TAMKANG JOURNAL OF MATHEMATICS Volume 29, Number 1, Spring 1998

ON BOREL DIRECTION CONCERNING SMALL FUNCTIONS

T. Y. PETER CHERN*

Abstract. In this paper, we shall prove

Theorem 1. Let f be nonconstant meromorphic in \mathbb{C} with finite positive order $\lambda, \lambda(r)$ be a proximate order of f and $U(r, f) = r^{\lambda(r)}$, then for each number $\alpha, 0 < \alpha < \pi/2$, there exists a number φ_0 with $0 \leq \varphi_0 < 2\pi$ such that the inequality

$$\limsup_{r\to+\infty}\sum_{i=1}^3 n(r,\varphi_0,\alpha,f=a_i(z))/U(r,f)>0,$$

holds for any three distinct meromorphic functions $a_i(z)(i = 1, 2, 3)$ with $T(r, a_i) = o(U(r, f))$, as $r \to +\infty$.

1. Introduction and Main Results

Let f be a function meromorphic in the finite complex plane C. We donote by $T(r, f)(T_0(r, f))$ the Nevanlinna(Ahlfors-Shmizu) characteristic function of f. A meromorphic function a(z) (including the case $f(z) \equiv c$ where c in $\mathbb{C} \cup \{\infty\}$) is called *small* with respect to f if T(r, a(z)) = o(T(r, f)) as $r \to +\infty$. We let $n(r, \varphi, \alpha, f = a(z))$ be the number of roots (multiple roots being counted with their multiplicities) of the equation f(z) = a(z) for z in the angular domain $\Omega(r, \varphi, \alpha) = \{z : |argz - \varphi| < \alpha, |z| < r\}$ where $0 \leq \varphi < 2\pi, \alpha > 0$.

This paper deals with the existence of the Borel directions concerning small functions for mermorphic functions of finite positive order. Using Tsuji's method, we shall mainly prove Theorem 1 stated in the abstract. Theorem 1 extends a result of Chuang [2, p.127, Corollary 5.3], there a(z) are restricted over all extended complex numbers. Chuang's method is different from ours and is based on the existence of a sequence of filling disk with their roots in the works of Milloux [3] and Valiron [7].

Theorem 2. (The Existence Theorem on Borel Direction concerning small functions) If f is meromorphic in \mathbb{C} with order λ , $0 < \lambda < +\infty$, then there exists a number φ_0 with

Received November 15, 1995, revised September 25, 1996.

¹⁹⁹¹ Mathematics Subject Classification. Primary 30D30, 30D35

Key words and phrases. Borel direction, small function, finiter positive order.

^{*}This research was supported in part by the NSC R. O. C. Contract 84-2121-M214-003.

 $0 \leq \varphi_0 < 2\pi$, such that for each $\alpha > 0$, the equation

$$\limsup_{r \to +\infty} \log \{\sum_{i=1}^{3} n(r, \varphi_0, \alpha, f = a_i(z))\} / \log r = \lambda,$$

holds for any three distinct meromorphic functions $a_i(z)$ (i = 1, 2, 3) with $T(r, a_i) = o(T(r, f))$, as $r \to +\infty$.

Theorem 2 extends a result of Biernacki [1, Theorem 6.5].

Applying Theorem 1 and adapting a line of reasoning used by C. T. Chuang [2, p.128, Corollary 5.4], it is easy to obtain the following

Theorem 3. [4] If f is meromorphic in \mathbb{C} with finite positive order, U(r, f) is given as in Theorem 1, then there is a number φ_0 with $0 \leq \varphi_0 < 2\pi$ such that for each positive number α , the inequality

$$\limsup_{r \to +\infty} \sum_{i=1}^{3} n(r, \varphi_0, \alpha, f = a_i(z))/U(r, f) > 0,$$

holds for any three distinct meromorphic functions $a_i(z)(i = 1, 2, 3)$ with $T(r, a_i) = o(U(r, f))$, as $r \to +\infty$.

Theorem 3 extends a result of Valiron [8, p.34, Theorem 29.]. Since $\limsup_{r \to +\infty} \frac{T(r,f)}{U(r,f)} = 1$, Theorem 2 follows from Theorem 3.

2. The Proof of Theorem 1

To prove Theorem 1, we need some terminologies. Let $S(r, \varphi, \alpha, f)$ be the spherical area of the image under f of $\Omega(r, \varphi, \alpha)$ where $0 \leq \varphi \leq 2\pi$. $T_0(r, \varphi, \alpha, f)$ be the Ahlfors-Shimizu characteristic of f associated with $S(r, \varphi, \alpha, f)$ and $N(r, \varphi, \alpha, f = a(z))$ be the integral counting function of f associated with $n(r, \varphi, \alpha, f = a(z))$. Suppose that the conclusion of Theorem 1 is incorrect, then there exists a positive number $\alpha, 0 < \alpha < \pi/2$; for each $\varphi, o \leq \varphi < 2\pi$, there exist three distinct meoromorphic functions a_{φ_j} (j = 1, 2, 3)with $T(r, a_{\varphi_j}) = o(U(r, f))$ such that the expression

$$\limsup_{r \to +\infty} \sum_{j=1}^{3} n(r, \varphi_0, \alpha, f = a_{\varphi_j}(z)) / U(r, f) = 0,$$
(2.1)

holds.

