TAMKANG JOURNAL OF MATHEMATICS
Volume 29, Number 1, Spring 1998

GENERALIZATIONS OF COPSON'’S INEQUALITITS
INVOLVING SERIES OF POSITIVE TERMS

DAH-YAN HWANG

Abstract. The aim of the present paper is to establish some new inequalities involving series of
positive terms.

1. Introduction

In (1] Copson established the following Hardy’s inequalities (4, Theorem 326 and
Theorem 331] involving series of positive terms.

Theorem A. If p > L, A 2 0, 05 0, &y = e e s i, Aie; and
Yoor AnaP converges, then

n=1
fpn(ﬁ)ﬁq = )Pixnap. (1)
n=1 An® T p-1 n=1 i

The constant is the best possible.

Theorem B. Let p, A\, a,, A, be defined as in Theorem A. If Ap = 302 )‘T"‘* and

> ooy 1 Anal converges, then

f: AnAP < pP i Ana?. (2)
n=1 n=1 ;

The constant is the best possible.

There is a vast literature which deals with alternative proofs, generalizations and
extensions of (1) and (2), see [2,3,5,6,8,12] and the references given therein. In the
present paper we establish some new inequalities involving series of positive terms which
claim their origin to the inequalities given in (1) and (2).
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2. Main results

The following Theorems are basc on the idea used by Levinson [7] to obtain the
interesting generalizations of Hardy’s integral inequality and Pachpattc and Love [11] to
obtain inequalities related to Hardy’s integral inequality. In this scction, we establish
some discrete analogue of theirs. Here we assume that the left sides of inequalitics exist
when right sides do.

Theorem 1. Forn=1,2,3,...andm =1,2,3,..., M, letp > 1, a(n) > 0, Am(n) >
0, Bi(n) > 0,Amln) =Dy Am(D)Bm (i) Imaln) = /—\mlw Yo A (@) Bm(3)a(i), Am(n)
= ImIlm_y---I1a(n), Aog(n) = a(n), where M is a positive integer, and further let
Yome1 A1(n) AL(n) converge. If there exists ky, > p/(p — 1) such that

4 B4 1) = B ()] Am(n) | p

_ L > R O P
p—1+4 Bl F DBmdn) 2 b and A;(n) > Ax(n) > > Am(n), (3)
then - -
E Am(n)Ap(n) < (mM_ k)P z A1 (n)Ag(n), (4)
n=1 L §

the constant in (4) is the best possible.

Proof. Let A(0) = fn(0) = 1 and agree that A,,,(0) = 0 for m = 1,2,3,..., M.

Forn=0,12,,..and m=1,2,3,..., M, '
—PAm(n + 1A, 1(n+ 1)A7 N (n 4+ 1)
= —pAm(n + 1)Bm(n + D) Am_1(n + 1)[AL7 (0 + 1)/ B (n + 1)]

= =plAm(n + DAm(n + 1) = An(n)Am(@)][A57 (0 + 1)/ B (n + 1)]
= —pAf,(n + D[Am(n +1)/Bm(n + D]+ p[Am(n)/Bm(n + 1)]/1,,1(71)/1:;:1 (n+1)
S -pAL(n+ D[Am(n +1)/Bm(n + )] + [Am(n)/Bin(n + 1)] - AT (n)

+(p = D[An(n)/Bm(n + D]JA? (n + 1),

the last inequality follows from Young’s inequality i.c.
kzy*—! < z* -+ (k- y*,z,y>0, k> 1.

