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ON STRONGLY PRIME Γ-NEAR RINGS

C. SELVARAJ AND R. GEORGE

Abstract. In this paper we prove some equivalent conditions for strongly prime Γ− near rings N and radicals

P s (N )(Pe (N )) of strongly prime (equiprime)Γ−near ring N coincides with the P s (L)+
(

Pe (L)+
)

where P s (L) (Pe (L))

is strongly prime radicals(equiprime radicals) of left operator near-ring L of N .

1. Introduction

The concept of Γ− near ring, a generalization of both the concepts near ring and Γ−

ring was introduced by Satyanarayana [11]. Later, several authors such as Satyanarayana

[10], Booth and Booth, Groenewald [2, 3, 4] studied the ideal theory of Γ− near rings. In

this paper we prove some equivalent conditions for strongly prime Γ− near rings N and

radicals P s (N ) (Pe (N )) of strongly prime (equiprime) Γ− near ring N coincides with the

P s (L)+
(

Pe (L)+
)

where P s (L) (Pe (L)) is strongly prime radicals (equiprime radicals) of left

operator near-ring L of N .

2. Preliminaries

In this section we recall certain definitions needed for our purpose.

Definition 2.1. Let N be an additive group (not necessarily abelian) and Γ be a non empty

set. Then N is said to be a Γ− near ring if there exists a mapping N ×Γ×N → N (The image of

(a,α,b) is denoted by aαb) satisfying the following conditions

(i) (a +b)αc = aαc +bαc

(ii) (aαb)βc = aα
(

bβc
)

∀a,b,c ∈ N and α,β ∈ Γ.

Definition 2.2. Let N be a Γ−near ring, then a normal subgroup I of (N ,+) is said to be left

ideal (right ideal) if aα(b + i )−aαb ∈ I ∀a,b ∈ N , i ∈ I and α ∈Γ(iαa ∈ I ∀i ∈ I , a ∈ N and α∈

Γ). I is said to be an ideal if it is both left and right ideal of N .

Definition 2.3. A subgroup I of (N ,+) is said to be left (right) Γ− subgroup of N if NΓI ⊆

I (IΓN ⊆ I ) . I is said to be Γ− a subgroup if it is both left and right Γ−subgroup.
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34 C. SELVARAJ AND R. GEORGE

Definition 2.4. A Γ−near ring N is said to be 3-prime if a,b ∈ N , aΓNΓb = 0 implies a = 0

or b = 0.

Definition 2.5. Let N be a Γ− near ring. Let L be the set of all mappings of N on to itself

which act on the left. Then L is a right near ring with operations pointwise addition and

composition of mappings. Let x ∈ N ,α ∈ Γ, define [x,α] : N → N by [x,α] y = xαy ∀y ∈ N .

The sub near ring L of L generated by the set {[x,α] /x ∈ N ,α ∈Γ} is called the left operator

near ring of N . If I ⊆ L, then I+ = {x ∈ N /[x,α] ∈ I ∀α ∈ I } . If J ⊆ N , J+
′

= {ℓ ∈ L/ℓx ∈ J ∀x ∈ N } .

It is shown in [3] that I is an ideal in L implies I+ is an ideal in N and J is an ideal in N implies

J+
′

is an ideal in L.

A right operator near ring R of N is defined analogously to the definition of L. Let R be the

left near ring of all mappings of N in to itself which act on the right. If γ ∈ Γ,y ∈ N , we define
[

γ, y
]

: N → N by x
[

γ, y
]

= xγy for all x ∈ N . R is the sub near ring of R generated by the set
{[

γ, y
]

/γ ∈ Γ, y ∈ N
}

.

Definition 2.6. A Γ− near ring N is said to be zero symmetric if aΓ0= 0 ∀a ∈ N .

Definition 2.7. An element x of a Γ-near ring N is called distributive if xα(a +b) = xαa +

xαb for all a,b ∈ N and α ∈ Γ. If all the elements of a Γ-near ring N are distributive, then N is

said to be distributive Γ-near ring.

Definition 2.8. An element m in a Γ− near ring N is said to be left zero divisor if mαn = 0

∀α ∈Γ implies that n 6= 0. An element n is said to be right zero divisor mαn = 0 ∀α ∈ Γ implies

that m 6= 0. An element in a Γ− near ring is said to be zero divisor if it is both left and right zero

divisor of N .

Definition 2.9. Let N be a Γ-near ring with left operator near ring L. If
∑

i
[di ,δi ] ∈ L has

the property that
∑

i
diδi x = x ∀x ∈ N , then

∑

i
[di ,δi ] is called a left unity for N . A strong left

unity for N is an element [d ,δ] of L such that dδx = x ∀x ∈ N .

