ON SOME SUBCLASSES OF CLOSE-TO-CONVEX FUNCTIONS

 OF ORDER a TYPE δKHALIDA INAYAT NOOR AND AWATIF A. HENDI

Abstract. Let $Q_{\dot{\lambda}}(\alpha, \delta)$ denote the class of analytic functions f in the unit disc E, with $f(0)=0$, $f^{\prime}(0)=1$ and satisfying the condition

$$
\operatorname{Re}\left\{(1-\lambda) \frac{z f^{\prime}(z)}{g(z)}+\lambda \frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)}\right\}>\alpha
$$

for $z \in E$, " g starlike function of order $\delta(0 \leq \delta \leq 1), 0 \leq \alpha \leq 1$ and λ complex with $R e \lambda \geq 0$. It is shown that $Q_{\lambda}^{0}(\alpha, \delta)$ with $\lambda \geq 0$ are close-to-convex and hence univalent in E. Coefficient results, an integral representation for $Q_{\dot{\lambda}}(\alpha, \delta)$ and some other properies of $Q_{\dot{\lambda}}(\alpha, \delta)$ are discussed. The class $Q_{\lambda}^{*}(\alpha, 1)$ is also investigated in some detail.

1. Introduction

Denote by S the class of functions f which are analytic and univalent in the unit. disc $E\{z:|z|<1\}$ and are given by

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

The subclasses S^{*} and C of starlike and convex functions respectively are well-known and have been extensively studied, see [6],[2] and [5]. A function $f \in S$ is called a convex function of order $\delta, 0 \leq \delta \leq 1$, if, for $z \in E$,

$$
\operatorname{Re} \frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}>\delta
$$

We denote this class by $C(\delta)$. Also $f \in S$ is a starlike function of order $\delta, 0 \leq \delta \leq 1$ if, for $z \in E, \operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>\delta$, and call this class $S^{*}(\delta)$. These two classes were introduced by Robertson [17].

In [10], Libera introduced the class $K(\alpha, \delta)$ of close-to-convex functions of order α type δ. A function f, analytic in E and given by (1.1), belongs to the class $K(\alpha, \delta)$,

Key words and phrases. Starlike, univalent, convex, convolution.
$0 \leq \alpha \leq 1,0 \leq \delta \leq 1$, if and only if, there exists a function $g \in S^{*}(\delta)$ such that, for $z \in E$,

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{g(z)}>\alpha
$$

It is clear that $K(0,0)=K$, the class of close-to-convex univalent functions introduced and studied firsi by Kaplan in [9]. Noor [15] defined a subclass $K^{*}(\alpha, \delta)$ of univalent functions as follows. A function f, analytic in E and given by (1.1), is in the class $K^{*}(\alpha, \delta), 0 \leq \alpha \leq 1,0 \leq \delta \leq 1$, if and only if, there exists a function $g \in S^{*}(\delta)$ such that,

$$
\operatorname{Re} \frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)}>\alpha, z \in E
$$

For $\alpha=0, \delta=0$, the class $K_{K}^{*}(0,0)$ reduces to the class K^{*} studied in [14].
We now define the following.
Definition 1.1. Let f, given by (1.1), be analytic in E and for λ complex with $R e \lambda \geq 0$, let

$$
\operatorname{Re}\left\{(1-\lambda) \frac{z f^{\prime}(z)}{g(z)}+\lambda \frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)}\right\}>\alpha \quad z \in E
$$

for some $\alpha(0 \leq \alpha \leq 1)$ and $g \in S^{*}(\delta)$. Then f is said to belong to the class $Q_{\lambda}^{*}(\alpha, \delta)$ for $z \in E$.

We note that $Q_{0}^{*}(\alpha, \delta)=K(\alpha, \delta)$ and $Q_{1}^{*}(\alpha, \delta)=K^{*}(\alpha, \delta)$.
Let f and g be analytic functions in E with $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$, then the convolution (Hadamard product) of f and g is defined by

$$
\begin{equation*}
(f * g)(z)=\sum_{n=0}^{\infty} a_{n} b_{n} z^{n} \tag{1.2}
\end{equation*}
$$

2. Preliminary Results

Lemma 2.1. [13] Let $u=u_{1}+i u_{2}$ and $v=v_{i}+i v_{2}$ and $\psi(u, v)$ be a complex-valued function satisfying the conditions
(i) $\psi(u, v)$ is continuous in a domain $D \subset \mathbb{C}^{2}$,
(ii) $(1,0) \in D$ and $\psi(1,0)>0$
(iii) Red $\left(i u_{2}, v_{1}\right) \leq 0$ whencver $\left(i u_{2}, v_{1}\right) \in D$ and $v_{1} \leq-\frac{1}{2}\left(1+u_{2}^{2}\right)$. If $h(z)=1+$ $\sum_{m=2}^{\infty} c_{m} z^{m}$ is a function, analytic in E, such that $\left(h(z), z h^{\prime}(z)\right) \in D$ and $\operatorname{Re} \psi\left(h(z), z h^{\prime}(z)\right)>0$ for $z \in E$, then $\operatorname{Rc} h(z)>0$ in E.

