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ON SOME SUBCLASSES OF CLOSE-TO-CONVEX FUNCTIONS
OF ORDER a TYPE §

KHALIDA INAYAT NOOR AND AWATIF A. HENDI

Abstract. Let Q5 (a, 6) denote the class of analytic functions f in the unit disc E, with f(0) =0,
f'(0) = 1 and satisfying the condition

zf'(z) (ZI'(Z))'}
R = X ;
¢ {“ ) 9(z) Hi 9'(z) .

for 2z € FE, g starlike function of order §(0 < § £1), 0<a <1 and A complex with
ReX > 0. It is shown that Qi (a,8) with A > 0 are close-to-convex and hence univalent in E,
Coefficient results, an integral representation for Qi («, §) and somne other properties of Q5 (a, )
are discussed. The class Q3 (a, 1) is also investigated in some detail.

1. Introduction

Denote by S the class of functions f which are analytic and univalent in the unit.
disc £{z: |z| < 1} and are given by '

o0

) =t S anen R S -

n=2

The subclasses S* and C of starlike and convex functions respectively are well-known
and have been extensively studied, sce [6],(2] and [5]. A function f € S is called a convex
function of order §, 0 < § < 1, if, for z € E,

(zf'(2))'
Re——+~

f(=)
We denote this class by C(8). Also f € S is a starlike function of order §, 0 < 6 < 1if,
for z € E, Re"w'“%l > 4, and call this class S*(8). These two classes were introduced by
Robertson [17].

In [10], Libera introduced the class K (e, 8) of close-to-convex functions of order a
type 8. A function f, analytic in E and given by (1.1), belongs to the class K(a,d),

= 8.
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0<a<1,0<68<1,if and only if, there exists a function ¢ g € S*(J) such that, for
z€FE,

re? (2

“9(2)
It is clear that K (0,0) = I, the class of close-to-convex univalent functions introduced
and studied first by Kaplan in [9]. Noor [15] defined a subclass I *(c, ) of univalent
functions as follows. A function f, analytic in E and given by (1.1), is in the class
K*(a,0),0 < <1,0<6<1,if and only if, there exists a function g € S*(4) such that

@£
D

For @ = 0, § = 0, the class [{*(0,0) reduces to the class K* studied in [14].
We now define the following.

>a, 2€E

Definition 1.1. Let f, given by (1.1), be analytic in E and for A complex with
Rel > 0, let

@ T )

for some a(0 <a<1)and g€ S* (6 Then f is said to belong to the class Q3 (a, d) for
.Z2€B.

Re{(l—A)"f'(z) A& @) } >a z2€E,

We note that Qgj(a,d) = K(a,d) and Qj(a,d) = K*(a, ).

Let f and g be analytic functions in E with f(z) = Y oo jan2™ and g(2) = 3 oo s baz",
then the convolution (Hadamard product) of f and g is defined by

(f +9)(2) = ) anbnz". (1.2)

n=0

2. Prelimminary Results

Lemma 2.1. [13] Let u = uy + iuy and v = vj + ivy and Y(u,v) be a complcm—ualuéd
function satisfying the conditions
(i) ¥(u,v) is continuous in a domain D C C?,
(ii) (1,0) € D and (1,0) > 0
(ili) Re(iuz,v1) < 0 whencver (iugz,vy) € D and v; < —2(1+ud). I hz) =1+
dom_aCmz™ is a function, analytic in E, such that (h(2),2l'(z)) € D and
Rey(h(z),zh'(2)) > 0 for z € E, then Re h(z) > 0 in E.

The following is a special case of a result proved in [7].
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Lemma 2.2. Let p be analytic in E, p(0) = 1 and Re p(z) > a in E. Then, for
ze E, |z| =7, we have

(2) ooy |
p(z) = 1-(1-=-2)r)1+7)’ for v <1y,

where 7y is the unique root of the equation S
(2a-1)r*+2(1 - 2a)r® - 612 = 2r +1 =0 , (2.1)
in the interval (0, 1].
This result is sharp.