Since $\chi = \{(\varphi - \alpha/4, \varphi + \alpha/4) : \varphi \in [0, 2\pi]\}$ is an open covering of the closed interval $[0, 2\pi]$ and $[0, 2\pi]$ is compact; so there exists a finite subcovering $\chi_0 = \{(\varphi_k - \alpha/4, \varphi_k + \alpha/4) | k = 1, ..., n\}$ which covers $[0, 2\pi]$.

14

For each positive integer $k, 1 \leq k \leq n$, we put

$$F_k(z) = (f(z) - a_{\varphi_{k1}}(z))(a_{\varphi_{k3}}(z) - a_{\varphi_{k2}}(z))/(f(z) - a_{\varphi_{k2}}(z))(a_{\varphi_{k3}}(z) - a_{\varphi_{k1}}(z)), \quad (2.2)$$

where $a_{\varphi_{kj}}(z)$, (j = 1, 2, 3) depending on φ_k and α and satisfying the expression (2.1). The function f can be written as

$$f = (g_{\varphi_{k1}}F_k + g_{\varphi_{k2}}/(g_{\varphi_{k3}}F_k + g_{\varphi_{k4}}).$$
(2.3)

For above expression (2.3), applying [6, Lemma, p.277], we have

$$S(r,\varphi_k,\alpha/4,f) \le 27S(64r,\varphi_k,\alpha/2,F_k) + o\Big(\int_1^{128r} (\sum_{j=1}^4 T(t,\dot{g}_{\varphi_{kj}})/t)dt\Big).$$
(2.4)

Dividing two sides of the above inequality (2.4) by r, and then integrating them to r, and then applying [6, Theorem VII.8, p.272], we have

$$T_{0}(r,\varphi_{k},\alpha/4,f) \leq 27T_{0}(64r,\varphi_{k},\alpha/2,F_{k}) + o(U(r,f))$$

$$\leq 81\sum_{j=1}^{3} N(128r,\varphi_{k},\alpha,F_{k}=b_{j}) + o(U(r,f))$$
(2.5)

where $b_i = 0, b_2 = 1, b_3 = \infty$.

Since χ_0 covers $[0, 2\pi]$, we have

$$T_{0}(r,f) \leq \sum_{k=1}^{n} T_{0}(r,\varphi_{k},\alpha/4,f)$$

$$\leq 81 \sum_{k=1}^{n} \sum_{j=1}^{3} N(128r,\varphi_{k},\alpha_{j})F_{k} = b_{j}) + o(U(r,f))$$

$$= 81 \sum_{k=1}^{n} \sum_{j=1}^{3} N(128r,\varphi_{k},\alpha,f = a_{\varphi_{k}j}) + o(U(r,f)). \quad (2.6)$$

Dividing two sides of the above inequality (2.6) by U(r, f), then taking $\limsup_{r\to +}$, and then applying the L' Hopital Rule we have

$$\limsup_{r \to +\infty} T_0(r, f) / U(r, f) \le 81 \sum_{k=1}^n \limsup_{r \to +\infty} \sum_{j=1}^3 N(128r, \varphi_k, \alpha, f = a_{\varphi_{kj}}) / U(r, f)$$
$$= 81 \sum_{k=1}^n (128)^{\lambda} \limsup_{r \to +\infty} \sum_{j=1}^3 N(r, \varphi_k, \alpha, f = a_{\varphi_{kj}}) / U(r, f)$$
$$\le 81 (128)^{\lambda} \sum_{k=1}^n \limsup_{r \to +\infty} \sum_{j=1}^3 (1/\lambda) n(r, \varphi_k, \alpha, f = a_{\varphi_{kj}}) / U(r, f) = 0. (2.7)$$

T. Y. PETER CHERN

Above result contradicts $\limsup_{r\to+\infty} T(r,f)/U(r,f) = 1$, and $T_0(r,f) \sim T(r,f)$. This completes the proof of Theorem 1.

References

- M. Biernacki, "Sur les directions de Borel des functions meromorphes," Acta Math., 56 (1930), 197-204.
- [2] C. T. Chuang, Sigular Direction of Meromorphic Functions (in Chinese), Science Press, Beijing, 1982.
- [3] H. Milloux, "Le theoreme de Picard, suites de functions holomorphes; functions meromorphes et functions entieres," J. dc Math., 3 (1924), 345-401.
- [4] X. Pang, "On the singular direction of meromorphic function" (in Chinese), Advances in Mathematics (China), 16 (3) (1987), 309-315.
- [5] M. Tsuji, "On Borel's directions of meromorphic functions of finite order, III, Kodai Math. Sem. Rep., (1950), 104-108.
- [6] M. Tsuji, Potential Theory in Modern Function Theory, Chelsea Publ., N. Y., 1975.
- [7] G. Valiron, "Recherches sur le theoreme de M. Borel dans la theorie des functions meromorphes," Acta Math. 52 (1928), 67-92.
- [8] G. Valiron, Directions de Borel des functions meromorphes, Memor. Sci. Math., Fasc. 89, Press, 1938.

Department of Applied Mathematics, 'aohsiung Polytechnic Institute, Ta-Hsu Hsiang, Kaohsiung County, Taiwan 84008 R.O.C.

in a contract of