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DISCRETE POINCARE-TYPE INEQUALITIES

WING-SUM CHEUNG

Abstract. In this paper some discrete analogue of Poincare-type integral inequalities involving
many independent variables are established. These in turn can be used to serve as generators of
other interesting discrete inequalities.

1. Introduction

It is well-recognized that integral inequalities in general provide a very useful and
important device in the study of many qualitative as well as quantitative properties of
solutions of differential equations. Among these are the so-called Poincare-type integral
inequalities which are, as indispensable tools as well as inspiring integral inequalities, of
fundamental importance.
The original Poincare's inequality is the multi-dimensional integral inequality [6, 10)

寸。f2dx~lo IV fl2dx,

where n is any bounded region in 紀 or 记 f E C1(0), f = 0 on 80, and,\。is the
smallest eigenvalue of the problem

{ 6f + ,\f = 0 in n
f = 0 on an.

Because of its usefulness and importance, Poincare's inequality has attracted much at­
tention and a great deal of its generalizations to various aspects have been established in
the literature. For instance, one can consult Beckenbach-Bellman [1], Hardy-Littlewood­
P6lya [5], Mitrinovic [10], Nirenberg [可 ，and more recently Horgan [6-8], Pachpatte [12,
13], Rassias [14, 15], Cheung [2-4] and Milovanovic-Mitrinovic-Rassias [9] for the details.

As can be anticipated, since the Poincare-type integral inequalities are so important
in the study of properties of solutions of differential equations, their discrete analogue
should also be useful in the study of properties of solutions of difference equations. It is
the purpose of this paper to give the discrete versions of some Poincare-type inequalities
given in (3, 4] by using methods that are rather elementary but yet inspiring in the sense
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that many other types of discrete inequalities could easily be arrived at by analogous
methods.

2. Notation and Preliminaries

Throughout this paper, m 2: 2 and n 2: 1 will denote two fixed integers. Let a, (3, ,, ...
b . d.em ices runnmg from 1 tom and i, j, k, ... from 1 ton. Let n = I]~=l [O, bi] n卽 C !Rn
be a fixed rectangular lattice of integral points, where for each i, bi E Nu {O}. A general
point in n will be denoted by t = (t1, ... , 柞）. The collection of real-valued functions on
n and those which vanish on the boundary 80 of n will be denoted by :F(O) and 尻 (0),
respectively. For the sake of convenience, we shall extend the domain of definition of each
function in :F(O), hence including those in 瓦 (0), trivially to the entire卽 and think of
:F(O) as the collection of real-valued functions on 卽 with support in n and 瓦 (0) as
those with support in 0\80.
For the sake of simplicity, summations and products over a, (3刁 or i,j,k will be

abbreviated as I:。'ni, etc., unless possible confusion may arise.
The following fundamental inequalities, which are easily obtainable from the quadratic

mean-arithmetic mean-geometric mean inequality, will be needed in the sequal (see, e.g.
[5, 10}).

Lemma 1. For any Pa, Qa, Ca > 0 with I: Qa厙 =1,

ITC~"' 式[ !k._~a'
Paa a

and the equality holds if and only if c1 =· · ·= Cm.

Lemma 2. For any ri 2:'. 0 ands 2:'. 0,

(Lrif~c(s,n)芝元
i i

where

c(s, n) = {尸 ifs > I,
ifO<s<l.一 ·一

3. Main Results

For any f E :F(n), define
]j : zn-+ 艮

by

]j(ti, ... ,tn): =今f(ti, ... ,tn)

= f(ti, · · ·, tj, ... , tn) - J(ti, .. :, tj - 1, ... , tn).
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0bserve that if f E 瓦 (0), Ji E :F(O) for every j. However, in general Ji¢ 瓦 (0). As
usual, we define the gradient

vf := U1, ... , fn)
and its norm

因 fl:= ( 瓦 l/jl2)
1/2

J

For any p > 0, the£p-norm off is deined as

11/llp := (L lf(t)IP) ,
1/p

tEO
/ E :F(f!),

and the 令-norm of可 as

II v'/IIP := (户 v'f (t)IP)
1/p
＝［芷 (L 11j12) ] ,

p/2 1/p

ten j

fE 瓦 (!1).

Since n is finite, 11 I IP exists for every p > 0.
Let B = max{bj: j = l, ... ,n}.

Theorem 1. For any f0 E 瓦 (0) and any real numbers p。~2 with L。(1加 ）＝

1,

II II !°'Iii :S 扛竺 （勻Pa 11'v !°'II仁
PaCt Ct

Theorem 2. Fo, any 尸 E F0(!1) and any ,eal numbe,s q。> 0 with q·一
2。q。~2,

II 11U°')q。111~
。

；閂）q苫 芍11 v !°'Iii-

The following are some simple consequences of these theorems.