The following is a special case of a result proved in [7].

Lemma 2.2. Let p be analytic in $E, p(0)=1$ and Re $p(z)>\alpha$ in E. Then, for $z \in E,|z|=r$, we have

$$
\operatorname{Re} \frac{z p^{\prime}(z)}{p(z)} \geq \frac{2(1-\alpha) r}{(1-(1-2 \alpha) r)(1+r)}, \text { for } r \leq r_{1}
$$

where r_{1} is the unique root of the equation

$$
\begin{equation*}
(2 \alpha-1) r^{4}+2(1-2 \alpha) r^{3}-6 \alpha r^{2}-2 r+1=0 \tag{2.1}
\end{equation*}
$$

in the interval $(0,1]$.
This result is sharp.
Lemma-2.3.[16] If $p(z)$ is analytic in E with $p(0)=1$ and if λ is a complex number satisfying $\operatorname{Re} \lambda \geq 0$ then $\operatorname{Re}\left\{p(z)+\lambda z p^{\prime}(z)\right\}>\alpha,(0 \leq \alpha<1)$ implies $\operatorname{Re} p(z)>$ $\alpha+(1-\alpha)(2 \sigma-1)$ where σ is given by

$$
\begin{equation*}
\sigma=\sigma(\operatorname{Re} \lambda)=\int_{0}^{1}\left(1+t^{R e \lambda-1}\right) d t \tag{2.2}
\end{equation*}
$$

which is an increasing function of Re λ and $\frac{1}{2} \leq \sigma<1$. This estimate is sharp in the sense that the bound cannot be improved.

Lemma 2.4.[20] If $P(z)$ is analytic in $E, P(0)=0$ and $\operatorname{Re} P(z)>\frac{1}{2}, z \in E$, then, for any function F, analytic in E, the function $P * F$ takes values in the convex hull of the image of E under F.

3. Main Results

Theorem 3.1. Let $f \in Q_{\lambda}^{*}(\alpha, \delta), \lambda \geq 0$. Then $f \in K(\gamma, \delta)$ where

$$
\begin{equation*}
\gamma=\frac{2 \alpha+\lambda d_{1}}{2+\lambda \delta_{1}} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta_{1}=\frac{\operatorname{Reh}(z)}{|h(z)|^{2}}, \operatorname{Reh}(z)>\delta \tag{3.2}
\end{equation*}
$$

Proof. Let $g \in S^{*}(\delta)$ and set

$$
\frac{z f^{\prime}(z)}{g(z)}=[(1-\gamma) p(z)+\gamma]
$$

We see that $p(0)=1$ and p is analytic in E. Simple calculations yield

$$
\begin{equation*}
\left\{(1-\lambda) \frac{z f^{\prime}(z)}{g(z)}+\lambda \frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)}\right\}-\alpha=\left\{(1-\gamma) p(z)+(\gamma-\alpha)+\lambda(1-\lambda) \frac{z p^{\prime}(z)}{h(z)}\right\} \tag{3.3}
\end{equation*}
$$

where $\operatorname{Re} h(z)=\operatorname{Re} \frac{z g^{\prime}(z)}{g(z)}>\delta, z \in E$.
Since $f \in Q_{\lambda}^{*}(\alpha, \delta)$, $\operatorname{Re}\left\{(1-\gamma) p(z)+(\gamma-\alpha)+\lambda(1-\gamma) \frac{z p^{\prime}(z)}{h(z)}\right\}>0$ in E. We form the functional $\psi(u, v)$ by choosing $u=p(z), v=z p^{\prime}(z)$.

Thus

$$
\psi(u, v)=(1-\gamma) u+(\gamma-\alpha)+\frac{\lambda(1-\gamma) v}{h}
$$

The first two conditions of Lemma 2.1 are clearly satisfied. We verify the condition (iii) as follows.

$$
\begin{aligned}
\operatorname{Re} \psi\left(i u_{2}, v_{1}\right) & =(\gamma-\alpha)+\frac{\lambda(1-\gamma) v_{1} \operatorname{Re} h}{|h|^{2}} \\
\cdot & =(\gamma-\alpha)+\lambda(1-\gamma) v_{1} \delta_{1}, \quad\left(\delta_{1}=\frac{\operatorname{Re} h}{|h|^{2}}\right) .
\end{aligned}
$$