3. Strongly prime Γ− near ring

In this section we shall prove that some equivalent conditions for strongly prime Γ− near

rings.

Definition 3.1. Let N be a Γ−near ring and α ∈Γ. Then the rightα− annihilator of a subset

A of N is rα (A) = {x ∈ N /Aαx = 0} .

Definition 3.2. A Γ− near ring N is said to be strongly prime if for each a 6= 0 ∈ N , there

exists a finite subset F of N such that rα (aΓF )= 0 ∀α ∈ Γ. F is called an insulator for a in N .

Definition 3.3. A Γ− near ring N is said to be left weakly semiprime if [x,Γ] 6= 0 ∀x 6= 0 ∈ N .

Note that if N is a distributive Γ− near-ring, then the elements of L are expressible in the

form
∑

i
[xi ,αi ] .
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Proposition 3.4. If a Γ− near ring N is distributive strongly prime then, the left operator

near ring L is strongly prime.

Proof. Let
∑

i
[xi ,αi ] 6= 0 ∈ L, then there exists x ∈ N such that

∑

[xi ,αi ] x 6= 0, i.e.,
∑

i
xiαi x 6=

0. Since N is strongly prime, there exists a finite subset F = {a1, a2, . . . , an } (say) such that for

any b ∈ N ,
∑

i

xiαi xΓFΓb = 0 implies b = 0 (1)

Consider G = {[xΓa1,Γ] , . . . [xΓan ,Γ]} . Our claim is that G is an insulator for
∑

i
[xi ,αi ] . Let

∑

j

[

y j ,β j

]

∈ L such that
∑

i
[xi ,αi ]G

∑

j

[

y j ,β j

]

= 0. We shall prove that
∑

j

[

y j ,β j

]

= 0. Now

∑

i

[xi ,αi ]G
∑

j

[

y j ,β j

]

= 0

implies
∑

i

[xi ,αi ] [xΓak ,Γ]
∑

j

[

y j ,β j

]

= 0 ∀k = 1,2, . . . n.

Hence
(

∑

i

[xi ,αi ] [xΓak ,Γ]
∑

j

[

y j ,β j

]

)

z = 0 ∀z ∈ N ,k = 1,2, . . . n.

This implies that
∑

i

[xi ,αi ] [xΓak ,Γ]
∑

j

[

y j ,β j

]

z = 0 ∀z ∈ N ,k = 1,2, . . . n.

Hence
∑

i

xiαi xΓFΓ
∑

j

y jβ j z = 0 ∀z ∈ N .

By (1),
∑

j
y j β j z = 0 ∀z ∈ N . Therefore

∑

j

[

y j ,β j

]

= 0. Thus L is strongly prime.

Theorem 3.5. Let N be a left weakly semiprime and a distributive Γ− near ring having no

zero divisor, then N is strongly prime if and only if L is strongly prime.

Proof. Suppose that L is strongly prime. To prove N is strongly prime, let x 6= 0 ∈ N . Since

N is left weakly semiprime, [x,Γ] 6= 0 and since L is strongly prime, there exists a finite subset

F =

{

n
∑

j=1

[

y jk
,β jk

]

/k = 1,2, . . . m

}

(say) such that for any
∑

ℓ
[zℓ,δℓ] ∈ L.

[x,Γ] F
∑

ℓ

[zℓ,δℓ]= 0 implies
∑

ℓ

[zℓ,δℓ] = 0 (2)

Consider F ′ =
{

y jk
β jk

x/ j = 1,2, . . . ,n,k = 1,2, . . . m
}

. Our claim is that F ′ is an insulator for x.

Let y ∈ N such that xΓF ′
Γy = 0. We shall prove that y = 0. Now xΓF ′

Γy = 0 implies xΓy jk
β jk

xΓy =

0 ∀ j = 1,2, . . . n,k = 1,2, . . . m. Therefore

[

xΓy jk
β jk

xΓy,Γ
]

= 0 ∀ j = 1,2, . . . n,k = 1,2, . . . m.
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Hence

[x,Γ]
[

y jk
,β jk

][

xΓy,Γ
]

= 0 ∀k = 1,2, . . . m

By (2),
[

xΓy,Γ
]

= 0. Since N is weakly semiprime and N has no zero divisor, y = 0 and conse-

quently F ′ is an insulator for x. Therefore N is strongly prime. Converse part is follows from

Proposition 3.4.

We recall that for X ⊆ N ,〈X 〉 is constructed by the following recursive rules

(i) a ∈ 〈X 〉 ∀a ∈ X .

