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ON A TWO-PARAMETER FAMILY OF

NONHOMOGENEOUS MEAN VALUES

FENG QI

Abstract. In the article, a two-parameter family of nonhomogeneous means 1s considered and
its basic properties and monotonicity are investigated. This paper is dedicated to my advisor,
Prof. Yi-Pei Chen, at Ximaen University.

1. Introduction、

The history of mean values is long. One finds the history in [2, 7). A survey of some
recent developments can be found in [8, 12, 13). The mean values are related to the Mean
Value Theorem for derivative and for integral, which is the bridge between the local and
global properties of functions. Inequalities of mean values are the main part of theory of
analytic inequalities, they have explicit geometric meanings [16].

The simplest and classical means are the arithmetic mean or average, A(x, y) =
(x + y)/2, the geometric mean or mean proportional, G(x, y) = ,Jx私 and the harmonic
mean, H = G勺A. They have been generalised, extended, variegated, and refined to a
lot of forms. The root-mean-square is defined as N = (G+ A)/2 and the power means or
Holder means as Mr(x, y) = ((xr + y叮/2)1/r, r-/= 0, M0(x,y) = G(x,y). In this paper,
the variables x and y are positive.

Further evolution led to multivariable means with (x1,x2, ... ,xn) replacing (x,y), to
abstracted means Mcp =尸 ((r.p(x) + r.p(y))/2) which reduce to Mr when r.p(x) = xr, to
weighted means which are given by (1 - a)x + ay and x丘ay巴 0 :::; a :::; 1, to Lehmer
means Lp(x,y) = (xP + yP)/(xP-I + yP-1), p > 0, which reduce to anti-harmonic mean
l五 (x, y) = (x2 + y2)/(x + y).

Along with means Mr there are more extended means of particular interest. P6lya
and Szego in [15) defined the logarithmic mean L by

L = L(x, y) = (x - y) / (ln x - ln y)

for x > 0, y > 0 and x f= y, and L(x, x) = x.
(1)
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Galvani in [6) considered the extended logarithmic means or Stolarsky's means:

Sp(x,y) = (
yP _ xP 1/(p-1)
p(y - x))' X-:/ y, p-:/ 0, l; (2)

and Sp(x, x) = x; which is reduced to So(x, y) = L(x, y), and to the identric mean of the
exponential mean I(x, y):

S1(x,y) = I(x,y) = e-1(x勺 护 ）1/(x-y), ··X =p y;
and S1 (x, x) = l(x, x) = x.

They symmetric means QP (x, y) is also defined by

Qp(x,y) = (xrys 十 xsy勺/2

(3)

(4)

where r = (1 十涯 ）/2, s = (1-洄/2, p~o.
Ren-er Yang and Dorig-ji Cao in (24] and Horst Alzer _in (1] generalized L(x,y) to the

one-parameter means:

p(yP+l _ X社1)
Jp(x,y) = x # Y,P # 0, -1;(p + I)(yP - 邳）＇

Jo(x,y) = L(x,y), J_1(x,y) = G2/L;
Jp(x, x) = x.

Here, J112(x,y) = h(x,y) is called Heron mean and J2(x,y) the centroidal mean.
Ji Chen and Hai-bing Shu [5] introduced the extended Heron means hn(x, y) by

1 , ｀
加 (x, y) =戸 芝Xl-kfnykfn,

k=O

and they verified that hn is a decreasing sequence.
Stolarsky in [20] defined a two-parameter family of extended means E(r, s; x, y):

E(r,s;x,y) = (
r ys - Xs 1/(s一r)
;·戸 ） ，rs(r 一 s)(x - y) # O;

E(r,O;x,y) = E(O,r;x,y) = Lr(x,y) = (L(x\y叮）Ifr, r(x - y) # O;
E(r,r;x,y) = Ir(x,y) = (I(xr,Y勺）Ifr, X - y # O;
E(O, O; x, y) = G(x, y), x # y;
E(r,s;x,x)=x, x=y.

He showed that E can be extended to be contmuous on the domain

(5)

(6)

(7)

{(r,s;x,y): r,s E R,x,y > O}.