Hence
. G i [,Bm(n + 1) - ﬂm(”)]/\m(n) :
(P =1DAn(n+1)A% (n+ 1) + Bon (2 1 on (1) () Am(n) AP (n)
~pAin(n+ 1) Am_i(n+ 1) AP (n + 1)

- n P (1 4 Brm(n + 1) — B (n)]An(n)
SEmIAn E DAL D Bon (1 + 1) B (1)

—pAl (n 4+ 1)[Am(n + 1)/Bm(n + 1)]

+H[Am(n)/Bm(n + 1)]AL(n) + (p = D[Am(n)/B(n + 1)) A7, (n + 1)
_ A (n)Ar (n) _Am(n+1)A8 (n + 1)
S Be()  Be(nt)

A (n)
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By adding the inequalities for n = 0,1,2,..., N — 1, we have

N-1 N-1
S p-DAmn+ )AL n+1)+ Y B (1 + 1) = Bin ()] A (m)

Am(n) AP
n=0 . n=0 m (Tl + l)ﬂrn(n)/\,n (Tl) (n) LU (Tl)
N-—-1
-P Z /\m(n * 1)Am-~1(n + 1)Afn_l(n +1)
n=0

—[A(N)/ﬂ,"(N)]A (N) <.
Thus,

N-—-1
{ﬂm(n -+ 1) - [jm (n)]Am(n)
Z(p - 1 ﬂ'l(n)Am. (n) i ngl ﬂm (Tl + l)ﬁm (TL)/\m,(n) 171(71‘) 4111(”)

.<_ p Z /\m (n)Am-—l('n)A’;n_l (’Il).
=1

Using (3) and the assumption that k,, > p/(p — 1), we have

Z Am(n) A}, (n) < Ko Z Am (M) Am—1 (n) AL (n) ()

% n=1 n=1
Using Holder inequality with indices pand p/(p — 1), we have

N

N
> A Am_1 (WAL (0) = D AP () A1 (R)AE /P (n) A2 ()

n=1 & n=1
<[ZAm(n)Am ln)l‘/P[LA (n) AR, (n)] P12,

which together with (5), imply

}: ,\m(n)Am () < km [Z Am(n)A?,_, n)] [Z Am n)Am(n)](p—l)/ g

n=1

va1dmg the above inequality by the last factor on the right side and raising the xesult,
to the pth power, we obtain

N
2 Am(n) AP, (n) < k2, Z Am(n) AL, _, ().
=1

Now since A;(n) > Az2(n) > -+ > Apg(n) for n =1,2,3,..., we have

Z Am(n)AY (n) < (xM_ K ,)? Z M (n)AP(n). (6)

izl n=l1
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The desired incquality (4) then follows from (6) by letting N tend to infinity.

Thecase M = 1, liln) =1, n = 1,2.3,...,k = p/(p — 1) show constant in (4) is
the best possible.

Remark 1. Theorem 1 redues to Theorem 1 in [5] when A = 1 and reduces o (1)
when M =1, K; = p/(p- 1) and Bi(n) =1 forn =1,2,3,....

Theorem 2. Let H be a real-valued positive convez /uﬁction defined on (0,00), and
let p, a(n), Am(n), Bim(n), Am(n), Ima(n), Am(n), Ao(n) and k., be as in Theorem 1.
If Yoo Ai(n)HP(Ao(n)) converges, then

D AmMH? (Ap(n) < (chiz k) 3 X () H? (Ag(n)). (7)
n=1 n=1

Proof. Since I is a convex function, by repeated application of Jensen’s inequality, we
obtain

H(Am(n)) < F(n), where F(n) = Ipilpi_y -+ Iy H(a(n)).
Thus
> Am(n)H(Ap(n)) < > A () FP(n). - (8)

n=1 n=1

Replace a(n) by H(a(n)) is (4), we have

> AM()FP(n) < (7M_ k)? > Mi(n)HP(a(n)). " (9)
n=1 n=1

The inequality (7) then follows from (8) and (9).

Remark 2. The inequality (4) is the special case of the inequality (7) when H (u) = u.
Theoremn 2 redues to Theorem 2 in [5] when M = 1 and reduced o Theorem 1 in [12]
when M =1, ky = p/(p—1) and Bi(n) =1, for n = 1,2,3,.... We note that the last
case shows the constant in (7) is the best possible.

