary then x(TI。EMX。) =0 加r1 (Xa)(f= 1) is finite for any a E M.

Proof. Since x(TiaEM辶 =TiaEM x(Xa), by Theorem 3.2 and Theorem 3.3, our
proof is completed.
We recall that a group G satisfies the maximal condition if it h邸 no infinite strictly

increasing chain of subgroups [12).

Theorem 3.5. For finite X(E TLN), if

(1) 町 (X) is infinite with the maximal condition on normal subgroups of 町 (X) or
(2) 町 (X)(f= 1) is finite,
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then x(X) = 0.

Proof. (Case 1); when 1r1 (X) is finite, we know that X satisfies the condition (T**)
by the Theorem 2.5. By the similar method of (step 2) of the Theorem 3.2, we get
x(X) = 0.
(Case 2); when 1r1 (X) is infinite and 1r1 (X) has maximal condition on normal sub­

groups then 1r1 (X) is finitely generated nilpotent group. Thus 1r1 (X) has the center group
of町 (X) as the infinite normal abelian subgroup which acts nilpotently on H諗 ）. Then
by Lemma 3.1, we have x(X) = 0.

Corollary 3.6. For finite X satisfying condition (T**) with 珥X)(# 1) finite,
suppose that

(1) the map f : X X· l--+ is a umversa covering map,
(2) the action 1r1 (X) x Hn(X) --+ Hn(X) is nilpotent for all n 2: 0
then X戊）= 0.

Proof. Since x(X) =囯(X) lx(X) where 11 means the order of 1r1 (X) and X means
the univeral convering space of X, and by the similar proof of the Theorem 3.5, our proof
is completed.
In fibration Fi --+ E縁 ，if reduced homology group职Fi)= 0, * 2: 0 we call that

f is an acyclic map, where Fi is a homotopy fiber off.

Corollary 3.7. Let X(E TLN) be a finite aspherical polyhedron with 1r1 (X) is infinite
and has the maximal condition on normal subgroups of 1r1(X) then x(X) = 0.

Proof. See Theorem of S. Rosset [13] and (Step 2) of Theorem 3.5.

Theorem 3.8.For finite X satisfying condition (T**), if

(1) the action 1r1 (X) x Hn(X) --+ H為 ）is nilpotent for all n 2: 0,
(2) f : X --+ Y is an acyclic map with 町 (X) finite,
then x(Y) = o:
Proof. By the (step 1) of the Theorem 3.2, 1r1 (X) is a nilpotent group. Thus

X E TN. From the fact that f : X --+ Y is an acyclic map and the classical homotopy
exact sequence of fibration: Fi --+ X嵓 ，we know that 1r1 (f) is an epimorphism, because
叫历）= 0. Furthermore H1 (历）主伍（；泣 园 = 0 where [,] means the commutator
subgroup. 1r1 (的）is a perfect group and the homomorphic image of a perfect group
is also a perfect group. Thus 1r1 (X)~ 剷品 where P1r1 (X) means a perfect normal
subgroup of 1r1 (X). Since X E霆 x(X) = 0 under the above condition and P1r1 (X)
is trivial. Thus 1r1 (f) is an isomorphism. By use of the Hurewicz Theorem inductively,
氞玠）= 0. Thus f is a weak homotopy equivalence. By the Whitehead Theorem [4], f
is a homotopy equivalence. Therefore, our proof is completed.

Theorem 3.9. Fi吖 finite X satisfying condition (T**): if
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(1) f : X -+ Y is quasi-nilpotent homology equivalence with 町 (X) finite,
(2) the action 町 (X) x Hn(X) -+ Hn(X) is nilpotent for all n;::: 0

Then x(Y) = 0.
Proof. By the (step 1) of the Theorem 3.2, X is a nilpotent space. We know the

homotopy fiber Fi off is also nilpotent space. From the fact that f is quasi-nilpotent, Y
is a nilpotent space. Thus we conclude that f is a nilpotent map. Since f is nilpotent map
and homology equivalence, f is a homotopy equivalence. Thµs our proof is completed.

Corollary 3.10. For finite X(E TLN) if f : X -+ Y is quasi-nilpotent homology
equivalence with 1r1 (X) finite, then x(Y) = 0.
Proof. By Lemma 2.5 and Theorem 3.9, our proof is completed.
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