(ii) If b,c ∈ 〈X 〉 , then b +c ∈ 〈X 〉

(iii) If b ∈ 〈X 〉 , x, y ∈ N , and γ ∈Γ, then xγ
(

b + y
)

− xγy ∈ 〈X 〉 .

(iv) If b ∈ 〈X 〉 , x ∈ N , and γ ∈Γ, then bγx ∈ 〈X 〉

(v) If b ∈ 〈X 〉 and x ∈ N ,then x −b ∈ 〈X 〉

(vi) Nothing else is in 〈X 〉 .

Definition 3.6. Suppose X ⊆ N and d ∈ 〈X 〉 . We call a sequence s1, s2, · · ·, sn of elements

of N , a generating sequence of length m for d with respect to X . If s1 ∈ X , sm = d and for each

i = 2,3, . . . m. One of the following applies

si ∈ X

si = s j + sℓ,1 ≤ j ,ℓ< i

si = s jγx,1 ≤ j < i and x ∈ N ,γ ∈Γ

si = xγ
(

s j + y
)

− xγy,1 ≤ j < i and x, y ∈ N ,γ ∈Γ

si = x + s j − x,1 ≤ j < i and x ∈ N .

The complexity of d with respect to X denoted by CX (d) , is the length of a generating se-

quence of least length for d with respect to X .

Lemma 3.7. Let N be a Γ− near ring. If X 6= 0 and XΓN = 0, then 〈X 〉ΓN = 0.

Proof. Let XΓN = 0 and suppose x ∈ 〈X 〉 arbitrary. We use induction on CX (x) . If CX (x) =

1, then x ∈ X and from our assumption we have XΓN = 0. Suppose yΓN = 0 ∀y ∈ 〈X 〉 such

that CX

(

y
)

< n and let CX (x) = n. We have the following possibilities:

(i) x = a +b where a,b ∈ 〈X 〉 and CX (a) ,CX (b)< n. Hence

xΓN = (a +b)ΓN

= aΓN +bΓN

= 0

(ii) x = aγn where a ∈ 〈X 〉 ,n ∈ N and γ∈ Γ and CX (a) < n. Hence

xΓN =
(

aγn
)

ΓN

⊆ aΓN

= 0
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(iii) x = aγ (d +b)− aγb where d ∈ 〈X 〉 , a,b ∈ N and γ ∈ Γ with CX (d) < n. If m is arbitrary

element of N , and δ ∈ Γ, then

xδm =
(

aγ (d +b)−aγb
)

δm

= aγ (dδm +bδm)−
(

aγb
)

δm

= aγbδm −aγbδm

= 0.

Hence xΓN = 0.

(iv) If x = a +b −a where b ∈ 〈X 〉 , a ∈ N and CX (b) < n. Let m ∈ N , γ ∈Γ, then

xγm = (a +b −a)γm

= aγm +bγm −aγm

= 0.

This completes the proof.

Corollary 3.8. If every non zero ideal of a Γ- near ring N contains a subset F with rα (F ) = 0,

∀α ∈Γ, then for each a ∈ N , a 6= 0, there is a y ∈ N with aΓy 6= 0.

Proof. Let a 6= 0 ∈ N and suppose F is a subset of 〈a〉 such that rα (F )= 0 ∀α ∈ Γ. For every

n 6= 0 ∈ N , we have FΓn 6= 0 and therefore 〈a〉ΓN 6= 0. From Lemma 3.7, there exists y 6= 0 ∈ N

such that aΓy 6= 0.

Theorem 3.9. Let N be a Γ− near ring, then N is strongly prime if and only if every non

zero ideal of N contains a finite subset F with rα (F )= 0, ∀α ∈ Γ.

Proof. Let I 6= 0 be an ideal in N and a 6= 0 ∈ I . Since N is strongly prime, there exists a

finite subset F ⊆ N such that rα (aΓF ) = 0, ∀α ∈ Γ. Put F1 = aΓF. Hence F1 is a finite subset

of I with rα (F1) = 0, ∀α ∈ Γ. Conversly, let a 6= 0 ∈ N , then 〈a〉 6= 0. From our assumption,

there exists a finite subset F of 〈a〉 such that rα (F ) = 0, ∀α ∈ Γ. It follows from the Corollary

3.8 that there exists y ∈ N with aΓy 6= 0. Again we use our assumption, we can find a finite

subset G1 =
{

g1, g2, . . . gn

}

⊆
〈

aΓy
〉

with rα (G) = 0, ∀α ∈ Γ. For each i , let si1 , si2 , . . . , simi
be

the corresponding generating sequence of gi . Each of these sequence involve a finite number

of terms of the form aΓy or
(

aΓy
)

Γtk , tk ∈ N . Let G1 = {aΓy,
(

aΓy
)

Γtk / these occur in the

generating sequence of an element of G}. Clearly G1 is finite and rα (G1) ⊆ rα (G) = 0, ∀α ∈ Γ.