Now, for $v_{1} \leq-\frac{1}{2}\left(1+u_{2}^{2}\right)$, we have

$$
\begin{aligned}
\operatorname{Re} \psi\left(i u_{2}, v_{1}\right) & \leq(\gamma-\alpha)-\frac{1}{2} \lambda(1-\gamma) \delta_{1}\left(1+u_{2}^{2}\right) \\
& =\frac{1}{2}\left[\left\{(2 \gamma-2 \alpha)-\lambda(1-\gamma) \delta_{1}\right\}-\lambda(1-\gamma) \delta_{1} u_{2}^{2}\right] \\
& =\frac{1}{2}\left(A+B u_{2}^{2}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& A=2(\gamma-\alpha)-\lambda(1-\lambda) \delta_{1} \\
& B=-\lambda(1-\gamma) \delta_{1} \leq 0
\end{aligned}
$$

Re $\psi\left(i u_{2}, v_{1}\right) \leq 0$ if $A \leq 0$ and this gives us value of γ as defined by (3.1). We now apply Lemma 2.1 to conclude that Re $p(z)>0$ in E and hence $f \in K(\gamma, \delta)$.

Corollary 3.1. Let $f \in Q_{\lambda}^{*}(\alpha, \delta), \lambda \geq 1$. Then $f \in K^{*}\left(\gamma_{1}, \delta\right)$, where

$$
\gamma_{1}=\frac{\alpha\left(2+\delta_{1}\right)+\delta_{1}(\lambda-1)}{2+\lambda \delta_{1}}
$$

δ_{1} is given by (3.2).
Proof. Now

$$
\lambda \frac{\left.z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)}=\left[(1-\lambda) \frac{z f^{\prime}(z)}{g(z)}+\lambda \frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)}\right]+(\lambda-1) \frac{z f^{\prime}(z)}{g(z)},
$$

for $g \in S^{\prime \prime}(\delta)$.

Since $f \in Q_{\lambda}^{*}(\alpha, \delta)$; we use Theorem 3.1 to have

$$
\begin{aligned}
\operatorname{Re}\left\{\lambda \frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)}\right\} & >\alpha+(\lambda-1)\left[\frac{2 \alpha+\lambda \delta_{1}}{2+\lambda \delta_{1}}\right] \\
& =\frac{\lambda\left(\alpha \delta_{1}+2 \alpha\right)+\lambda \delta_{1}(\lambda-1)}{2+\lambda \delta_{1}}
\end{aligned}
$$

and this gives us the required result.
Corollary 3.2. Let λ be complex with $R e \lambda \geq 0$, and $f \in Q_{\lambda}^{*}(\alpha, 1)$. Then, for $z \in E$, $\operatorname{Re} f^{\prime}(z)>\frac{2 \alpha+\operatorname{Re\lambda }}{2+\operatorname{Re} \lambda}$.

This result is proved in [8] with a different method. It can also be proved independently as follows.

Theorem 3.2 Let $f \in Q_{\lambda}^{*}(\alpha, 1), 0<\alpha<1$, Re $\lambda>0$ (λ Complex). Then

$$
\operatorname{Ref}^{\prime}(z)>\sigma_{1}=\alpha+(1-\alpha)(2 \sigma-1)
$$

where σ is given by (2.2). This bound is sharp.
Proof. Let $f^{\prime}(z)=p(z), p(0)=1$. This implies that

$$
f^{\prime}(z)+\lambda z f^{\prime \prime}(z)=p(z)+\lambda z p^{\prime}(z)
$$

Since $f \in Q_{\lambda}^{*}(\alpha, 1), \operatorname{Re}\left\{p(z)+\lambda z p^{\prime}(z)\right\}>\alpha$ for $z \in E$. We now apply Lemma 2.3 to obtain the required result.

Corollary 3.3. Let $\in Q_{1}^{*}(0,1)$. Then $\operatorname{Re} f^{\prime}(z)>-1+2 \log 2 \doteq 0.39$ for $z \in E$. The constant $-1+2 \log 2$ cannot be replaced by any larger one as can be seen from the function $f_{0} \in Q_{1}^{*}(0,1)$ defined by

$$
z f_{0}^{\prime}(z)=-z-2 \log (1-z)
$$

This result is also proved in [20] by using markedly different techniques.
We now derive the integral representation for the functions in $Q_{\lambda}^{*}(\alpha, \delta)$ as follows.
Theorem 3.3 For $\lambda>0, f \in Q_{\lambda}^{*}(\alpha, \delta)$ if and only if there exists $g \in S^{*}(\delta)$ and a close-to convex function F of order $(x$ and type δ such that

$$
\begin{equation*}
z f^{\prime}(z)=\frac{1}{\lambda}(g(z))^{1-\frac{1}{\lambda}} \int_{0}^{z}(g(z))^{\frac{t}{t}-1} F^{\prime}(t) d t, \tag{3.4}
\end{equation*}
$$

where all powers are meant as principle values.
Proof. Let $f \in Q_{\lambda}^{*}(\alpha, \delta)$. Then from definition 1.1, it follows that

$$
(1-\lambda) \frac{z f^{\prime}(z)}{g(z)}+\lambda \frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)}=p(z), \operatorname{Rep}(z)>\alpha \text { and } g \in S^{*}(\delta)
$$

