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ON BOREL DIRECTION CONCERNING SMALL FUNCTIONS

T. Y. PETER CHERN·

Abl:llract. In Lliis paper, we shall prove

Theorem 1. /,et I be nonconstant meromorpliic ill C with finite positive ord~r >., 入(r) be
a 71rux1mute onler off cwil U(1·, I) .l.(r)= r , tl1e11 for eacl, number a, 0 < Q < lf/2, t/1ere exiats
1.1 number <po with O $ <po < 2rr such that the inequn/ity

l

lirn sup I: 11(r, f{Jo, o, f = a;(z:))/U(,·, /) > 0,
r .... -t-oo

•=I

hold~for any three distinct maomorphic functio,u a; (z)(i :.cc I, 2, 3) with T(r, a;) = o(CJ(r, /)).
as r-+ +oo.

1. Introduction and Main Results

Let J be a function meromorphic in the finite complex plane C. We donate by
T(r, J)(To(r, !)) the Nevanlinna(Ahlfors-Shmizu) characteristic function of J. A mero­
morphic function a(z) (including the case f(z) == c where c in Cu {oo}) is called small
with respect to f if T(r, a(z)) = o(T(r, J)) as r -, +oo. \Ve let n(兀 <p, a, J = a(z)) be the
number of roots (multiple roots being counted with their multiplicities) of the equation
j(z) = a(z) for z in the angular domain D(r,cp,a) = {z: largz - 列< c..t, lzl < r} where
0 :::; cp < 21r, a > 0.
This paper deals with the existence of the Borel directions concerning small functions

for mermorphic functions of finite positive order. Using Tsuji's method, we shall mainly
prove Theorem 1 stated in the abstract. Theorem~extends a result of Chuang [2, p.127,
Corollary 5.3], there a(z} are restricte<l over all extended complex numbm·s. Chuang's
method rs different from ours and is區ed on the existence of a sequence of filling disk
with their roots in the works of Milloux [3] and Valiron [7].

Theorem 2. (The Existence Theorem on Borel Direction concerning small functions)
If J is mernmorphic in C with order.\, 0 < ,\ < +oo, t!ten the1·e exists a number cp0 with
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0 S <po < 21r, such that for each a > 0, the equation

3

Jim sup log{严 n(1·,r.po,a,f = ai(z))}/logr = A,
r-++oo i=I

holds for·any three distinct meromorphic functions ai(z) (i = 1, 2, 3) with T(r, ai)
o(T(r, !)), as r -+ +oo.

Theorem 2 extends a result of Biernacki [l, Theorem G.5].
Applying Theorem 1 and adapting a line of reasoning used by C. T. Chuaug [2, p.128,

Corollary 5.4], it is easy to obtain t.he following

Theorem 3. [4] ff J is mcrnmorphic in C with finite positive 01·der, U(r, f) is given
as in Theorem 1, then there is a number cp0 with O~cp0 < 21r such that f01·each vositive
number a, the inequality

3

lim sup瓦 n(r,'Po, a, J = ai(z))/U(r, f) > 0,
r-t+oo i=l

holds for any three distinct meromorphic functions ai(z)(i == l, 2, 3) with T(r, ai) ==
o(U(豆 ）），as r-* +oo.

= 1, Theorem 2 follows from Theorein 3.

Theorem 3 extends a result of Valiron (8, p.34, Theorem 29.J. Since lim sup·
r-++oo
曰

2. The Proof of Theorem 1

To prove Theorem 1, we need some terminologies. Let S(r,廌 n, J) be the spherical
area of the image under f of fl(r, tp, a) where O~tp~ 沅. T0(r, tp, a, f) be the Ahlfors­
Shimizu characteristic of f associated with S(八 tp, o:, f) and N(r, ip, a, f = a(z)) bet.he
integral counting function of J associated with n(兀 tp, a, J = a.(z)). Suppose t.hat I.he
conclusion of Theorem 1 is incorrect., then there exists a positive number o:, O < o: <可2;
for each ip, o~tp < 21r, there exist three distinct. meoromorphic funct.ioris a的 (j = 1, 2, 3)
with T(r,a'P;) = o(U(r !)) such t.hat ti 1e expressron