Theorem 3. Let p, a(n), A (n), Bin(n), Am(n), Lya(n), An(n), Ao(n) and k,, be
as in Theorem 1, and let ¢ > 0 be defined on (0,00) so that " > 0 and

e 2 (1=1/p)(p)?. . (10)

If 30 A(n)p(Ag(n)) converges, then

Z)\M(n (Am(n)) < (M kw)” i o(Ao(n)) (11)
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Proof. Let ¥(u) = ¢"/P(u),u > 0. Then, by (10), ¥" > 0. Hence ¢ is convex on
(0, 00). Thus, by Theorem 2, we have

2 A (PP (An(n) < (mpeikm)? D Ai(n)$P(Ao(n)),
n=1

n=1
and therefore

Z Arip(Ani(n)) < (oM k)P Z A n)«p(Ao(n))

n=1 n=1

This is the desired mequahty [11).

Remark 3. Theorem 3 reduces to Theorem 2 and Theorem 1 when p(u) = HP(u)
and p(u) = uP, respectively. Theorem 3 reduces to Theorem 3 in [5] when M =1, and
reduces to Theorem 1 in [12] when M =1, ¢(u) = HP?(u), k; = p/(p—1) and B,(n) = 1,
forn=1,2,.... Also we note that the inequality (1) is the special case of the inequality
(11) when M =1, p(u) =uP, ky =pf/(p—1) and Bi(n) =1, forn=1,2,....

Theorem 4. Forn =1,2,3,...andm =1,2,..., M let p > 1, a(n) > 0, A, (n —
1) > 0, {Bm(n — 1)) be non-increasing positive sequence, Apn(n) = Y1, A (8)Bm (1),

Am(O) = 0 Jma = i‘—(%(_;)ﬂﬂ m(n) = Jm']m—l ot 'JI(L(T!.), BO(n) - a(n)

and futher let 300 | /\,,, (n) m—1(n) converge for each mn. If there exist k,,, > p such that

[ﬁm(n) ﬁm n ]Am ” ) p
T B Bam = Dhnn) S Rm e
and further if A\y(n) > Aa(n) > -+ > Apr(n) then
§: Am(n) By (n) < (mpl_ykm)? Z A (n) B (n). (13)

n=1

Proof. Forn=1,2,...and m =1,2,..., M, we have, by Hélder’s inequality,

BE ()= (Z AP (1) B o1 (D) AE"1/P (1) 8,0 ()AL (3))P

[me(z)Bm @] [me( )(

i=n

A (i) —P/(P=1)1p=1
ﬁm(z)) P/\P ]P

Since

= X Am('i) “p/ip=1) i i (ﬁm(i - 1) - ﬂm(i))Am(i - 1)
Smgy)  SE e e

i=n i=n
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< /°° 2P/ (=1) o

ey
_ Apn(n — 1)\ -1/(p-1)
= - 1(Z20=) |
Hence, we have
-1
B < (- 17 Rn(n = 1) (G222 (14)
where Riy(n — 1) = Yoo A (3) Bh_, (3).
Also
—pAm(n)Bm_1(n) B2 ! (n)
BE- (n)
— "‘T)/\m(n)ﬁm(n)Bm l(n) ﬁm(l)
Br 1 n
= —pAm(n)(Bm(n) — Bm(n + 1)) ( /;',‘n(()))
m(n) B iy Am(n) - 1YBP-(n
(ﬁm( ))Bm( ’*P(ﬂ,,,(n)) Bon(n + 1)BI (n)
m (1) m(n) .
< -» (528 o) + {ﬁm( 3] (B2,0+ 1)+ (o~ D)
_ (A (g
— (/Jm(n)) [BP (n + 1) — BP (n)].
Thus

(Bm(n) = Pm(n — 1D)Apn(n—1)
A ) B () = o B (5 = 1) A ()
~PAm(n)Bm_y (n) B2 (n)

< A8 () - (=) Phe + (S5 e

+ (5 ) oaoen - (525 b
- (52) pncen - (G2=g) mroo

BEn=122.,.