Multiplying both sides by $\left[\frac{1}{\lambda}(g(z))^{\frac{1}{2}-1} g^{\prime}(z)\right]$, we have

$$
\begin{equation*}
\left.\left(\frac{1}{\lambda}-1\right) z f^{\prime}(z)\left[(g(z))^{\frac{1}{\lambda}-2} g^{\prime}(z)\right]+\left[\left(z f^{\prime}(z)\right)^{\prime} g(z)\right)^{\frac{1}{\lambda}-1}\right]=\frac{1}{\lambda} p(z)\left[(g(z))^{\frac{1}{\lambda}-1}\left(g^{\prime}(z)\right)\right] \tag{3.5}
\end{equation*}
$$

We see that the left-hand side of (3.5) is the exact differential of $z f^{\prime}(z)(g(z))^{\frac{1}{x}-1}$. Hence, integrating both sides with respect to z and putting $p(z) g(z)=F^{\prime}(z), F \in K(\alpha, \delta)$, we obtain the required result. The converse follows immediately from (3.4).

Corollary 3.4. Let $f \in Q_{\dot{\lambda}}^{\dot{*}}(\alpha, 1)$ with $0<\lambda \leq 1$. Then f can be expressed as the Hadamard product of the convex function

$$
\begin{equation*}
k(z)=\frac{1}{\lambda} z^{1-\frac{1}{\lambda}} \int_{0}^{z} t^{\frac{1}{\lambda}-2} \frac{t}{1-t} d t \tag{3.6}
\end{equation*}
$$

with

$$
\begin{equation*}
J(z)=\int_{0}^{z} p(t) d t, \operatorname{Rcp}(z)>\alpha \tag{3.7}
\end{equation*}
$$

for $z \in E$.
Remark 3.1. Since, for $\lambda \geq 0, Q_{\lambda}^{*}(\alpha, \delta) \subset K(\gamma, \delta) \subset K$, all functions in $Q_{\lambda}^{*}(\alpha, \delta)$, $\lambda \geq 0$ are univalent in E. We notice that $Q_{0}^{*}(\alpha, \delta)$ coincides with the class $K(\alpha, \delta)$ and $Q_{1}^{*}(\alpha, \delta) \equiv K^{*}(\alpha, \delta) \subset K(\alpha, \delta)$. Thus we may expect that, as λ increases from 0 to ∞, the classes $Q_{\lambda}^{*}(\alpha, \delta)$ decrease and will be nested. We prove this fact as following.

Theorem 3.4. For $0 \leq \lambda_{1}<\lambda, Q_{\lambda}^{*}(\alpha, \delta) \subset Q_{\lambda_{1}}^{*}(\alpha, \delta)$.
Proof. For $\lambda_{1}=0$, the proof is immediate. So we let $\lambda_{1}>0$ and let, $f \in Q_{\lambda}^{*}(\alpha, \delta)$. From Definition 1.1 and Theorem 3.1, we can write

$$
\begin{equation*}
\left(1-\lambda_{1}\right) \frac{z f^{\prime}(z)}{g(z)}+\lambda_{1} \frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)}=\frac{\lambda_{1}}{\lambda} p(z)+\left(1-\frac{\lambda_{1}}{\lambda}\right) H(z), \tag{3.8}
\end{equation*}
$$

where $g \in S^{*}(\delta)$ and

$$
\begin{aligned}
\operatorname{Rep}(z) & =\operatorname{Re}\left\{(1-\lambda) \frac{z f^{\prime}(z)}{g(z)}+\lambda \frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)}\right\}>\alpha \\
\operatorname{Re} H(z) & =\operatorname{Re} \frac{z f^{\prime}(z)}{g(z)}>\gamma \geq \alpha
\end{aligned}
$$

Since the class $P(\alpha)$ consisting of the functions p with Re $p(z)>\alpha$ in E, is a convex set [5], the right hand side of (3.8) belongs to $P(\alpha)$ and this shows that $f \in Q_{\lambda_{1}}^{*}(\alpha, \delta)$.

Theorem 3.5. Let $f \in Q_{\lambda}^{*}(\alpha, \delta), \lambda>0$ and be given by (1.1). Then
(i) $\left|a_{2}\right| \leq \frac{1-a}{1+\lambda}+(1-\delta)$
(ii) $\left|a_{3}\right| \leq \frac{2(1-\alpha)}{3(1+2 \lambda)}\left[1+2(1-\delta)\left(3-\frac{2}{1+\lambda}\right)\right]+\frac{(1-\delta)(3-2 \delta)}{3}$.

