ON THE EULER CHARACTERISTIC OF THE SPACE SATISFYING CONDITION (T^{**})

SANG-EON HAN

Abstract. In this paper, we prove some results on the Euler characteristic number of a locally nilpotent space and a space satisfying condition (T^{**}) .

1. Introduction

The study of the nilpotent space was begun by A. K. Bousfield, P. Hilton, G. Mislin and others [7,8]. Especially, the Euler characteristic of the nilpotent space was studied by R. H. Lewis [10].

In this paper, we define the condition (T^*) and (T^{**}) and the locally nilpotent spaces as the extensive concept of the nilpotent space. Euler characteristic number of the spaces with relation to the conditions (T^*) and (T^{**}) will be studied.

Furthermore, we study the homotopy equivalent conditions of the locally nilpotent spaces and spaces satisfying condition (T^{**}) .

We work in the category of the topological spaces having the homotoppy type of connected CW-complexes with base point and denote as the T.

2. Some Properties of the Condition (T^{**})

In this section, we define the locally nilpotent space and condition (T^*) and condition (T^{**}) and study their properties respectively.

We recall that locally nilpotent group is the group whose finitely generated subgroups are nilpotent groups [12].

And we denote the category of nilpotent spaces and continuous maps as T_N . Now we extend the concept of the nilpotent space like followings.

Definition 2.1. A space $X \in T$ is said to be a locally nilpotent space if

(1) $\pi_1(X)$ is a locally nilpotent group,

(2) the action $\pi_1(X) \times \pi_n(X) \to \pi_n(X)$ is nilpotent for all $n \ge 2$ [1].

Received September 17, 1996; revised November 3, 1997. This work was partially supported by BSRI program, Ministry of Education under the project number BSRI-96-1425

And we denote the category of locally nilpotent spaces and continuous maps as T_{LN} . We know that the category T_N is full subcategory of T_{LN} .

Generally, for a group G and a fixed $g \in G$, we denote by [g,G] the subgroup of G generated by all commutators [g,a] which means $g^{-1}a^{-1}ga$ where $a \in G$. Since $[g,a]^b = [g,b]^{-1}[g,ab]$ for each $a,b \in G$ (where $a^b = b^{-1}ab$), [g,G] is a normal subgroup of G.

Definition 2.2. We say that a space $X \in T$ satisfies condition (T^*) if for all $g, t \in \pi_1(X)$ either $g[g, \pi_1(X)] = t[t, \pi_1(X)]$ or $g[g, \pi_1(X)] \cap t[t, \pi_1(X)] = \phi$.

Now we define the effective concept with respect to the locally nilpotent space.

Definition 2.3. For $X \in T$, we say that X satisfies the condition (T^{**}) if for all $g \neq (1) \in \pi_1(X)$, then $g \notin [g, \pi_1(X)]$.

Since the $[g, \pi_1(X)]$ is a normal subgroup of $\pi_1(X)$, condition (T^{**}) is homotopy invariant property.

In fibration $F \to E \to B$, any path $\alpha : I \to B$ and singular q-complex $g : \triangle^q \to p^{-1}(\alpha(0))$ determine a map $G : \triangle^q \times I \to E$ over $\alpha \circ pr_2 : \triangle^q \times I \to I \to B$ and extending $G_0 = g : \triangle^q \times \{0\} \to E$. if α is a loop, then $G_1 : \triangle^q \times \{1\} \to E$ is a q-simplex in $p^{-1}(\alpha(1)) = p^{-1}(\alpha(0))$. Now do elements of $\pi_1(B)$ operate on $H_*(F)$ [9].

Definition 2.4. A fibration $F \to E \to B$ is said to be quasi-hilpotent if the action of $\pi_1(B)$ on $H_*(F)$ is nilpotent, $* \ge 0$.

Lemma 2.5. For $X \in T_{LN}$, X satisfies the condition (T^{**}) .