Am(n)B? (n)

By adding the above inequalities for n = 1,2,3,..., N and using (14), we have

(ﬂm(n) ﬁm n = 1)) m(n - 1) P
Z Am () B (n) - Z Bon () Bon (72 = D) () Am(n)B?P (n)
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N g
25 An(n) By () B2 ()

n=1

< (P - l)p_1R1n(N)'

Using (12) and the assumption that k,, < p, we obtain

N N
> Am(m)BE (1) < K (D7 Am(m) B (m)) BI (1) + em(N)) (15)
n=1 n=1

where €,,(N) = 2(p — 1)»"? R, (N) tend to zero when N — oo.

Applying Holder’s inequality to the right hand side of (15) gives

id " oy X (p—1)/p
(2 M) Buam)BE () < (30 @) Bloi(m) (3 Amtm) B ()7,
n=1 n=1 n=1

so that

N N N N
Y An(n)BE(n) < km {( > Xaln)BE (n)) 1/,,( Ao (1) B, (n))(" e Em(N)} '
n=l1 n=1 n=} (16)
By (16), we have

N 1/p e 1/p
(3 A BRm) ™ < km [( > An(m) By ()
n=| n=l
. N i
: | +em(N)/ (30 Am(m B ) } (17)

By letting N tend to infinity in (17) and raising the result to the pth power, we have

(e o] (o]
2 Am(n)BR(n) < Kb Y Am(n)BE,_, (1) (18)
n=1 n=1 :
form = 1,2,...,M. Now, since A\;(n) > Aa(n) > --- > Am(n) for n = 1,2,8, .oy we
have
oo P oo
S An(n) B2 (n) < (n::{:lkm) > M(n)BE(n).
n=1 n=1

This is the desired inequality (13).

Remark 4. We note that Theorem 4 is a discrete analogue of Theorem 4 in [7] when
M = 1. Also we note that the inequality (2) is the special case of the inequality (13)
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when M =1,k; =p zmd ﬂl (n) = 1 forn =1,2,3,..., which shows the constant in (13)
is the best possible.” g

The following Theorems are discrete analogue results given by Pachpatte in [10] which
claim thier origin in the Copson'’s inequality givin in (1) and (2).

Theorem 5. Let H be defined as in Theorem 2 and forn =1,2,3,...,and j = 1,2,
let

pj > 1, 1/p1 +1/p2 = 1,A(n) > 0, 8;(n) > 0,a;(n) > 0,

Aj(n) = ZA(L B; (i), A;j(n) = Z,\(z)ﬂ,(z )a;(i) and ZA n)H" (a;(n))

n=1

converges. If there exists Uy > p;/(p;j — 1) such that

(Bi(n +1) = Bj(n)) — A;(n)

pi—1+ Bij(n + 1)B;(n)A(n) = UL thien
= Av(n)y . Az(n)y _ U & " 2 = r—
nL;l,\(n)H( . (n)>H( Az(n)) < Z)\(n)H (an(m) + 2 n=l,\( YHP* (a3 (n))

(19)
Proof. By the elementary inequality (see [9, p.30])
my S -l_.xpl + _l_yﬂ'l
n P2
where z,y > 0, py > 1 and 1/p; + 1/p; = 1, we observe that

5 A () () < 3 amim (3420 4 2 5™ aar (3250).

Now a suitable application of Theorem 2 when M = 1 on the right, side of the above
inequality yiclds the required inequality in (19) and the proof of Theorem 5 is complete.