These bounds are sharp as can be seen from the function $f_{1} \in Q_{\dot{j}}(\alpha, \delta)$ and defined by (3.4) with $g(z)=\frac{z}{(1-z)^{2(1-\sigma)}}$ and $F(z)=p(z) g(z), p(z)=\frac{1+(1-2 \alpha) z}{1-z}$.

Proof. Since $f \in Q_{\lambda}^{*}(\alpha, \delta)$, we can write

$$
(1-\lambda) z f^{\prime}(z) g^{\prime}(z)=p(z) g(z) g^{\prime}(z), g \in S^{*}(\delta), \operatorname{Rep}(z)>\alpha
$$

Let $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}, P(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}$. Then

$$
\begin{aligned}
& (1-\lambda)\left[z+\sum_{n=2}^{\infty} n a_{n} z^{n}\right]\left[1+\sum_{n=2}^{\infty} n b_{n} z^{n-1}\right]+\lambda\left[1+\sum_{n=2}^{\infty} n n^{2} a_{n} z^{n-1}\right] \\
= & {\left[1+\sum_{n=1}^{\infty} c_{n} z^{n}\right]\left[1+\sum_{n=2}^{\infty} n b_{n} z^{n}\right]\left[z+\sum_{n=2}^{\infty} b_{n} z^{n}\right] . }
\end{aligned}
$$

Thus

$$
\begin{align*}
& z+\left\{(1-\lambda)\left(2 b_{2}+2 a_{2}\right)+\lambda\left(b_{2}+4 a_{2}\right)\right\} z^{2}+\left\{(1-\lambda)\left(3 b_{3}+4 a_{2} b_{2}+3 a_{3}\right)\right. \\
& \left.+\lambda\left(b_{3}=4 a_{2} b_{2}+9 a_{3}\right)\right\} z^{3}+\cdots \\
= & z+\left(c_{1}+3 b_{2}\right) z^{2}+\left(c_{2}+3 b_{2} c_{1}+4 b_{3}+2 b_{2}^{2}\right) z^{3}+\cdots \tag{3.9}
\end{align*}
$$

Equating the coefficients of z^{2} and z^{3} on both sides of (3.9), we have

$$
(2-\lambda) b_{2}+2(1+\lambda) a_{2}=c_{1}+3 b_{2}
$$

and

$$
(3-2 \lambda) b_{3}+4 a_{2} b_{2}+(3+6 \lambda) a_{3}=c_{2}+3 c_{1} b_{2}+4 b_{3}+2 b_{2}^{2}
$$

From this it follows that

$$
\begin{equation*}
a_{2}=\frac{\left[c_{1}+(1+\lambda) b_{2}\right]}{2(1+\lambda)} \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{3}=\frac{1}{(3+(1+2 \lambda))}\left[c_{2}+b_{2} c_{1}\left(3-\frac{2}{1+\lambda}\right)\right]=\frac{b_{3}}{3} \tag{3.11}
\end{equation*}
$$

Now, using the known sharp results $[4],\left|c_{n}\right| \leq 2(1-\alpha)$ for all $n,\left|b_{2}\right| \leq 2(1-\delta)$ and $\left|b_{3}\right| \leq \frac{1}{2!} \prod_{m=2}^{3}[1-2 \delta(m-1)]=(1-\delta)(3-2 \delta)$, we have the required estimates from (3.10) and (3.11).

Corollary 3.5 (Covering result). Let $f \in Q_{\lambda}^{*}(a, \delta), \lambda>0$. If B is the boundary of the image of E under f, then every point of B is at distance at least $\frac{(1+\lambda)}{4+3 \lambda-\alpha-\delta(1+\lambda)}$ from the origin.

Proof. Since f is univalent in E, so is $\frac{c f(z)}{c-f(z)}=z+\left(a_{2}+\frac{1}{c}\right) z^{2}+\cdots(c \neq f(z), c \neq 0)$. This implies $\left|a_{2}+\frac{1}{c}\right| \leq 2$ and the result follows on using Theorem 3.5.

Theorem 3.6. Let $f \in Q_{0}^{*}(\alpha, \delta)$, then $f \in Q_{1}^{*}(\alpha, \delta)$ for $|z|<r_{0}$ where

$$
r_{0}=\left\{\begin{array}{l}
\frac{(1-2 \delta)-\sqrt{\delta^{2}-2 \delta+3}}{(1-2 \delta)}, \delta \neq \frac{1}{2} \tag{3.12}\\
\frac{1}{3}, \delta=\frac{1}{2} .
\end{array}\right.
$$

Proof. We can write

$$
z f^{\prime}(z)=g(z) h(z), g \in S^{*}(\delta), \operatorname{Re} h(z)>\alpha
$$

Simple manipulations give us

$$
\operatorname{Re} \frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)}-\alpha>\operatorname{Reh}(z)-\alpha-\left|\frac{g(z)}{g^{\prime}(z)} \| h^{\prime}(z)\right|
$$