Proof. (Step 1); first, we assert that X satisfies the condition (T^*) . Since $\pi_1(X)$ is a locally nilpotent group, suppose $c \in a[a, \pi_1(X)] \cap b[b, \pi_1(X)]$ for some $a, b, c \in \pi_1(X)$. We only show that $a[a, \pi_1(X)] = b[b, \pi_1(X)]$. If $b \in a[a, \pi_1(x)]$ (for $a, b \in \pi_1(X)$) then $b[b, \pi_1(x)] \subset a[a, \pi_1(X)]$. We know that

$$c[c, \pi_1(X)] \subset a[a, \pi_1(X)] \cap b[b, \pi_1(X)]$$
(*)

Clearly, $c = h^{-1}a$ for some $h = \prod_{i=1}^{m} [a, g_i]^{\epsilon_i} \in [a, \pi_1(X)](g_i \in \pi_1(X), \epsilon_i = \pm 1)$. Let $G_1 = \langle a, g_1, \ldots, g_m \rangle$. Since a = hc, $h \equiv \prod_{i=1}^{m} [h, g_i]^{\epsilon_i}$ modulo $[c, G_1]$, that is, $h = \prod_{i=1}^{m} [h, g_i]^{\epsilon_i}$ in $\frac{g_1}{[c, G_1]}$. However, since the latter group is nilpotent, it follows that h = 1 in $\frac{G_1}{[c, G_1]}$ and $h \in [c, G_1]$. Therefore, $a = hc \in c[c, \pi_1(X)]$ and we get $a[a, \pi_1(X)] \subset c[c, \pi_1(X)]$ [2]. It follows from (*) that $a[a, \pi_1(X)] = c[c, \pi_1(X)]$.

Similary, $b[b, \pi_1(X)] = c[c, \pi_1(X)]$ and consequently, $a[a, \pi_1(X)] = b[b, \pi_1(X)]$. Thus $X \in T_{LN}$, X satisfies the condition (T^*) .

(Step 2); next, we assert that X above satisfies the condition (T^{**}) . Assume that $g \in [g, \pi_1(X)]$ for some $(g \neq 1) \in \pi_1(X)$. Then $g^{-1} \in [g, \pi_1(X)]$ and $1 \in g[g, \pi_1(X)]$. Thus $g[g, \pi_1(X)] \cap 1[1, \pi_1(X)] \neq \phi$. Since X satisfies the condition (T^*) by (Step 1), $g[g, \pi_1(X)] = 1$. Since $g \in g[g, \pi_1(X)]$, we have a contradiction.

Remark. If $X \in T$ satisfies the condition (T^*) , then X satisfies condition (T^{**}) . But the converse statement need not be true in general [6]. Theorem 2.6. For $X \in T_{LN}$, if $b \in [a, \pi_1(X)]$ then $a[a, \pi_1(X)] = b[b, \pi_1(x)]$, for $a, b \in \pi_1(X)$.

Proof. If $b \in a[a, \pi_1(X)]$ (for $a, b \in \pi_1(X)$) then $b[b, \pi_1(X)] \subset a[a, \pi_1(X)]$. Since X satisfies the condition (T^*) by the (Step 1) of Lemma 2.5, thus our proof is completed by the following properties; when X satisfies the condition (T^*) , for each $a, b \in \pi_1(X)$, if $a[a, \pi_1(X)] \subset b[b, \pi_1(X)]$ then $a[a, \pi_1(X)] = b[b, \pi_1(X)]$. Thus our proof is completed.

3. Euler Characteristic of the Space Satisfying Condition (T^{**})

In this section, we make results on the Euler characteristic number of the locally nilpotent spaces and spaces satisfying condition (T^{**}) .

Furthermore, we study about the homotopy equivalent conditions of the nonnilpotent spaces.

Lemma 3.1.[3] Fur finite X, if $\pi_1(X)$ contains a torsion free normal abelian subgroup $A \neq 1$ which acts nilpotently on $H_n(\tilde{X})$ where $n \geq 0$, then $\chi(X) = 0$.

Theorem 3.2. For finite X satisfying condition (T^{**}) , if

- (1) the action $\pi_1(X) \times H_n(\tilde{X}) \to H_n(\tilde{X})$ is nilpotent where $n \ge 0$,
- (2) $\pi_1(X) \neq 1$ is finite,

then $\chi(X) = 0$.

