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DISCRETE POINCARE-TYPE INEQUALITIES

WING-SUM CHEUNG

Abstract. In this paper some discrete analogue of Poincaré-type integral inequalities involving
many independent variables are established. These in turn can be used to serve as generators of
other interesting discrete inequalities.

1. Introduction

It is well-recognized that integral inequalities in general provide a very useful and
important device in the study of many qualitative as well as quantitative properties of
solutions of differential equations. Among these are the so-called Poincaré-type integral
inequalities which are, as indispensable tools as well as inspiring integral inequalities, of
fundamental importance.

The original Poincaré’s inequality is the multi-dimensional integral inequality [6, 10]

X / fPdz < / |V fPdz,
Q Q

where ) is any bounded region in R? or R3, f € C*(Q), f = 0 on 89, and )\ is the
smallest eigenvalue of the problem

Df+Af=0 in
f=0 on Of).

Because of its usefulness and importance, Poincaré’s inequality has attracted much at-
tention and a great deal of its generalizations to various aspects have been established in
the literature. For instance, one can consult Beckenbach-Bellman [1], Hardy-Littlewood-
Pélya, [5], Mitrinovic [10], Nirenberg [11], and more recently Horgan [6-8], Pachpatte [12,
13], Rassias [14, 15], Cheung [2-4] and Milovanovic-Mitrinovic-Rassias [9] for the details.

As can be anticipated, since the Poincaré-type integral inequalities are so important
in the study of properties of solutions of differential equations, their discrete analogue
should also be useful in the study of properties of solutions of difference equations. It is
the purpose of this paper to give the discrete versions of some Poincaré-type inequalities
given in [3, 4] by using methods that are rather elementary but yet inspiring in the sense
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that many other types of discrete inequalities could easily be arrived at by analogous
methods.

2. Notation and Preliminaries

Throughout this paper, m > 2 and n > 1 will denote two fixed integers. Let , 8,7, ...
be indices running from 1 to m and i, 7, k,... from 1 ton. Let Q = [Ti-,[0,6;)nZ" c R™
be a fixed rectangular lattice of integral points, where for each 4,b; € NU {0}. A general
point in {2 will be denoted by t = (¢1,...,%,). The collection of real-valued functions on
{2 and those which vanish on the boundary 09 of Q will be denoted by F (2) and Fo(92),
respectively. For the sake of convenience, we shall extend the domain of definition of each
function in F(Q), hence including those in Fy(Q), trivially to the entire Z" and think of
F(§2) as the collection of real-valued functions on Z™ with support in Q and Fo(Q) as
those with support in Q\99Q.

For the sake of simplicity, summations and products over a,B,vy or i,7,k will be
abbreviated as ), ]1;, etc., unless possible confusion may arise.

The following fundamental inequalities, which are easily obtainable from the quadratic

mean-arithmetic mean-geometric mean inequality, will be needed in the sequal (see, e.g.
[5, 10]).

Lemma 1. For any pa,qa;ce > 0 with 3 ¢ /pe =1,
Jo
et <3
- —_
and the equality holds if and only ifc; = --- = ¢,,.
Lemma 2. For anyr; >0 and s > 0,

(Xr) <etsm >t

3

where
) = et el
i A | ft0<axl.

3. Main Results

For any f € F(Q), define
fj 2" -+ R
by

fj(tl,...,tn):=Ajf(t1,...,tn)
If(t]_,...,tj,...,tn)—f(tl,...',tj-—1,...,tn).
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Observe that if f € Fo(Q), f; € F(R2) for every j. However, in general f; € Fo(R2). As
usual, we define the gradient

f =(f1:"'7.fn)

v le=(Z15R) "
)

For any p > 0, the £,-norm of f is deined as

and its norm

Il = (S1ror) ", e F@,

teQ
and the £,-norm of 7 f as
/ /291/
1w £l = (v ror)” =[S (Ziur)"] " fern@.
teQ teQ 3§

Since () is finite, || ||, exists for every p > 0.
Let B =masciby s =L snih

Theorem 1. For any f® € Fo() and any real numbers po > 2 with 3 (1/ps) =

1 1 (B\Pa —
H];[f"lllsﬁfaja(g) INZ&S

L,

Theorem 2. For any f* € Fo(Q) and any real numbers go > 0 with q :=

Za Qa Z 27
1 /B\9« q
ITIE=h < =(5) X 2w .
n\2 q
(o4 (s 4
The following are some simple consequences of these theorems.

Corollary 1. For any f® € Fo(12),

1Tl < —(2)" 2

Proof. It follows easily from Theorem 1 by setting p, = m for all « or from Theorem
2 by setting g, = 1 for all a. Q.E.D.

Corollary 2. For any f € Fo(f2)

(2) v Az

3|

1717 <
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Proof. It follows immediately from Corollary 1 by letting f* = f for all a. Q.E.D.

Remark. Observe that in the inequality of Corollary 2, the number m can be any
integer > 2, not necessarily restricted to the fixed m as mentioned before.

To prove Theorems 1 and 2, we first establish the following lemma.

Lemma 3. Let f € Fo(Q). Then for any t = (t1,. .. ytn) € Q,

b.
1 J
|F(®)] < %Z Z Foie IR IR T CTTW % |

Jouj=l1

Proof. Since f vanishes on 69, for each j =1, ... ,m we have

tj
f(t) = Z fj(tl,...,tj_l,Uj,tj+1,...,tn)

u;=1

and also

b;
f(t) = - Z fj(tl,. i ,tj_l,Uj,tj+1,. &3 ,tn).

uj=t;+1

Taking their -absolute values and summing up with respect to j, we have

b
2n|f@OI <D0 D 1fitay s timatig, tign, - - 20)),
Jj u;j=1
hence the lemma.