Theorem 6. Forn = 1,2,3,---, and j = 1,2, let pj,a;(n),A;j(n) be defined as in
theorem 5 and let A(n —1),A;(0) = 0,< B;(n —1). >, be non-increasing positive sequence
end Bj(n) = Y2 ’\—('-)i/}\l)(—(‘l%, and further let 3777 | A(n)a}

'(n) converge. If there
exists V; > P; such that

| (Bsm) = B~ Ayt —1) _ P
Bi(n)B;(n — 1)A(n) -

-,

)

r

then
> Mn)Bi(n)Ba(n) < T ZA(n)a (n) + L Z A(n)al?(n).

n=1 n=1
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Proof. By the same steps as in the proof of Theorem 5 with suitable modifications
and replacing Theorem 2 by Theorem 4.

Remark 5. If we take H(u) = u, pp = p2 = 2, g;(n) = a(n), Aj(n) = A(n)
and Aj(n) = A(n); Bj(n) = B(n) in Theorem § and Theorem 6, then Theorem 5 and
Theorem 6 reduce respectively to

S 2 ()" < (U42) 5 ame) (20)

n=1 n=1

and

Z A(n)B2(n) < (V +Vy ) Z A(n)a?(n (21)

n=l1 n=1

We note that the inequalities obtained in (20) and (21) are the variants of Copson'’s
inequality givin in (1) and (2).

Theorem 7. Let H,A(n),Bj(n),aj(n),Aj(n), Aj(n) be defined as in Theorem & for
J = 1,2 and let py,ps > 1, 372 M(n)HP *P2(a(n)) converge. If there exists 5; >
(pr + p2)/(pr + p2 — 1), such that

(Bi(n +1) — Bj(n))A;(n) < P14 P2
Bi(n+1)Bj(n)A(n) ~— 5

(o +p2) -1+ for j=12,

then

Dot Aln )H"'( En;)H”* (tg:;)

(Pl +P2)S(pl+p2) Z A n)H(pﬁm’(a (n))

n=1

p2 (P1-+p2) = (p1+p2) :
+(p-—l +p2)52 S An) HP1+92) (0, (n) (22)

n=1

Proof. By the elementary inequality (see[4])
FrEFT & payPrYRR — (py - p) Py 2 0,

where z,y > 0 and p,,p; > 0 are real , we observe that

= pren (A1) o, Aa(n)
S (R (508) < () 2 Moo (2)

=S A 2’(:83)

n=1\
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Now a suitable application of Theorem 2 when M = 1 on the right side of the above
inequality yields the required inequality in (22) and the proof of Theorem 7 is complete.

Theorem 8. Let A(n), 3;(n),aj(n),Aj(n), B;j(n) be defined as in Theorem 6 and let
P =1 300, ,\(n)a;"“’2 (n) converge. If there exists T; > py + p2 such that

(Bi(n) = Bi(n = 1))A;(n - 1) 5 PL+ B2

k= B;(n)Bi(n — 1)A(n) =

for g =12,

then

)T(m +p2) Z )‘(n)am +p2 (n)

n=1

oo
Y A(n)BP (n) B2 (n) < (—2—
2 MpBmBRE 2 (S

D2 (P1+p2) P12
+(P1 +p2)7 Z A(n)a (n)

n=1

Proof. By the same steps as in the proof of Theorem 7 with suitable modifications
and replacing Theorem 2 by Theorem 4.

Remark 6. Theorem 2 in [12] is the special case of the Theorem 7 when g;(n) = 1,
S; = (p1 + p2)/(p1 + p2 = 1), for j = 1,2, and if we take H(u) = u, p, = pa = p,
aj(n) = a(n), Aj(n) = A(n), A;(n) = A(n); Bj(n) = B(n) in Theorem 7 and Theorem
8, then Theorem 7 and Theorem & reduce respectively to

ZA( )(A(:;) <€ (S P+5 )i/\ n)a??(n) ) (23)

and

Z A(n)B?(n) < (5—’:-;;—7—:2—;—’-) Z A(n)a®(n). (24)
n=1 n=1

We note that the inequalities obtain in (23) and (24) are variants of copson’s inequality
given in (1) and (2).
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