Take H = {x/aΓx ∈G1} . Our claim is that H is an insulator for a. Now rα (G1) = 0 implies that

for any n ∈ N ,G1αn = 0, ∀α ∈ Γ implies n = 0. Since aΓH ⊆ G1, we have H is an insulator for

a and consequently N is strongly prime.

Proposition 3.10. Let N be zero symmetric Γ− near ring then the following are equivalent.

(1) N is strongly prime Γ− near ring.

(2) Every non zero right Γ− subgroup of N contains a finite subset F such that rα (F )= 0, ∀α ∈

Γ.
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(3) Every non zero right ideal of N contains a finite subset F such that rα (F ) = 0, ∀α ∈ Γ.

(4) Every non zero ideal of N contains a finite subset F such that rα (F )= 0, ∀α ∈Γ.

Proof. (1) =⇒ (2) : Let I 6= 0 be a right Γ− subgroup of N and let a 6= 0 ∈ I . Since N is

strongly prime, a has an insulator F such that rα (aΓF ) = 0, ∀α ∈ Γ. Let G = aΓF. Then G ⊆ I

and rα (G) = 0, ∀α ∈ Γ.

(2) =⇒ (3) =⇒ (4) is obvious.

(4) =⇒ (1) : It follows from Theorem 3.9.

Proposition 3.11. Let N be a zero symmetric Γ− near ring with DCC on right annihilators,

then N is 3-prime if and only if N is strongly prime.

Proof. Suppose N is strongly prime. To prove N is 3-prime, let a,b ∈ N such that a 6= 0 and

b 6= 0. Since N is strongly prime, there exists a finite subset F of N such that aΓFΓb 6= 0. Hence

aΓNΓb 6= 0. Conversly, let I 6= 0 be an ideal in N and for each α ∈ Γ, consider the collection

of right α− annililators {rα (F )} , where F runs over all finite subset of I . From our hypothesis,

there exists a minimal element M = rα (F0) . If M 6= 0, let m 6= 0 ∈ M and a 6= 0 ∈ I . Since N is

3-prime, there exists n 6= 0 ∈ N such that mΓnΓa 6= 0. Hence nΓa 6= 0. Let S = rα (F0 ∪ {nΓa})

∀α ∈ Γ. Now m ∈ M but m 6∈ S implies that S is smaller than M , a contraction. This forces

that M = (0) . Hence for every non zero ideal I of N , there exists a finite subset F such that

rα (F ) = 0 ∀α ∈Γ and consequently N is strongly prime.

4. Radicals of strongly prime Γ− near rings

In this section we shall prove that strongly prime radical P s (N ) of N coincides with P s (L)+

where P s (L) is the strongly prime radical of the left operator near ring L of N .

Notation 4.1. For a Γ-near ring N , the prime radical and the set of all nilpotent elements

are denoted by Po (N ) and N (N ) respectively.

Definition 4.2. An ideal I of a Γ-near ring N is said to be 2-primal if Po

(

N

I

)

=N

(

N

I

)

.

A Γ-near ring N is called strongly 2-primal if every ideal I of N is 2-primal . If the zero ideal

of N is 2-primal, then N is called 2-primal. This equivalent to Po (N ) =N (N ) .

The following theorem charactersize 2-primalness for ideals in Γ-near rings. The proof is

minor modification of proof of the corresponding theorem in Near-ring theory [1], and we

omit it.

Theorem 4.3. Let I be an ideal of a Γ-near ring N . Then

(i) I is a completely semiprime ideal if and only if I is both a semiprime and 2-primal ideal.

(ii) If NΓI ⊆ I , then the following are equivalent:

(a) I is completely prime ideal;

(b) I is both a prime and a completely semiprime;
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(c) I is both a prime and a 2-primal ideal.

Lemma 4.4. If Γ-near ring N is a strongly 2-primal, then every prime ideal of N is com-

pletely prime.

Proof. It follows from Theorem 4.3.

Definition 4.5. An ideal I of a Γ− near ring N is said to be strongly prime if for each a 6∈ I ,

there exists a finite subset F such that for any b ∈ N , aΓFΓb ⊆ I implies that b ∈ I . F is called

an insulator for a.