Afunction snnilar to E that involves a t frans ormat10n of values of (r s), was given
by Cisbani [4] and by Tobey [23].
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Toader in (21, 22] considered general means

Mr,s(X, y) = (Crs·fr(X, y) I/(r-s},
9s(x, Y)) (8)

where fr and 9s are homogeneous functions of degree r and s, respectively, and Crs =
lim戶 1 佖 (1, t)/fr(l, t)).

The author also researched the mean values in [16, 18] and the extended means E in
[17, 19] by a simpler method.

It is easy to see that these particular means above are special cases of means intro
duced by Tobey [23]. The study of these means has a rich literature, e.g., for details see
[3, 8, 9, 10, 11, 12, 13, 14, 16, 17].

We introduce below a more complicated two-parameter family of nonhomogeneous
means E2n(r, s; x, y), and give their basic properties and basic results concerning mono
tonicity, comparability, and the like.

Study of E2n i:;; interesting, both because most of the two-variable means stated
above are special cases of E2n, and because it is challenging to study a function whose
formulation is so indeterminate.

2. Definitions and Basic Properties

Let Un(t; u) be a sequence satisfying

t8Un(t;u)/8t- (n + l)Un(t;u) = Un+i(t;u),

and U0(t;u) = ut for u > 0, n EN.

(9)

Definition 1. The extended logarithmic means of 2n-th order L2n(r; x, y) are a
one-parameter family of nonhomogeneous means defined, for n EN, as

L2n(r; x, y) = [ 2n + 1 U2n(r; y) - U2n(r; x) 尸
r2n+l·(ln y)2n+l _ (In x)2n+l'

L2n(O;x,y) = exp [·
2n + 1 (In y)2n+2 - (ln x)2n+21
2n + 2 (lny)2n+l _ (lnx)2n+l,'

L2n(r; x, x) = x, r E R.

X #y;

、̀
,J

丶`
，＇

O

1

1

1

',＇̀

,·
\

r(x 一 y) t- O;

Definition 2. The extended means of 2n-th order E2n(r, s; x, y) are a two-parameter
family of nonhomogeneous means defined, for n E N, by

E2n(r,s;x,y) = [ r2n+1 U2n(s; y) - U2n(s; x) r/(s-r)
s2n+l·U2n(r;y) - U2n(r;x)'

E2n(r, r; x, y) = exp [-·
1 U2n+1(r;y) - U2n+1(r;x)
r U2n(r; y) - U2n(r; x) ]'

E2n(r,O;x,y) = L2n(r;x,y), x # y,r ER;

rs(s 一 r)(x - y) =fi O; (12)

r(x 一 y) IO; (13)

E疝化 s;x,x) = x, r,s ER.



For the sake of convenience, we write E2n化 s;x,y)
shifting notation to suit the context.

= E2n(r, s) = E2n(x, y) = E2n,

Theorem 1. L (2n r; x, y) and E21'1(r, s; x, y) can be expressed in integral f,。rms.
L2n(r; x, y) = E2n(r, O; x, y) = [仁(ln u)2nur-1du 1/r

仁 (ln u)2nu-1du]'r(x 一 y) =/:- O;

L2n(O; x, y) = exp ( 仁(ln u)2n+iu-1du
亡 (ln u)2nu-1du)'x =/:- y;

E2n(r, s; x, y) = (J; (ln u)2nu8-1du 1/(s一 r)
亡 (lnu)2nur-1du)'(r 一 s)(x - y) :j:. O;

E2n(r, r; x, y) = exp ( 亡(In u)2n+Iur-Idu
仁 (In u)2nu尸 l du)'X :j:. y.

158 FENG QI

(14)

(15)

(16)

(17)

Proof. Let g(t;x,y) = (yt - xt)/t fort-/= 0 and g(O;x,y) = lny-lnx. By direct
computation and induction on n, it follows that

9尸 (t; x, y) = (Un(t; y) - 広(t;x))/tn+I, (18)
鸊(t; u)/8u = (1:u)nut-Itn+I, (19)

9尸 (t;x,y) = 1 (lnu)nu仁 1du. (20)

This implies Theorem 1.