Lemma-2.3.[16] If p(2) is analytic in E with p(0) = 1 and if \ is a complex number
satisfying Re A > O then Re {p(z) + Azp'(2)} > q, (0 £ @ < 1) implies Re p(z) >
a+ (1 - a)(20 — 1) where o is given by

1
o = o(Re)) =/ (1 4 eRer-1yy, (2.2)
0

which is an increasing function of Re A\ and % < o < 1. This estimate is sharp in the
sense that the bound cannot be improved.

Lemma 2.4.[20] If P(z) is analytic in E,P(0) = 0 and Re P(z) > 3, 2 € E, then,
for any function F, analytic in E, the function P+ F takes values in the conves hull of
the imege of E under F.

3. Main Results
Theorem 3.1. Let f € Q3(a,8), A>0. Then f € K (v,6) where

_ 20+ Ad,
and Reh(z)
e
L= ﬁ@% Reh(z) > 6. (3.2)
Proof. Let g € S*(J) and set
2f'(z) _ 4
e [(1 - 7)p(2) + 7).

We see that p(0) =1 and p is analyti'c in E. Simple calculations yield

zf'(2) {el'(=))
{“ ~AE Y

o= (=) + -0 w20 - 2 (g5
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!

where Re (z) =Re2%{3) > 6, z € E.

Since f € Q3(@,9), Re{(1 = )p(z) + (v = @) + A(1 = 1) 2L} > 0 in E. We form
the functional )(u,v) by choosing u = p(z), v = 2p'(2).

Thus

A1 —
A Sl )

h

The first two conditions of Lemma 2.1 are clearly satisfied. We verify the condition (iii)
as follows.

$(w,0) = (1~ Yu+ (v — <)

A(1 = y)v Reh
[h]?

]
< =(y—a)+ A1 = 7)vdy, ((51 s l)-

Rey(iuz,v1) = (y — a) +

Now, for v; < —1(1 4 u2), we have
. 2 279

Rey(iuz,v;) < (v — a) — %A(l —7)81 (1 + u?)

=517 -20) = M1 = 8] AT - 7érn3]

1
= "2-(A + B'U.%),

where

A=2(y = a) = A1 - A)dy,
b = —/\(1 — ')‘)(51 S 0.

Re ¥(iug, v1) < 0if A < 0 and this gives us value of v as defined by (3.1). We now apply
Lemma 2.1 to conclude that Re p(z) > 0 in E and hence f € K(y,d). *

Corollary 3.1. Let f € Q3(,d), A > 1. Then f € K*(m,6), where

a(2+6;)+6(A=-1)
M. = )

2 4+ A\,
d; is given by (3.2).
Proof. Now
2f'(2)) _ [ n2f'(2) | f(2) £ 2f'(2)
G =l o) -t

for g € S5*(8).
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Since f € Q5 (a, ), we use Theorem 3.1 to have

Re{)\(—zgil,(%)l} >a+(A-1) [g%}

_ Aady +2a) + A6 (N - 1)
i 2+ A4,

and this gives us the required result.

Corollary 3.2. Let X\ be complez with Re ) 20, and f € Q3(a,1). Then, forz € E,
Re f'(2) > 2 2y

This result is proved in (8] with a different method. It can also be proved indepen-
dently as follows.

Theorem 3.2 Let f € Q3(a,1),0<a <1, Re A > O(A Complex). Then
Ref'(z) > 01 =a+ (1 - a)(20 — 1),
where o is given by (2.2). This bound is sharp.
Proof, Let f'(2z) = p(2), p(0) = 1. This implies that
f'(2) + Az f"(2) = p(2) + Azp'(2).

Since f € Q}(a,1), Re {p(z) + Azp'(z)} > « for z € E. We now apply Lemma 2.3 to
obtain the required result.