Using the well-known results, see [5],

$$
\left|\frac{g(z)}{g^{\prime}(z)}\right| \leq \frac{r(1+r)}{1-(1-2 \delta) r}
$$

and

$$
\left|h^{\prime}(z)\right| \leq \frac{2[\operatorname{Reh}(z)-\alpha]}{1-r^{2}}
$$

we have

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)}\right\}-\alpha \geq[\operatorname{Reh}(z)-\alpha]\left\{\frac{1-(4-2 \delta) r+(1-2 \delta) r^{2}}{(1-r)(1-(1-2 \delta) r)}\right\} \tag{3.13}
\end{equation*}
$$

The righthand side of (3.13) is positive for $|z|<r_{0}$, where r_{0} is given by" (3.12).
We now consider the converse case of Theorem 3.6 as follows.
Theorem 3.7. Let $f \in Q_{1}^{*}(\alpha, \delta)$. Then $f \in Q_{0}^{*}(\beta, \delta)$ and β is given by

$$
\beta=\beta(\alpha)= \begin{cases}\frac{2 \alpha-1}{2\left(1-2^{1-2 \alpha}\right)}, & \alpha \neq \frac{1}{2} \tag{3.14}\\ \frac{1}{2 \log 2}, & \alpha=\frac{1}{2}\end{cases}
$$

Proof. Since $f \in Q_{1}^{*}(\alpha, \delta)$, we can write

$$
\begin{aligned}
\frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)} & =(1-\alpha) h(z)+\alpha, \operatorname{Re} h(z)>0, g \in S^{*}(\delta) \\
& =(1-\alpha) \frac{z s^{\prime}(z)}{s(z)}+\alpha, \text { for some } s \in S^{*}
\end{aligned}
$$

Thus we can write

$$
\frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)}=\frac{\left[z\left(\frac{s(z)^{1-\alpha} z}{z}\right]^{\prime}\right.}{\left(\frac{s(z)}{z}\right)^{1-\alpha}}=\frac{N^{\prime}}{D^{\prime}} \text { (say) }
$$

Hence

$$
\frac{N}{D}=\frac{z f^{\prime}(z)}{g(z)}=\frac{z\left(\frac{s(z)}{z}\right)^{1-\alpha}}{\int_{0}^{z}\left(\frac{s(t)}{t}\right)^{1-\alpha} d t}
$$

Now let

$$
G(z)=\int_{0}^{z}\left(\frac{s(t)}{t}\right)^{1-\alpha} d t
$$

It is known [3] that, if $s \in S^{*}, G \in S^{*}(\beta)$ where β is given by (3.14). This completes the proof.
4. The Class $Q_{\lambda}^{*}(\alpha, 1)$

In this section we shall discuss the class $Q_{\lambda}^{*}(\alpha, 1)$ in more detail.
Theorem 4.1. The class $Q_{\lambda}^{*}(\alpha, 1)$ is a convex set.
Proof. Let $f, g \in Q_{\lambda}^{*}(\alpha, 1)$ and let, for $0 \leq \beta_{1} \leq 1$,

$$
F(z)=\beta_{1} f(z)+\left(1-\beta_{1}\right) g(z)
$$

Then

$$
\begin{aligned}
F^{\prime}(z)+\lambda z F^{\prime \prime}(z) & =\left[\beta_{1} f^{\prime}(z)+\left(1-\beta_{1}\right) g^{\prime}(z)\right]+\lambda z\left[\beta_{1} f^{\prime \prime}(z)+\left(1-\beta_{1}\right) g^{\prime \prime}(z)\right] \\
& =\beta_{1}\left[f^{\prime}(z)+\lambda z f^{\prime \prime}(z)\right]+\left(1-\beta_{1}\right)\left[g^{\prime}(z)+\lambda z g^{\prime \prime}(z)\right] \\
& =\beta_{1} p_{1}(z)+\left(1-\beta_{1}\right) p_{2}(z)=p(z)
\end{aligned}
$$

Since $p_{1}, p_{2} \in P(\alpha)$ and $P(\alpha)$ is a convex set, $p \in P(\alpha)$. Hence $F \in Q_{\lambda}^{*}(\alpha, 1)$.
We now-show that the class $Q_{\lambda}^{*}(\alpha, 1)$ is closed under convolution with convex functions.

Theorem 4.2. Let $\phi \in C$ and $f \in Q_{\lambda}^{*}(\alpha, 1)$. Then $\phi * f \in Q_{\lambda}^{*}(\alpha, 1)$.
Proof. Let $H=\phi * f$. Then

$$
\begin{aligned}
H^{\prime}(z)+\lambda z H^{\prime \prime}(z) & =(\phi * f)^{\prime}(z)+\lambda z(\phi * f)^{\prime \prime}(z) \\
& =\left[\frac{\phi(z)}{z} * f^{\prime}(z)\right]+\left[\frac{\phi(z)}{z} * z f^{\prime \prime}(z)\right] \\
& =\frac{\phi(z)}{z} *\left[f^{\prime}(z)+\lambda z f^{\prime \prime}(z)\right] .
\end{aligned}
$$

Since ϕ in convex, we have Re $\frac{\phi(z)}{z}>\frac{1}{2}$ for $z \in E$, [21]. Thus, using Lemma 2.4 and the given fact that $f \in Q_{\lambda}^{*}(\alpha, 1)$, we obtain the required result.