Corollary 1. L2n(r; x, y) is continuous on the domain

{(r;x,y)jx > O,y > O,r ER}
and E2n(r,, s; x, y) is continuous on the domain

{(r,s;x,y)jx > O,y > O,r,s ER}.

Theorem 2. L2n(r; x, y) and E2n(r, s; x, y) have the following properties:

min{x,y}~L2n(r;x,y)~max{x,y},
L2n(r; x, y) = L2n(r; y, x),
Lo(r; x, y) = Lr(x, y),
L2n(r;xa,ya) = (L2n(ar;x,y))a, a-/= O;
min{x,y}~E2n(r,s;x,y)~max{x,y},
犀(r,s;x,y) = E2n(r,s;y,x) = E2n(s,r;x,y),
Eo(r, s; x, y) = E(r, s; x, y),
Eo(r, r; x, y) = Ir(x, y),
[E2n(r, t)t-t = [E2n(r, s)r一 5[E2n(s,t)]s-t,
[E2n(ar,as;x,y)]cr = E2n(r,s;xa,ya), a-/= O.
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Proof. They follow from the mean value theorem for integral, Theorem 1 and stan
dard arguments.

Lemma 1. Let J, h : [a, b] ---+ R be integrable functions, both increasing or both
decreasing. Furthermore, let p : [a, b] ---+ R+ be an integrable function. Then

{p(u)f(u)du J.'p(u)h(u)du SJ.'p(u)du{p(u)f(u)h(u)du. (21)

If one of the functions of J or h is nonincreasing and_ the other nondecreasing, then the
inequality (21) reverses.

Inequality (21) is called the Tchebycheff integral inequality. For proof of it, see [2, 7,
8, 12, 13, 18).

Proposition 1. Let g = g(t; x, y) = J: ut-1du, x f- y. Then, fork, j EN, we have

(2k+l) (2(j+k)H) (2k) (2(j+k+I))
9t 9t·'.S 9t 9t·

The ratio 羞2(j+k)+l) (t; x, y) Ig~2k) (t; X'y) is increasing in t.
Proof. Inequality (22) is a special case of the Tchebycheff (or Cebysev) integral

inequality applied to the functions p(u) = (ln u)2kut-i, f (u) = ln u and h(u) = (In u)勾十1
for j, k E N, t E R and u E [x, y].

Inequality (22) and direct calculation produce

(22)

(9I2(j+k)+1) (2(j+k+l}} (2k) (2(j+k)+l) (2k+l}
(2k}) = 9t 9t - 9t 9t

9t t (g~2k))2 2: 0.

Therefore, the desired result follows.

Theorem 3. L2n(r; x, y) increases with respect tor.

Proof. From Theorem 1 we have

1 (J; (In u)2n+1ur-1du 尸 (In u)2nur-Idu
[In L2n (r; x, y)]t = 一 ·r - ln x

r2 亡 (In u)2nur-ldu J; (ln u)2nu-ldu)
1 亡 (ln u)2n+lur-ldu 亡 (ln u)2n+1u6-1du＝ ＿（r .. f; (In_u)2nur-ldu 一 亡 (ln u)2n研-1du),

where () is between O and r, by the mean value theorem for derivative. From Proposition
1, [InL2n(r;x,y)]t > 0, therefore L2n(r;x,y) is increasing with respect tor for n .EN.

Theorem 4. If x, y > 11 then

L2n(r;x,y) = E2n(r,O;x,y)~E2n+2(r,O;x,y) = L2n+2(r;x,y). (23)

If O < x < y < 1, inequality (23) is reversed.
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Proof. Using formulae (14) and (15), the Tchebycheff integral inequality applied to
p(u) = u-1(lnu)2n, J(u) = 正 and h(u) = (lnu)生 and the standard arguments result in
Theorem 4.

Theorem 5. L2n(r; x, y) increases 切 both x and y.

Proof. From (15) and (18), direct computation produces

ln L2n(O; x, y) = g~2n+1\0; x, y) /g~2n) (O; x, y),
B[lnL2n(O;x,y)] Y= [ / (ln u)2n+1u-1du

y
-(ln x) I (ln u)2nu-1du

(ln x)2nx-1
] [g~2n\o; x, y)r 2: 0.