Corollary 8.3. Let € Q3(0,1).. Then Re fi(z) > —=1+2log2 = 0.39 for z € E.
The constant ~1 + 2log2 cannot be replaced by any larger one as can be seen from the
Junction fo € Q1(0,1) defined by

zfo(z) = —z — 2log(1 — z).
This result is also proved in [20] by using markedly different techniques.
We now derive the integral representation for the functions in Q3(a,d) as follows.

Theorem 3.3 Jor A > 0, f € Qx(@,8) if and only if there exists 9 € S*(3) and a
close-to convex function I of order ¢« and type § such that
= ] 1 1-4 ‘ -1 0
2f1(2) = 5(9(2)) (gD} Pde,~ — = — (3.4)
0
where all powers are meant as principle values.

Proof. Let f € Q}(«,d). Then from definition 1.1, it follows that

1- 0@, Gy

9(2) 7(2) =p(z), Rep(z) >« and g € S*(9).
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Multiplying both sides by [%(g(z))i"lg'(z)], we have

(5 = D2/ o)} 20 (2] + (21 (2) g2 1] = PENEEN @) (35)

We see that the left-hand side of (3.5) is the exact differential of zf’(z)(g(z))&". Ilence,
integrating both sides with respect to z and putting p(2)g(z) = I'(2), IF € K(«, ), we
obtain the required result. The converse follows immediately from (3.4).

Corollarsr 3.4. Let fe Q:\(a, 1) with 0 < XA < 1. Then f can be cxpressed as the

Hadamard product of the convex function

_1 1—&/’ g2 _t
k(z) = 32 e, (3.6)
with "
J(z) = / p(t)dt, Rep(z) > a (3.7)
0
forz e E.

Remark 3.1. Since, for A > 0, @3(a,d) C K(v,6) C K, all functions in Q3 («, d),
A 2 0 are univalent in . We notice that Q§(a, ) coincides with thé class K (a, §) and
Qi(e,d) = K*(a,6) C K(a,d). Thus we may expect that, as \ increases from 0 to oo,
the classes Q3 (a,d) decrease and will be nested. We prove this fact as following.

Theorem 3.4. For 0 <A1 <A, Qi(oyd) C @3, (a,6).

Proof. For A; = 0, the proof is immediate. So we let A; > 0 and let J € Q3 (,9).
From Definition 1.1 and Theorem 3.1, we can write

2f'(z) (zf'(2)) _ A e
(1 = /\1)—9'(';—)— +- /\IW = ‘—Xl-])(Z) - (1 = —A!-)II(Z), (38)

where g € S*(4) and

e Re{(l Y z;('S) i /\(z;'((zz)))’} > a,

ReH(z) = Rc—zg('i—;) Doy 3 ok

Since the class P(a) consisting of the functions p with Re p(z) > ain I, is a convex set
[5], the right hand side of (3.8) belongs to P(a) and this shows that f € @3, (o, 9).

Theorem 3.5. Let f € Q3(,d), A > 0 and be given by (1.1). Then

(i) laal < 152 + (1 - 8)

(i) los] < Sy +2(1 = 8)(3 - 25)) + L0020

3(1+42x)
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These bounds are sharp as can be seen from the function f; € Q3 (a,d) and defined by
(3.4) with g(2) = =y and F(z) = p(z)g(2), p(z) = Ltliz2a)z

11—z

Proof. Since f € Q}(a,d), we can write
(1 =A)zf'(2)g'(2) = p(2)g(2)g'(2), g € 5*(8), Rep(z) > c.

