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APPLICATIONS OF IYENGAR'S TYPE INEQUALITIES TO . THE
ESTIMATION OF ERROR BOUNDS FOR THE TRAPEZOIDAL
QUADRATURE RULE*

SEVER S. DRAGOMIR AND SONG WANG

Abstract. In this paper we discuss some applications of the classical Iyengar’s inequality and its
generalization by Agarwal and Dragomir [1) to the estimation of error bounds for the trapezoidal
quadrature rule in numerical integration.

1. Introduction
In 1938 Iyengar proved the following theorem (cf., for example, [3,p.471));

Theorem 1.1. Let f be a differentiable function on (a,b) and assume that there is a
constent M > 0 such that |f'(z)] < M Vz € (a,b). Then we have
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Using the classical inequality due to Hayashi (cf., for example, (2, pp. 311-312)),
Agarwal and Dragomir proved in [1] the following generalization of Theorem 1.1.

Theorem 1.2. Let f: ICR— R be a differentiable mapping in I°, the interior of
I, and leta,b€ [ witha <b. Let M = SUPze(q,5) f'(2) < 00 and m = infefa,p) f'(z) >
~oo. If m < M and f' is integrable on [a,b], then we have

' f@) + (), _ [£(}) = F(a) = m(b— a)][M (b — a) — f(b) + f(a)]
Ib_—-—a_/; f(e)dt - 2 = : 2(M —m)(b - a)
< (M —m)(b-a)
= 8

Note that'if we put m = —M in (1.2). then we get Iyengar’s result (1.1

Applications of (1.2) to some convex mappings and to some special means can be
found in [1]. In this paper we apply (1.2) to the estimation of error bounds for the
classical trapezoidal quadrature rule in numerical integration.

(1.2)

2. Applications to the trapezoidal quadrature rule

We first discuss the application of Theorem 1.1 to the error estimation for the classical
trapezoidal quadrature rule.
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Theorem 2.1 Let f : (a,b) C R — R be a differentiable function on (a,b) and
assume that f' is intcgrable on (a,b) and 0 < [|f'llc := SUPLe(ap |f'(%)] < o0. Let
In:a=zp <1y <" < Tpn_1 < Tn =0> be a partitioning of (a,b). Then we have

“f ” n—1
1/ [(@)dz — T(f, In)| < 1l Zzz 4“), = Z(f rot) — f()?
i=0
”f,” n-—1
< S LM i f SO -~ f@)?
=0
1/ lleo S~
< 3 h? (2.1)
where s
T n) = [f(:r:i) +2f(:1:i+1)]hi
i=0

and h; ::IH.'l —z; foralli=0,1,---,n—1.

Proof. Applying (1.1) to f(z) on [zi, zi41] we get

f(r.)4 f(TH D, 1< Wlleoh? _ (l@inr) = f(2:))?
l/ L N T V19

foralli=0,1,---,n— 1. Summing over i and using the triangle inequality we obtain

' n-—1

; 17 s :
[ o et < M0 S 0 S in) - 7o)

i=0 1=0

and thus the first inequality in (2.1) is proved.
Now, using Cauchy-Schwarz inequality we have

n—1
n> (f(@ie1) = f(2))? > Z(f(x. +1) - J@)]° = () - f(a))
i=0 “

i=0

and thus
- Z(f("cm) — f(z:))? < ——(f(b) f(a))?

Combining this and the ﬁrst part of (2.1) we have the second inequality in (2.1).
The last inequality in (2.1) is obvious and thus we have proved the theorcin.
Let I, denote the equidistance partitioning of [a,b] given by

b—a
n

In:z;=a+ 158 =0, Lo (2.2)

For this partitioning we have the-following corollary.



ERROR BOUNDS FORR THE TRAPEZOIDAL QUADRATURE RULE 57

Corollary 2.2. With the assumptions in Theorem 2.1, we have

PR 15 (6 = a)® = (£(b) = £(@))? _ (b= a)?[|f'lleo
[/a flz)de —~ T{f, )] < s < i

where T is the trapezoidal quadrature rule defined in Theorem 2.1 and I, is the equidis-
tance partitioning defined in (2.2).

(2.3)

Given any € > 0, using (2.3) we are able to give the minimum number of nodes such
that the error in the numerical integration based on the equi-distance trapezoidal rule is
smaller than €. This is contained in the following corollary:

Corollary 2.3. Given any constant € > 0,if

17 Moo (b — )2 = (£(b) - £(a))?
47T

nz[ ]+1

then we have ,
| / f@)dz — T(f, 1)| <e,

where [u] denotes the integer part of u for any u € R.

We now consider the application of Theorem 1.2 to the trapezoidal quadrature rule,
which is established in the following theorem.

Theorem 2.5.Let f be a differentiable function on [a,b]) with f' integrable. Let M :=
SUPsefq,p) f'(2) < 00 and m := infye(a,n) f'(x) > —co0. If M > m then we have

b n—1 . ;
[ e =101 < g D)= (@) = mAdMAf(@i42) + 1 22)

n-—1
< TS, (2.4)

where Iy, T(f, 1) and h; are defined in Theorem 2.1.

Proof. Applying (1.2) to f on the interval [zi, zit1] we have

| I./:.:m f(z)dz — f(l'i-) +2f(9:i+1)h,-| < 2(Ml._ = [f(zis1) = f(2:) — mhi)

(Mhi — f(2ig1) + f(z3)] -
< (M —m)h?
- 8
forall § = 0,1, 5o, n=1. Summing over ¢ and using the triangle inequality we obtain

(2.4).
In the case that the partitioning is equi-distance, we have the following corollary:
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Corollary 2.4. With the assumptions in Theorem 2.3 we have

’ M—-m
| / f@)z =T, 1)) < X2 ap?, (2.5)

where I, denotes the partitioning defined in (2.2).

We comment that M ~ m < 2||f'||e since m < M. So,(2.4) and (2.5) are sharper
error estimates than (2.1) and (2.3)respectively. Using Theorem 2.5 we have the [ollowing
corollary:

Corollary 2.8. Given anye > 0, if

55 [(li/f—fr;)e(b—a)2

J+1

then we have ,
| [ $@dz -1 <

3. Some comments

If the mapping f : [a,b] = R is twice differentiable on (a, b) and 1/ leo := SUPLe(a,p)
|f"(z)] < oo, the trapezoidal quadrature rule satisfies the following classical second-order
estimate:

b 1" n—1
| f@xs -7, 1)) < I lee >, (3.1)

‘where I, T and h; are as defined in Theorem 2.1. Although our estimates in the previous
section are of first order accuracy , they depend only on ||f'll- In many practical
situations, integrands are not continuously twice differentiable so that (3.1) can not be
used. Thus, our results here provide some first order estimates for the trapezoidal rules.
One simple example to demonstrate this is f(z) = (z — a)P with 1 < p < 2. In this case
f"(z) is not bounded (a, b) but f'(z) is continuous on {a,b]. So, (3.1) does not apply to
this example and the results in the previous section can be used to estimate the error in
the numerical integration of this f by the trapezoidal rule.
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