Proof. (Step 1); we check the nilpotent property of $\pi_1(X)$ under the above hypothesis. So assume that $\pi_1(X)$ is not nilpotent, then we don't have finite upper central series of $\pi_1(X)$. If $Z_n(\pi_1(X))$ denote the *n*-th center of $\pi_1(X)$, we can find an integer *n* such that $Z_{n+1}(\pi_1(X)) = Z_n(\pi_1(X)) \subsetneq \pi_1(X)$. It follows that if $x \notin Z_n(\pi_1(X))$, then $[x, \pi_1(X)] \nsubseteq Z_n(\pi_1(X))$. Choose any $x_1 \notin Z_n(\pi_1(X))$. we know $[x_1, \pi_1(X)] \nsubseteq Z_n(\pi_1(X))$ by above. If $x_1 \in [x_1, \pi_1(X)]$ then we have shown that the condition (T^{**}) does not hold, as required, so assume $x_1 \notin [x_1, \pi_1(X)]$. Then choose $x_2 \in [x_1, \pi_1(X)], x_2 \notin Z_n(\pi_1(X))$. Since $[x_1, \pi_1(X)]$ is a normal subgroup of $\pi_1(X), [x_2, \pi_1(X)] \subseteq [x_1, \pi_1(X)]$. If $x_2 \in [x_2, \pi_1(X)]$, we are done.

Otherwise, we have $[x_2, \pi_1(X)] \subsetneq [x_1, \pi_1(X)]$ but also we noted $[x_2, \pi_1(X)] \not\subseteq Z_n(\pi_1(X))$. So pick $x_3 \in [x_2, \pi_1(X)], x_3 \notin Z_n(\pi_1(X))$ and continue. Since $\pi_1(X)$ is finite, this process must stop. After all we have α for which $x_{\alpha} (\neq 1) \in [x_{\alpha}, \pi_1(X)]$. This is a contradiction to the fact that X satisfies the condition (T^{**}) . Thus we know that $\pi_1(X)$ is nilpotent group.

(Step 2); when $\pi_1(X)$ is finite, since X satisfies the condition (T^{**}) and by (step 1), $\pi_1(X)$ is nilpotent group. Thus $X \in T_N$. Since $\pi_1(X)$ is finite, $\chi(\tilde{X}) = \chi(X)$ and another property $\chi(\tilde{X}) = |\pi_1(X)|\chi(X)$ where | | means the order of $\pi_1(X)$ and \tilde{X} means the universal conversing space of X [11]. If $\pi_1(X) \neq 1$, $\chi(X) = 0$.

Theorem 3.3. For finitely indexed set $\{X_{\alpha}, \alpha \in M : \text{ finite}\}, X_{\alpha} \in T_{LN}$ for each α with $\pi_1(X_{\alpha})$ finite then $\chi(\prod_{\alpha \in M} X_{\alpha}) = 0$.

SANG-EON HAN

Proof. (Step 1); we know that X_{α} satisfies the condition (T^{**}) by Lemma 2.5. Now let's check the finite product property of condition (T^{**}) . For set $\{X_{\alpha} | \alpha \in M : finite\}$, if X_{α} satisfies the condition (T^{**}) for each $\alpha \in M$ then $\prod_{\alpha \in M} X_{\alpha}$ satisfies the condition (T^{**}) from the following facts; let G be the group $\prod_{\alpha \in M} \pi_1(X_{\alpha})$ and P_{α} be the projection of G on $\pi_1(X_{\alpha})$ for any $\alpha \in M$. Suppose that $g \in [g,G]$ for $g \neq 1$ in G, there exists $\alpha (\in M)$ such that $P_{\alpha}(g) = g_{\alpha}$ is not identity in $\pi_1(X_{\alpha})$. Then $g_{\alpha} \in [g_{\alpha}, \pi_1(X_{\alpha})]$ this is a contradition to condition (T^{**}) (see Lemma 2.5). Thus $\prod_{\alpha \in M} X_{\alpha}$ satisfies the condition (T^{**}) .

(Step 2); let's check the finite product property of the nilpotent actions. By the nilpotent property of $H_n(\tilde{X}_{\alpha})$ under the action $\pi_1(X_{\alpha})$, there is a lower central series of $H_n(\tilde{X}_{\alpha})$ for each $\alpha \in M$. In this finite product space case, we only prove the arbitrary two product case of $X_{\alpha}, X_{\beta} \in \{X_{\alpha}\}_{\alpha \in M}$. Put the lower central series of $H_n(\tilde{X}_{\alpha})$ and $H_n(\tilde{X}_{\beta})$ under the nilpotent action of $\pi_1(X_{\alpha})$ and $\pi_1(X_{\beta})$ respectively like followings; suppose that the nilpotent classes of X_{α} and X_{β} are n and m respectively. We get the following:

$$H_n(\tilde{X}_{\alpha}) \supset G_2 \supset G_3 \supset \cdots \supset G_j \supset \cdots \supset G_n = \{e\}$$
$$H_n(\tilde{X}_{\beta}) \supset E_2 \supset E_3 \supset \cdots \supset E_i \supset \cdots \supset E_m = \{e\}$$