Let g(2) = 2+ 377, bn2™, P(z) =14 322, ¢p2™. Then

(1-N[z+ Z na, z"|[1 + an 2" 4+ A1+ Z i 5™

n=2 n=2 n=2

- 14 enz™|[1+ Y nbaz™z + > buz")

n=1 n=2 n=2

Thus

z+ {(1 = A)(2b2 + 2a2) + A(by + 4a2)} 22 + {(1 — A)(3bs + dazbs + 3as)
-}-/\(bg =4asby + QCLJ }23 = &
=z + (€1 + 3b2)2% + (c2 + 3bacy + 4b3 + 22 )23 + - (3.9)

Equating the coeflicients of 2? and z3 on both sides of (3.9), we have
(2 — /\)bz + 2(1 + )\)ag =c + 3b2,

and
(3 - 2/\)b3 + das by + (3 - 6/\)(13 =y + 3c1 by + 4b3 + 21)%

From this it follows that

_ [e+ (1+ )by

204+ 7 (210}

and

az =

(3+(11+2,\))[°2“’20‘(3 1ix)] !? (3.11)

Now, usmg: the known sharp results [4], |en| < 2(1 — a) for all n,|by| < 2(1 - 6) and
|bs| < = Hmﬁ[l ~ 28(m —1)] = (1 - 8)(3 — 26), we have the required estimates from
(3.10) and (3.11).

Corollary 3.5 (Covering result). Let f € Q3(a,8), A > 0. If B is the boundary

of the image of E under f, then every point of B is at distance at least 4+3}‘£1;_’\g(1+/\)
from the origin. '

Proof. Since f is univalent in E, so is cc—f}fl’ =z+(a2+1)2%+- - (c £ f(2),c # 0).
This implies |a; + 2| < 2 and the result follows on using Theoer 3.5.
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Theorem 3.6. Let f € Q4(a, 6), then f € Q3 (a, ) for |z| < r¢ where

=35
(1-25)

3 2

&26}-—\/6!—2&%3 5-‘,4 Y
Top = ! 2

Proof. We can write
2f'(2) = g(2)h(z), g € S*(8), Reh(z) > a.

Simple manipulations give us

Re fz;(( )) —a > Reh(z) - a - | (( ))uz 2)|.
Using the well-known results, see [5], )
'g( )'“ r(1+7) ’
9@ = 1= -20)r
and
j(2)] g AR — o]
we have

('(2)' 1— (4—26)r + (1 — 26)r2
R‘e{ 7' (z) } - @2 [Reh(z) - q] { (1= 11 - (1 —-20)r) } '

The righthand side of (3.13) is positive for |z| < ro, where rg is given byu' (3.12).

We now consider the converse case of Theorem 3.6 as follows.

Theorem 3.7. Let [ € Qi(,0). Then f € Q4(3,6) and f is given by

oY =

2a0—1
B=p(a)= {ilz—a' o

B[ 02—

2log 2!

Proof. Since 'f € Q;(«;d), we can write ' ' -

%%)1 = (1 —a)h(z) + a, Rel(2) >0, g € §*(4)
=(1-a) z:éiz)r) + a, for some s € S*.

Thus we can write .
(') _ 2 & (say)
g’(Z) (L%l)l—-(x - D, Say

(3.12)

(3.14)
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Hence
N _ zf'(z) _ a(*)i-e
D g(z)  f(2lyr-ay
Now let

G(z) = /Z(i(t—))“"‘dt.

It is known [3] that, if s € S*, G € 5*(8) where 3 is given by (3.14). This completes the
proof.

4. The Class Q}(a,1)
In this section we shall discuss the class Q3 (a, 1) in more detail.
Theorem 4.1. The class Q3 (a, 1) is a convex set.

Proof. Let f,g € Q}(a,1) and let, for0< B <1,

F(z) = Bif(2) + (1 - B1)g(2).
Then

F'(2) + AzF"(2) = [B1f'(2) + (1 = B1)g'(2)] + Az[By f"(2) + (1~ 01)¢"(2)]
=Bi[f'(z) + Az f"(2) )+ (1= B8)[g'(2) + Azg" (2 )]
=fpi(z) + (1 - M)p2(z) = p(z).

Since pi1,p2 € P(a) and P(a) is a convex set, p € P(a). Hence F € Q%(a, 1).

We now-show that the class Q3 (a, 1) is closed under cconvolution with convex func-
tions.