Corollary 1. For any 尸 E 瓦 (0),

II II f0ll1 <
1 B m

－尹 行）芷 II V f0II篇
a a

Proof. It follows easily from Theorem 1 by setting Pa = m for all a or from T}:ieorem
2 by setting q0 = 1 for all a. Q.E.D.

Corollary 2. For any f E 瓦 (0)

11111悶~ _!_己 ）mllvfll悶n 2
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Proof. It f 11o ows immediately from Coroilary 1 by letting f°'= f for all a. Q.E.D.
Remark. Observe that in the inequality of Corollary 2, the number m can be any

integer 2: 2, not necessarily restricted to the fixed m as mentioned before.
To prove Theorems 1 and 2, we first establish the following lemma.

Lemma 3. Let f E Fo(O). Then for any t = (t1, ... , tn) En,

b;

IJ(t)I~ 直辶 芝 昉(t1 , . . . , tj-1 , Uj , tj+ 1 , ... , tn) 1-
j tlj =l

Proof. Since f vanishes on 80, for each j = I, ... , n we have
lj

邸 ＝芝 fi(t1, ... ,tj一1, Uj, tj+l, ... , tn)
Uj=l

and also
b;

邸 ＝＿ 芷 fi(t1, ... ,tj一1, Uj, t汁1, ···,in).
u;=t;+I

Taking their·absolute values and summing up with respect to j, we have

b

2n廿 (t)I::; 芷 芷 lfi(t1, • · ·, ij-這j, tj+I, ... , in) I,
j u;=l

hence the lemma.

Proof of Theorem 1. By Lemma 1 with q°'= 1, Lemma 3, and Lemma 2, we have

II lf°'(t)I ::; L」IJ°'(t)IP"'
p°'Q Q

s 苫 詞［直瓦 E 11r(t1, ... , t;一I, u;, 1;+1, ... , tn)I]匹
j u;=l

1 1 Po.

三苫 云七 ） [c(p。,n)~図 芹(t1, ... ,t,一I,'-'i, t;+I, · · ·, tn)I)'"]

Since p。~2 > 1, we have c(p。，n) = nP"'-1 for all a and so by Holder's inequality,

叫(t) I :s::立土 且）p。: 虐1吋 (t1, ,t;一1,u;,t;+1, ... ,口）p.

:s::I:;土Gr芷 [d'.= 吋 (t1, , t;-1, u;, t;+1, ...'tn) IP·I/p.
。 , u;=l· ）
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(t 1)鬥Pa
u;=l

b;

=~上 且）Pa芝 [b尸 芷 lff(t丘．，止這 j, tj+I, · · ·, tn)IP。]
] Uj=l

5 芷 土 且）p.-1BP·-·芷 玄 If,"仂，. .·. , t;一1,u;,t;+1, ... ,t.)IP•.
0 j Uj=l

Therefore,

芝 I II f°'(t)I
ten o

bj

三羞図 益 且）p. BP· 一 1芷芝 閬(t,, ... , t;-1西 ，!;+1, ... , t.)IP。]
j Uj=l

bj

=~ 土 (~)Pa BPa -1芝 ［芝 芝 lff(tl,···,tj-1,Uj,t玕1, ... , tn) Ip"']
j ten u;=l'

bj

＝竺 土 (~)p。BP" 一lI: [ 芝 芝 If「伍，，tj一 1, tj, tj+l, ... , tn) IP"']
j u;=l ten

＝芷 」-(!)p"'Bp.,.-1L [柘芷 lff (t)jPa]
。'
np。2 j 頲

S芝
1 B 匹

a 忒 丘）莒 羞 lff (t)jPa

＝芝 I B 匹

0

np。(2) I:図ff (t)IPa)
磷 j

三竺上 （官 °辶嶧 IJT(t)I'。) 2/p。r·/2

s 苫 土 （差）p。辶 卜（户 ）戶 ;"(t)I'。) ,;,.r./2

by Lemma 2. Since p。2: 2, we have c(亡 ，n) = 1 for all a and so

芝 I II f°'(t)I :S 芷 上 B)P。芝 （芷 1芹 (t)l2)p。/2
ten a o np。(2 磷 ］

1 1 B 匹＝；；；芝 -(2 芷 IV f°'(t)IPa,
0 Pa) tEO

hence the theorem.
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Proof of Theorem 2. By Lemma 1 with Pa = q for all a, Lemma 3, and Lemma
2, we have