Proof of Theorem 1. By Lemma 1 with do = 1, Lemma 3, and Lemma 2, we have

[T 01 < X i

b.
> Yo'l > d Nl
< 17—04[-2_7’; z : |fja(t1""vtj—l’uj’tj+1""’t")l]
04

J uj=1
1 7 145 b P
S Z _(2—) [c@a,n) Z ( Z 'f;-x(tl, vo ey tj_l,uj,tj+1, o ,tn)l) ]
Da Ve s
(67 J 'u,j=1
Since p, > 2 > 1, we have ¢(pa,n) = nP="1 for all a and so by Holder’s inequality,

bj
MO X - (3)" 2 (30 15t s st o ta)])

o J 'Uj=1

1 /1\Pa b " oo\ 1/Pa
S;E(E) Z[(Zlfj (t15e e bim1, Uy by b)) °)

g u;=1
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b; pg—1

. 1) T
(297 ]
=S ) S X 17ty
o g “1—1
1 1 p,_,—l = a S Pa
SZFF(i) BP= ZZlfj(tla---,tj—lauj’tj‘*‘l""’t")l :
a e i ouj=1
Therefore,
S ol
teQ) «a
1 1\ Pa Pa—1 = 2 a ; Pa
€S T () B SR bt ]
e  « "Po J u;j=1

: bj
LD V1 DI S L USRI HAATY

) teQ uij=1

s O
%)paBp“—lz | Z Zlf.;x(tl’"'?tj—17tj:tj+1)"-,tn)lpa]

7 u;=1teQ

1B S o Sl

i teQ
Seenic MGl
B o Do
-2 (3) Z(Zior)
SZ% ) 2 [(Zj?lff‘(tnpa) 1!
T (3)" S [e(om) Z(|f;*<t)|f’e)”’"‘]’°"”

by Lemma 2. Since p, > 2, we have c( = ,n) =1 for all a and so

SIIrosE o (3)" T (Siwror) !
=X —(3) v rewr,

teQ
hence the theorem.
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Proof of Theorem 2. By Lemma 1 with p, = q for all a, Lemma 3, and Lemma

2, we have

[T < lanlfﬂ'(w ‘

an[zn}j Z |2 s«

J u;j=1

<7 2 ae(5)’ [etan z(zu (t,-..

u;=1

s5 814 %5 bipase

hadl]

1 bi—1,Ujs i1, - -

Since ¢ = ) qo > 2, we have ¢(g,n) = n?"! and so by Hélder’s inequality,

IJir= - < =)' an( Z FCe.

<) Tel(X .
-<u§;l>%‘r

b;

2@ Tl 2
<5 (2) P Sl

u;=1

Therefore

> TG @)|

teQ) «

<3 [ (2) B S

teQ

=—(‘) B~ 12%22” (t1s .-

a,j teQ u;=1

= - (3)"B" T S S

1.7 U_-,—l teQ

R OMNIHOL

teN

J laujat]+17 .

Z (f]q(tl)---:
z Ifa(tl)

_‘] lauJ,t_7+17

J latjat]-'l-la

_7 lauJ: j+1,-

] laujytj-{-l; .

tj——lsuj:tj-l—-l)"')

wtalf)

Q=

ta)l7)

t)l7]

s b]lF].

b;
2 U7ttt )
s )|

cytn)|?
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<7a(3) T (Tiror)]
=2(3) TaX > (Xuror)]
- L&) Sex [(Siron T
() D[ )Z<|f°(t)|°)2/q]

teq
by Lemma, 2. Since 2 e L1, c(g,n) =1 and so

| CROEEEACS e

teQ) «

> (T isar)™
SO
= —(—]g) Z%Zlvf“ ).
o Q
Hence _the theorem follows.

Corollary 3. For any f* € Fo(f?) and any real numbers po > 2 with 3 _(1/pa) = 1,
m— —-;‘; N
IS ()91, < () (2 ) H)(E 2w ).

Proof. By a generalization of Holder’s inequality and Corollary 2, we have

Z[Z(Hua i @]

=53 [( H @) v £ )]
ﬁ(%lf"‘ ) [ fer) ™)

GG e i) "] [arw 21zyee]

Tose =, TI09 15

J =y )H(Ilvf"‘llp)

<

H*

a

&.’:1

1

'QM 'QM “QM >

|
[
(

— 3=
Sl= =~

b
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Now by Lemma 1 it is not hard to see that

TTav k) =TT (1w )"

o teN

l/pa o Pa 271/17'1
_Z(Z 1/P~/>(teznlw ®))

~ e (1 )

* "teq
=) —Illv ke
Za: = Il 2=,
therefore

> [E (Lo ol

a#p

EO S b
=) (R NS g ).

Corollary 4. For any f* € Fo(9),

[Z (L r)w s, < @)@ TS

Proof. It follows immediately from Corollary 3 by letting p, = m for all a.
Remark. Further interesting discrete inequalities of the Poincaré type can easily be
generated from the results above. For instance, by taking m = 2 in Corollary 4, we get

919 6l +0l v Al < 5= (117 S18 +11 7 oIB),

and by putting f = g in the last inequality, we obtain

B
1719 £llh < 57211 15

These discrete inequalities are of great interest and useful in the study of qualitative as
well as quantitative properties of solutions of difference equations.
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