In fact, we have the following more general result.

Theorem 4.3. Let g analytic in $E, g(0)=0, g^{\prime}(0)=1$ and satisfy the condition $\operatorname{Re} \frac{g(z)}{z}>\frac{1}{2}, z \in E$. Let $f \in Q_{\lambda}^{*}(\alpha, 1)$. Then $f * g \in Q_{\lambda}^{*}(\alpha, 1)$.

Corollary 4.1. Let $f \in Q_{\lambda}^{*}(\alpha, 1)$. Then $Q_{\lambda}^{*}(\alpha, 1)$ is invariant under the following integral operators.
(i) $f_{1}(z)=\int_{0}^{z} \frac{j(t)}{i} d t$
(ii) $f_{2}(z)=\frac{2}{z} \int_{0}^{z^{t}} f(t) d t \quad$ (Libera's opetator [11])
(iii) $f_{3}(z)=\int_{0}^{z} \frac{f(i)-f(x i)}{i-x i} d t,|x| \leq 1, x \neq 1$
(iv) $f_{4}(z)=\frac{1+c}{z^{c}} \int_{0}^{z} \xi^{c-1} f(t) d t, \operatorname{Rec}>0$.

Proof. we may write, see [1],

$$
f_{i}(z)=\left(f * \phi_{i}\right)(z), i=1,2,3,4
$$

where ϕ_{i} are convex for all i and

$$
\begin{aligned}
& \phi_{1}(z)=-\log (1-z)=\sum_{n=1}^{\infty} \frac{1}{n} z^{n}, \\
& \phi_{2}(z)=\frac{-2[z+\log (1-z)]}{z}=\sum_{n=1}^{\infty} \frac{2}{n+1} z^{n}, \\
& \phi_{3}(z)=\frac{1}{1-x} \log \left[\frac{1-x z}{1-z}\right]=\sum_{n=1}^{\infty} \frac{\left(1-x^{n}\right)}{(1-x) n} z^{n},|x| \leq 1, x \neq 1, \\
& \phi_{4}(z)=\sum_{n=1}^{\infty} \frac{1+c}{n+c} z^{n}, \operatorname{Rec} \geq 0, \operatorname{see}[18] .
\end{aligned}
$$

Now the result follows by applying Theorem 4.2.
Let u_{1} and u_{2} be linear operators defined as follows.

$$
\begin{aligned}
& u_{1}(f(z))=z f^{\prime}(z) \\
& u_{2}(f(z))=\left[f(z)+z f^{\prime}(z)\right] / 2 . \text { (Livingston's operator[12]) }
\end{aligned}
$$

Both these operators can be written as a convolution operator [1] given by

$$
u_{i}(f)=h_{i} * F, \quad i=1,2
$$

where

$$
\begin{aligned}
& h_{1}(z)=\sum_{n=1}^{\infty}=\frac{z}{(1-z)^{2}} \\
& h_{2}(z)=\sum_{n=1}^{\infty} \frac{n+1}{2} z^{n}=\frac{z-z^{2} / 2}{(1-z)^{2}}
\end{aligned}
$$

It can easily be verified that the radius of convexity $r_{c}\left(h_{1}\right)=2-\sqrt{3}$ and $r_{c}\left(h_{2}\right)=1 / 2$. These facts together with Theorem 4.2 yield the following.

Corollary 4.2. Let $f \in Q_{\lambda}^{*}(\alpha, 1)$. Then $u_{1}(f)=f * h_{1} \in Q_{\lambda}^{*}(\alpha, 1)$ for $|z|<2-\sqrt{3}$ and $u_{2}(f)=f * h_{2} \in Q_{\lambda}^{*}(\alpha, 1)$ for $|z|<1 / 2$.

Next we find the radius of convexity for $f \in Q_{\lambda}^{*}(\alpha, 1)$ under certain conditions.
Theorem 4.4. Let $f \in Q_{\lambda}^{*}(\alpha, 1), 0<\lambda \leq 1,0<\alpha<1 / 3$. Then f naps $|z|<R$ onto a convex domain where $R=\min \left(r_{1}, r_{2}\right), r_{1}$ is the unique root of the equation (2.1) in the interval $(0,1]$ and r_{2} is given by

$$
\begin{equation*}
r_{2}=1 /[(1-2 \alpha)+\sqrt{2(1-\alpha)(1-2 \alpha)]} \tag{4.1}
\end{equation*}
$$

This result is sharp.
Proof. $f \in Q_{\lambda}^{*}(\alpha, 1), 0<\lambda \leq 1$ implies that

$$
f(\dot{z})=(k * J)(z)
$$

where k is defined by (3.6) and J is given by (3.7). If we show that $J \in C$ for $|z|<R$, then $f=k * J$ is in C for $|z|<R$, see [19].