II 11°'(t)lq。s主 虯f°'(t)lq
Q

q
Q

1
bj

'.>q苫可直立 l/;"(t1, ... , t;-1, u;, t;+1, ... , tn)I『
1 1 q

bj

~q竺 q。七 ）[c(q,n)~(~苫~lfl(t1, · · ·, tj一 1, Uj, tj+l, ... , tn吖］

Since q = L Qa 2:: 2, we have c(q, n) = nq一 1 and so by Holder's inequality,
bj

II 11°'(t)严 5 — -
1 1 q
nq仁）芷汛 芷 lf?(t1, · ·., tj-1, Uj, t汁1, ... , tn) I) q

Q a,j Uj=l

1 1 q
bj

三才 ）芷可（芝 霄(t1, , , , , tj一1, Uj, t汁1, .. ·, tn) lq) !
a,j Uj=l

団严r
Uj=l

b;

=~且）qI:.q。［茫 芝 (ff (t1, ... , tj-1, Uj, tj+l, ... , tn) lq]
a,j u;=l

b;

S 言(~) qBq-1 L Qa, [ 芷 lff仂，，tj-1, Uj, tj+I, · · ·, tn) lq]
a,j u;=l

Therefore

芷 I II (JQ(t))q。|
tEO a

l q
bj

:::; I: [言 （豆 Bq-1芝旦 芷 lff仂，，tj-l,Uj,tj十1,···,tn)lq)]
tEO a,j Uj=l

1 1 q
＝聶 丘）Bq-1 芷％芝 t 1/j仂，. . . , t;-1, u;, t;+1, ... , 耘）P

0<,j tEO Uj=l

1 1 q
bj

＝聶 (2) Bq-1芷 q。LLI芹 (t1, ... ,tj-l,tj,tj+l,···,tn)lq
a,j Uj=l tEO

1 1 q＝聶丘）Bq一 1芝 q。bj. ( 芷 lff (t)lq)
et,j tEO
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三言閂 ）q芷 可 芷 （芝 因 (t)lq)]
a j tEO

=~ (钅丫芝q°'I: (芝 lff (t)lq)]
a tEO j

＝訂（差）q芷 ％芷 ［（芝 I荇 (t)lq) 2/qr/2
°'tEO j

1 B q 2::; ;;; 行 ）芝 <Jae L [c(-, n) 芝 (lff (t) 門）2/q]
q/2

°'tEr2 q
j

by Lemma 2. Since~::; 1, c(~,n) = 1 and so

LI ITU0(t))q。I< 1 B q＿聶行 ）芝 q。L(芷 霄 (t)l2)
q/2

tEO et et tEO j

=~(~) q立立 I v !Ct(t)lq.
et tEO

Hence the theorem follows.

Corollary 3. For any f°'E 炁 (0) and any real numbers p。~2 with I:。(l/p0) = 1,

II~(且r) I v !~ill. :'.o 荳）m-1(~ 荳)1鬥 （苫 ;;:-11 V f"II::)

Proof. By a generalization of Holder's inequality and Corollary 2, we have

芝 ［芷 (II IJ°'(t)I) 1 v f氕t)I]
ten f3 a=/=f3

=LL [(II lf°'(t)I)因Jf3 (t)I]
f3 ten a=!=f3

S 芷 [ II (L IJ°'(t)jPa) 1/Pa] [~已汩氕t)IP/3) l/p13]
f3 a=!=f3 ten . ten

s~ 甩 吐（羣）··11vr哄）1/p. l [ (II'v / 。摩 ）1/v, l
=~ 且)2。.. 勺 羣）L•.,•卫(I丨v !°11,.l

=(~且）1一望 尸 ）IJ(ll v !°11,.l
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Now by Lemma 1 it is not hard to see that

II (II V !0llpJ = II図 '\J J0(t)IP°') l/p。
a: a: tEO

~L l/Pa: (LIV f0(t)IP°')L.., I/p..,
。CL-r i尼） tEO

＝苫辶（瓦 1 v f°(tlf'·)

＝芝 上 II v /011芸
a: Pa:

therefore

立 芝(11 lf0(t)l)I v Jf3(t)1]
磷 {3 a=j:.{3

三叩 ［尸 （差）m-1)苫; llvf"II芸

＝閂）m-1(~且)＼ （立 11 v !°II~:)

Corollary 4. For any jet E 瓦 (n),

II~(卫r)因 tpi II. ::; (差）m-1且）1-;!;:》llvf°II闆

Proof. It follows immediately from Corollary 3 by letting Pa = m for all a.
Remark. Further interesting discrete inequalities of the Poincare type can easily be

generated from the results above. For instance, by taking m = 2 in Corollary 4, we get

1111 V gj + 91 V 11111 :::; _!!__ (11 V !II釒+llvglln,2'1n
and by putting f = g in the last inequality, we obtain

Bllfl V flil1 :::;立 11 v 11m.

These discrete inequalities are of great interest and useful in the study of qualitative as
well as quantitative properties of solutions of difference equations.
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