Now we make the following sequence;

 $H_n(\tilde{X}_{\alpha}) \times H_n(\tilde{X}_{\beta}) \supset H_n(\tilde{X}_{\alpha}) \times E_2 \supset G_2 \times E_2 \supset \cdots \supset G_{j-1} \times E_i \supset G_j \times E_i \supset G_j \times E_{i+1} \supset \cdots \supset G_n \times E_m = \{e\} \times \{e\} \cdots (*).$

Then the above sequence (*) is lower central series of $H_n(\tilde{X}_{\alpha}) \times H_n(\tilde{X}_{\beta})$ under the action $\pi_1(X_{\alpha}) \times \pi_1(X_{\beta})$ with the componentwise action. Furthermore, the nilpotent class of $X_{\alpha} \times X_{\beta}$ is less than $m \cdot n$. Thus there is a $\pi_1(\prod_{\alpha \in M} X_{\alpha})$ nilpotent action on $H_{(\prod_{\alpha \in M} \tilde{X}_{\alpha})}$.

Since $\pi_1(\prod_{\alpha \in M} X_\alpha)$ is finite, our proof is completed by Theorem 3.2.

Remark. For set $\{X_{\alpha} | \alpha \in M : finite\}, X_{\alpha} \in T_{LN}$ for each $\alpha \in M$ [5] if and only if $\prod_{\alpha \in M} X_{\alpha} \in T_{LN}$ [5].

Corollary 3.4. For set $\{X_{\alpha} | \alpha \in M : \text{finite}\}, X_{\alpha} (\in T_{LN})$ is finite oriented space without boundary then $\chi(\prod_{\alpha} \in MX_{\alpha}) = 0$ if $\pi_1(X_{\alpha}) (\neq 1)$ is finite for any $\alpha \in M$.

Proof. Since $\chi(\prod_{\alpha \in M} X_{\alpha}) = \prod_{\alpha \in M} \chi(X_{\alpha})$, by Theorem 3.2 and Theorem 3.3, our proof is completed.

We recall that a group G satisfies the maximal condition if it has no infinite strictly increasing chain of subgroups [12].

Theorem 3.5. For finite $X \in T_{LN}$, if

(1) $\pi_1(X)$ is infinite with the maximal condition on normal subgroups of $\pi_1(X)$ or (2) $\pi_1(X) \neq 1$ is finite, then $\chi(X) = 0$.

Proof. (Case 1); when $\pi_1(X)$ is finite, we know that X satisfies the condition (T^{**}) by the Theorem 2.5. By the similar method of (step 2) of the Theorem 3.2, we get $\chi(X) = 0$.

(Case 2); when $\pi_1(X)$ is infinite and $\pi_1(X)$ has maximal condition on normal subgroups then $\pi_1(X)$ is finitely generated nilpotent group. Thus $\pi_1(X)$ has the center group of $\pi_1(X)$ as the infinite normal abelian subgroup which acts nilpotently on $H_*(\tilde{X})$. Then by Lemma 3.1, we have $\chi(X) = 0$.

Corollary 3.6. For finite X satisfying condition (T^{**}) with $\pi_1(X) \neq 1$ finite, suppose that

(1) the map $f: \tilde{X} \to X$ is a universal covering map,

(2) the action $\pi_1(X) \times H_n(\tilde{X}) \to H_n(\tilde{X})$ is nilpotent for all $n \ge 0$

then $\chi(\tilde{X}) = 0$.

Proof. Since $\chi(\tilde{X}) = |\pi_1(X)|\chi(X)$ where || means the order of $\pi_1(X)$ and \tilde{X} means the univeral convering space of X, and by the similar proof of the Theorem 3.5, our proof is completed.

In fibration $F_f \to E \xrightarrow{f} B$, if reduced homology group $\tilde{H}_*(F_f) = 0, * \ge 0$ we call that f is an acyclic map, where F_f is a homotopy fiber of f.

Corollary 3.7. Let $X \in T_{LN}$ be a finite aspherical polyhedron with $\pi_1(X)$ is infinite and has the maximal condition on normal subgroups of $\pi_1(X)$ then $\chi(X) = 0$.