Theorem 4.2. Let ¢ € C and f € Q}(a,1). Then = f € Qi (a,1).
Proof. Let H = ¢ * f. Then

H'(2) + AzH"(2) = (¢ * £)'(2) + Az(dh # [)"(2)
{¢() £(2) ]F[fi)(Z) w2 l]

=% () 4 re ).

Since ¢ in convex, we have Re ﬂzﬂ oo % for z € E, [21]. Thus, using Lemina 2.4 and the

given fact that f € Q5(a,1), we obtain the required result.

In fact, we have the following more general result.
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Theorem 4.3. Let g analytic in E, g(0) = 0, ¢'(0) = 1 and satisfy the condilion
ch‘(;z‘z > %; z€ L. Let feQ)(a,1). Then f*ge€ Q;(a,1).

Corollary 4.1. Let f € Q3(,1). Then Q3(a,1) is invariant under the following
integral operators.
(i) fi(z) = f7 {8qi
(i) f2(2) = - 2 s f(t)dt (Libera’s opetator [11])
(i) fs(2) = fg 2420t J2] <1, z # 1

(iv) fa(z) = L& fo £° Lf(t)dt, Rec > 0.

Proof. we may write, see (1],

fi(z) = (.f * ¢,’)(Z), 1=1,2,3,4

where ¢; are convex for all 1 and

b1(2) = —log(1 - 2) = Z ~2"

n=1

_—2[z+10g(1—z)]__ = 2 ,;
ol = z _nzln+lz
1 e 11
= ¥ 2 <laxz#1
ba(z) = 17— log| 2;1 =l o] < Lz £ 1,
o B

$a(2) = z",Rec > 0, see[18].

n=1
Now the result follows by applying Theorem 4.2.

Let u; and u, be linear operators defined as follows.

ui(f(2)) = 2f'(2), _
uz(f(2)) = [f(2) + zf'(2)]/2. (Livingston’s operator[12])

Both these operators can be written as a convolution operator [1] given by
Wl f) =haF, =12

where
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It can easily be verified that the radius of convexity r.(h;) = 2 — /3 and vs(hs) = 1)2.
These facts together with Theorem 4.2 yield the following.

Corollary 4.2. Let f € Q3(a,1). Then ui(f) = f*hy € Q3(a,1) for |z <2 -3
and ua(f) = f+hy € Q3 (e, 1) for |2| < 1/2.

Next we find the radius of convexity for f € Q}(«, 1) under certain conditions.

Theorem 4.4. Let f € Q3(,1),0< A< 1,0< a < 1/3. Then f maps |z] < R
onto a convex domain where R = min(ry,r2), vy is the unique root of the equation (2.1)
in the interval (0,1] and ry is given by

r2 = 1/[(1 - 2a) + v/2(1 — a)(1 — 2a)]. (4.1)

This result is sharp.
Proof. f € Q3(a,1), 0 < A <1 implies that
f(2) = (k= J)(2),

where k is defined by (3.6) and J is given by (3.7). If we show that J € C for |2] < R,
then f =k x Jisin C for |z| < R, see [19)].
Now, from (3.7) and Lemma 2.2, we have

zJ"(2)y _ zp'(2) 2(1 - a)r
Re(”?@)_) B = L e e R )

_1-2(1 - 20)r — (1 - 2a)r?
T - -2a))Q +7)

where 7y is the unique root of (2.1) in (0,1]. Let T(r) = 1 = 2(1 — 2a)r — (1 — 2a)r2.
Then T'(0) = 1> 0 and T(1) = -2 + 6 < 0 for a < 1/3. Therefore T'(r) has at least
one root in (0,1). Let 5 < 1 be the positive smaller root of T(r) = 0. Then ry is given
by (4.1). Hence J € C for |z| < R.

Sharpness follows from the function

forr < ry,

Hz) =k(2)% /Oz pe(t)dt,

where 1+ (1 - 2a)
+ - 20)z
pelz) = 1
-z
We note that R = v/2 — 1 for a = 0.
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