Now, from (3.7) and Lemma 2.2, we have

$$
\begin{aligned}
\operatorname{Re}\left(1+\frac{z J^{\prime \prime}(z)}{J^{\prime}(z)}\right) & =1+\operatorname{Re} \frac{z p^{\prime}(z)}{p(z)} \geq 1-\frac{2(1-\alpha) r}{[1-(1-2 \alpha) r](1+r)}, \quad\left(r<r_{1}\right) \\
& =\frac{1-2(1-2 \alpha) r-(1-2 \alpha) r^{2}}{[1-(1-2 \alpha) r](1+r)}, \quad \text { for } r<r_{1}
\end{aligned}
$$

where r_{1} is the unique root of (2.1) in $(0,1]$. Let $T(r)=1-2(1-2 \alpha) r-(1-2 \alpha) r^{2}$. Then $T(0)=1>0$ and $T(1)=-2+6 \alpha<0$ for $\alpha<1 / 3$. Therefore $T(r)$ has at least one root in $(0,1]$. Let $r_{2}<1$ be the positive smaller root of $T(r)=0$. Then r_{2} is given by (4.1). Hence $J \in C$ for $|z|<R$.

Sharpness follows from the function

$$
f(z)=k(z) * \int_{0}^{z} p_{e}(t) d t
$$

where

$$
p_{e}(z)=\frac{1+(1-2 \alpha) z}{1-z}
$$

We note that $R=\sqrt{2}-1$ for $\alpha=0$.

References

[1] R. W. Barnard and Ch. Kellogg, "Application of convolution operators to problems in univalent function theory," Michigan Math. J., 27(1980), 81-94.
[2] P. L. Duren, Univalen Functions, Springer Verlag, Berlin, 1983.
[3] R. M. Goel, "Functions starlike and convex of order c," J Lond. Math. Soc., 9(1974), 128-130.
[4] R. M. Goel and B. Mehrok, "On the coefficients of a subclass of starlike functions," Indian J. Pure Appl. Math., 12(1981), 634-647.
[5] A. W. Goodman, Univalent Functions, Vol. I, II, Polygonal Publishing House, Washington, 1983.
[6] W. K. Hayman, Multivalent Function, Cambridge University Press, U. K., 1967.
[7] W. Janowski, "Sorne extromel problems for certain families of analytic functions," Ann. Polon. Math., 28(1973), 197-326.
[8] O. P. Juncja and S. Ponnusamy, On certain new subclasses of regular univalent functions, Preprint.
[9] W. Kapalan, "Close-to-convex schlicht. functions," Michigan Math. J., 1(1952), 169-185.
[10] R. J. Libera, "Sorne radius of convexity problems," Duke Math. J., 15(1964), 143-158.
[11] R. J. Libera, "Some classes of regular univalent functions," Proc. Amer. Math. Soc., 16(1965), 755-758.
[12] A. E. Livingston, "On the radius of univalence of certain analytic functions," Proc. Amer. Mail. Soc., 17(1966), 352-357.
[13] S. S. Miller, "Differential inequalities and Caratheodory functions," Bull. Amer. Math. Soc 81(1975), 79-81.
[14] K. I. Noor and N. Al-Dihan, "A subclass of close-to-convex functions," Pb. Univ. J. Math., 14-15(1981-82), 183-192.
[15] K. I. Noor, "A subclass of close-to-convex functions of order β type γ," Tamkang J. Math., 18(1987), 17-33.
[16] S. Ponnusamy, Diffcrential subordination and Bazilevic functions, Preprint.
[17] M. S. Robertson, "On the theory of univalent functions," Ann. Math., 37(1936), 374-408.
[18] St. Ruscheweyh, "New criteria for univalent functions." Proc. Amer. Math. Soc., 49(1975), 109-115.
[19] St. Ruscheweyh and T. Shicl-Small, "Hadamard products of schlicht functions and the Polya-Schoenberg conjecture," Comment., Mith. Helve., 48(1973), 119-135.
[20] R. Singh and S. Singh, "Convolution properties of a class of starlike functions," Porc. Amer. Math. Soc., 106(1989), 145-152.
[21] E. Ströhhacker, "Beitrage zur theorie der schichten functioen," Math Z., 37(1933), 356-380).

Mathematics Department, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia.
Physics Department, Colloge of Scienen King Saud Iniversity, P O Box 2455, Riyadh 11451. Saudi Arabia.