Proof. See Theorem of S. Rosset [13] and (Step 2) of Theorem 3.5.

Theorem 3.8. For finite X satisfying condition (T^{**}) , if

the action π₁(X) × H_n(X̃) → H_n(X̃) is nilpotent for all n ≥ 0,
 f: X → Y is an acyclic map with π₁(X) finite,
 then χ(Y) = 0.

Proof. By the (step 1) of the Theorem 3.2, $\pi_1(X)$ is a nilpotent group. Thus $X \in T_N$. From the fact that $f: X \to Y$ is an acyclic map and the classical homotopy exact sequence of fibration: $F_f \to X \xrightarrow{f} Y$, we know that $\pi_1(f)$ is an epimorphism, because $\pi_0(F_f) = 0$. Furthermore $H_1(F_f) \cong \frac{\pi_1(F_f)}{[\pi_1(F_f),\pi_1(F_f)]} = 0$ where [,] means the commutator subgroup. $\pi_1(F_f)$ is a perfect group and the homomorphic image of a perfect group is also a perfect group. Thus $\pi_1(X) \cong \frac{\pi_1(Y)}{P\pi_1(X)}$ where $P\pi_1(X)$ means a perfect normal subgroup of $\pi_1(X)$. Since $X \in T_N$, $\chi(X) = 0$ under the above condition and $P\pi_1(X)$ is trivial. Thus $\pi_1(f)$ is an isomorphism. By use of the Hurewicz Theorem inductively, $\pi_i(F_f) = 0$. Thus f is a weak homotopy equivalence. By the Whitehead Theorem [4], f is a homotopy equivalence. Therefore, our proof is completed.

Theorem 3.9. For finite X satisfying condition (T^{**}) , if

- (1) $f: X \to Y$ is quasi-nilpotent homology equivalence with $\pi_1(X)$ finite,
- (2) the action $\pi_1(X) \times H_n(\tilde{X}) \to H_n(\tilde{X})$ is nilpotent for all $n \ge 0$

Then $\chi(Y) = 0$.

Proof. By the (step 1) of the Theorem 3.2, X is a nilpotent space. We know the homotopy fiber F_f of f is also nilpotent space. From the fact that f is quasi-nilpotent, Y is a nilpotent space. Thus we conclude that f is a nilpotent map. Since f is nilpotent map and homology equivalence, f is a homotopy equivalence. Thus our proof is completed.

Corollary 3.10. For finite $X \in T_{LN}$ if $f : X \to Y$ is quasi-nilpotent homology equivalence with $\pi_1(X)$ finite, then $\chi(Y) = 0$.

Proof. By Lemma 2.5 and Theorem 3.9, our proof is completed.

References

- A. K. Bousfield and D. M. Kan, "Homotopy Limits," Completions and Localization, L. N. S. vol. 304, Springer-Verlag, Berlin, 1972.
- [2] M. Dokuchaev, "On the property of nilpotent groups," Canad. Math. Bull. 37(2)(1994), 174-177.
- [3] B. Eckmann, "Nilpotent group action and Euler characteristic," L. N. M. vol. 1298, Springer-Verlag, New York, 1985.
- [4] B. Gray, "Homotopy theory," Academic press, New York, 1975,
- [5] S. E. Han, "Some properties of the spaces stisfying condition (T^{**}) ," (preprint) (1996).
- [6] —— " (T^{**}) -properties of the residually nilpotent spaces," (preprint) (1996).
- [7] P. Hilton, "Nilpotent action on nilpotent groups," Proc. Aust. Summer Institute, (1974).
- [8] P. Hilton, G. Mislin and J. Roitberg, "Localization of Nilpotent Groups and Spaces," 1975.
- [9] and J. Roiterberg, "On the Zeeman comparison theorem for the homology of quasinilpotent fibrations," *Quart. J. Math.*, Oxford 27(1976), 433-444.
- [10] R. H. Lewis, "Homology and cell structure of nilpotent space," Trans. of the A. M. S., 290(2)(1985), 747-760.
- [11] G. Mislin, "Finitely dominated nilpotent space," Annal of Math., 103(1976), 547-556.
- [12] D. J. S. Robinson, "A Courses in the Theory of Groups," Springer-Verlag, New York, 1980.
- [13] S. Rosset, "A vanishing theorem for Euler characteristics."

Department of Mathematics, College of Natural Sciences, Honam University, Kwangju 506-090, Korea.