3

limsup I:n(r涇o, a, j = acp; (z)) /U (r, !) = 0,
r~+oo j=l

(2.1)

holds.
Since X = {(t.p 一 a/4, <p + a/4) : <p E [O, 2吋）＇1s an open covcrmg of the closed interval

[O, 2n] and [O, 2-rrJ is compact; so there exists a finite subcovering Xo = {(r.pk - a/4,<pk +
o/4)!k = 1, ... ,n} which covers [O, 271']
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For each positive integer k, l ::; k ::; n, we put

Fk(z) = (J(z) - a'f>ki (z))(a<f>,.3(z) - a<f>,.2(z))/(J(z) - a'f>k~(z))(a..,i.3(z) - a..,"1(z)), (2.2)

where a'Pi.i(z),(j = 1,2,3) depending on (f'J.: and n and satisfying the expression (2.1).
The ftinction f can be written as

f = (g'Pk 1 Fk + g'Pk2 I (g'Pk3 Fk + 9ip1,J. (2.3)

For above expression (2.3), applying [6, Lem-ma, p.277], we have

（
l 28r 4

S(r, 屮;,a/4,J) :S 27S(Mr,'{J;,ct/2,F.) + o J (~T(t,!J,,)/t),U) (2.4)

Dividing two sides of the above inequality (2.4) by r, an<l tl 1en mtegratiug them to r
and then applying [6, Theorem VII.8, p.272], we have

1o(r, <p1., a/4, J)~27To(641·,'Pk, a/2, Fk) + o(U (r, !))
3

~81严 N(128立立k, Fk = bJ) 十 o(U(r, J)) (2.5)
j=l

where bi= 0,奶= 1,柘= 00
Since Xo covers [O, 21r}, we have

＂To(r, !)~L'Io(r, <f)k, a:/4, J)
k=l

n 3

~81严芷 N(I28r, <f)k, a:,\凡 = bJ) + o(U(r, !))
k=lj=l

n 3

= 81 LLN(128立立t, J = a'{)k;) + o(U(r, !)). (2.6)
k=lj=l

Dividing two sides of the above inequality (2.6) by U(r, !), then taking lirnsupr-t+i and
then applying the L'Hopital Rule we have

n 3

Jim sup 1o(r, f) / U(r, f) ::; 81严 Jim sup
,·-t+oo L N(l28r, <Pk, a:, J = a'P,.;)/U(r, !)

k=l r-t+oo j=l
n 3

= 81芷 (128llimsupLN(r,cpk,cr,J = a,p,.;)/U(~,f)
k=l r-t+oo j=l

,1 3

:S 81(128).>. ~四閎~(1/>.)n(r, 叭 ，a, J =a,pi.;)/U(r, f) = 0.(2.7)



16 T. Y. PETER CHERN

Above result contradicts lim SllPr+I-= T(r, J)/U(r, J) = 1, and 7o(r, J) ......, T(r, /). This
completes the proof of Theorem 1.

References

[1} M. Diernacki, "Sur Jes directions <le Borel des functio11s meromorphcs," Acta Math., 56
(1930), 197-204.

[2] C. T. Chuang, Siguln.r Dir-ection of Memmorphir: Functions (i11 Chi11csc), Science Press,
Deijing, 1982.

[.3] H. M illoux, "Le thcoremc de Picard, su itcs <le functions holomorphcs; f11nctio11s meromor­
phcs et functions enticrcs.''J. de Math., 3 (1924), 31G-401

[4] X. Pang, "On the singular direction of meromorphic function" (in Chinese), Advances in
Mn.thematics (China), 16 (3) (1987), 309-315

囿 M. Tsuji, "On Dorel's direct.ions of meromorphic functions of finite order, III, Kvdai Math
Sem. Rep., {1950), 104-108.

[GJ M. Tsuji, Potential Thcor·y in Modern Function Thco1·y, Chelsea Pub!., N. Y., 1975
[7] G. Valiron, "Recherches sur le t.heoremc de t;I. I3orcl dans la thcoric des fnnctions mero­

morphcs.''Acta Math. 52 {1928), 67-92.
[8} G. Valiron, Directions de Borel des functions mernmorphes, Memor. Sci. Mal.h., F吟C. 89,

Press, 1938.

Department of Applied Mathematics, ·aohsiung Polytechnic Institute, Ta-Hsu Hsiang, I<aoh­
siung County, Taiwan 84008 R.0.C.

＇'．．