Hence, L2n(O; x, y) increases with respect to both x and y.
Since L2n(r;x,y) = g~2n\r;x,y)/g~2n)(O;x,y),·easy calculation results in

BL品 (r;x,y) = [g~2n) (r; x, y) - xrg~2n) (O; x, y)]x-1 (ln X)2n /[g~2n>(o; x, y)]2
y y

= [J (ln u)2nur-1du - xr (ln u)2nu-1du (Inx)2nx刁1 l [g~'n) (O; x, y)]2 ,
sgn(BL;n(r; x, y)/Bx) = sgnr.

Therefore, L2n(r;x,y) increases with both x and y.

4. Monotonicity of E2n(r, s; x, y)

Theorem 6. E2n(r,s;x,y) increases with respect to both rands.

Proof. From (17) and Proposition 1, it follows that E2n(r,r·x,y)·, mcreases with
both rands.

By easy computation, we have

(2n)
[InE2n(r,s;x,y)]s=·-1 g;n+1(s;x,y) 9s (s;x,y)

(s 一 r)2 [ 912n}(s;x,y) (s-r) -ln g~2n\r;x,y)]

By the mean value theorem, we obtain

gi2n\s;x,y) (2n+l)('Y;x,y) {2n+l}
ln = 9-y (s 一 r) < 9s (s;x,y)

(2n) (2n)((s 一 r),
9r (r;x,y) 9'Y "(;x,y) gfn}(s;x,y)

严here "f is between rands. Therefore, (In E2n(r, s; x, y)]s > 0, E2n(r, s; x, y) is increasing
ms. Since E坏 化 s; x, y) = E2n(s, r; x, y), it is deduced that E2n(r, s; x, y) increases in
both rands.
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Theorem 7. For x, y > l,

E2n(r, s; x, y) ::; E2n+2(r, s; x, y).

If O < x < y < l, inequality (24) reverses.

Proof. For s > r, inequality (24) is equivalent to
{2n+2)9s (s;x,y) > gFn\s;x,y)
{2n+2) 一 {2n)9r (r; X, y) 9r (r; x, y)'

that is

(24)

亡 (ln u)2n+2us一 1du 亡 (ln u)2nus-1du
＞亡 (ln u)2n+2ur-ldu 一 亡 (ln u)2nur-ldu·

From (21), applied to p(u) = (lnu)2nu竺 f(u) = (lnu)2, g(u) = u5一r, the inequality
(24) follows.

Theorem 8. E2n(r, s; x, y) increases 画th both x and y.

Proof. Since InE2n(r,r;x,y) = gi2n+i\r;x,y)/gi2n\r;x,y), calculating straightfor
wardly yields

(ln E2n(r,r;x,y)]x = [gi2n+I)(r;x,y) - (lnx)g?n\r;x,y)]
xr-1 (ln x)2n

[gi2n\r; x, y)]2

= [「(lnu)2n+Iur-ldu- (lnx) ly(lnu)2nur-Idu] xr-l(lnx)2n 乏 O
x [g}2n\r; x, y)]2

Thus, E2n()· ·r r·x, ，，y 1s mcreasmg m both x and y.
Let

P2n化 s; x, y) = [E2n(r, s; x, y)]5一r. s
2n+l

＝
U2n(s; y) - U2n(s; x)

r2n+I 匹(r; y) - U2n(r; x、·

Computating directly arrives at

~= (lnx严 (rs)2n+lxr+s一 1 [g~2n)(r;y,x) _ gFn\s;y,x)
8x [U2n(r; y) - U2n(r; x)]2 xr xs ]'

(g?n)(tjy,x)) = g!2n+1\t;y,x)-(lnx)g?n)(t;y,x)
X t xt

_ J;(ln u)三三 - (ln x) J; (ln u)2nut-1du
xt

From this we conclude that

sgn(謇 ）=sgn(~空 ）
= sgn(gi2n\r;y,x) gi2n)(s;y,x)

xr - —尸 ）= sgn(s 一 r).



162 FENG QI

Therefore, 8E2n(r,s;x,y)/8x > 0, E2n(r,s;x,y) is increasing with both x and y.

Remark. Some properties of the function g(t;x,y) had been given in [16, 17, 18,
19].
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