Proposition 4.6. Let N be a distributive Γ− near ring. If P is a strongly prime ideal of N ,

then P+′ = {ℓ ∈ L/ℓx ∈ P ∀x ∈ N } is a strongly prime ideal of L.

Proof. Suppose that P is a strongly prime ideal of N . We shall prove that P+′ is a strongly

prime ideal of L. Let
∑

i
[xi ,αi ] ∉ P+′, then there exists x ∈ N such that

∑

i
[xi ,αi ] x ∉ P, that is

∑

i
xiαi x ∉ P. Since P is strongly prime in N , there exists a finite subset F =

{

f1, f2, · · ·, fn

}

of N

such that for any b ∈ N ,
∑

i

xiαi xΓFΓb ⊆ P implies b ∈P. (3)

Consider the collection F ′ =
{[

xΓ f1,Γ
]

, · · ·,
[

xΓ fn ,Γ
]}

. Our claim is that F ′ is an insulator for
∑

i
[xi ,αi ] . Let

∑

j

[

y j ,β j

]

∈ L such that
∑

i
[xi ,αi ]F

′ ∑

j

[

y j ,β j

]

⊆ P+′. To prove
∑

j

[

yi ,βi

]

∈ P+′.

Now
∑

i

[xi ,αi ]F ′
∑

j

[

y j ,β j

]

⊆ P+′

implies
∑

i

[xi ,αi ]
[

xΓ fi ,Γ
]
∑

j

[

y j ,β j

]

⊆ P+′
∀ i = 1,2, · · ·,n,

i.e.,

(

∑

i

[xi ,αi ]
[

xΓ fi ,Γ
]
∑

j

[

y j ,β j

]

)

z ⊆ P ∀ z ∈ N , i = 1,2, · · ·,n.

Hence
∑

i

xiαi xΓFΓ
∑

j

y j β j z ⊆ P ∀ z ∈ N .

By (3),
∑

j
y jβ j z ∈ P ∀ z ∈ N . i.e.,

∑

j

[

y j ,β j

]

z ∈ P ∀z ∈ N . Hence
∑

j

[

y j ,β j

]

∈ P+′ and therefore

F ′ is an insulator for
∑

i
[xi ,αi ] ∉ P+′ and consequently P+′ is a strongly prime ideal of L.

Proposition 4.7. Let N be a distributive strongly 2-primal Γ- near ring with strong left

unity.If Q is a strongly prime ideal of L, then Q+ =
{

x ∈ N /[x,α] ∈Q ∀ α∈ Γ
}

is a strongly prime

ideal of N .
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Proof. Suppose Q is a strongly prime ideal of L. We shall prove that Q+ is a strongly prime

ideal of N . Let x ∉ Q+, then there exists α ∈ Γ such that [x,α] ∉ Q .Since Q is a strongly prime

ideal of L, there exists a finite subset F =

{

n
∑

j=1

[

y jk
,β jk

]

| k=1,2, . . . ,m

}

(say) such that for any

∑

ℓ
[zℓ,δℓ] ∈ L,

[x,α] F
∑

ℓ

[zℓ,δℓ] ⊆Q implies that
∑

ℓ

[zℓ,δℓ] ∈Q . (4)

Consider F ′ =
{

y jk
β jk

x/ j = 1,2, · · ·,n,k = 1,2, · · ·,m
}

. Our claim is that F ′ is an insulator for x.

Let a ∈ N such that xΓF ′
Γa ⊆Q+. To prove a ∈Q+. Now xΓF

′

Γa ⊆Q+ implies

[

xΓF
′

Γa,Γ
]

⊆ Q ,

i.e.,
[

xΓy jk
β jk

xΓa,Γ
]

⊆ Q , ∀ j = 1,2, · · ·,n,k = 1,2, · · ·,m.

This implies that

[x,Γ] F [xΓa,Γ]⊆Q . (5)

In particular [x,α] F [xΓa,Γ] ⊆Q . By (4) [xΓa,Γ] ⊆ Q . Now since Q is strongly prime in L, Q is

prime in L. By Proposition 3.3 [3], Q+ is prime ideal of N . Since N is strongly 2-primal, Q+

is completely prime in N . Hence xΓa ∈ Q+ and x ∉ Q+ implies a ∈ Q+. Thus Q+ is strongly

prime in N .

Proposition 4.8. Let N be a distributive strongly 2-primal Γ− near ring with strong left

unity and L, a left operator near ring of N . Then P s (N ) =P s (L)+.

Proof. Let P be a strongly prime ideal of L. Then by Proposition 4.7, P+ is a strongly prime

ideal of N . Moreover
(

P+
)+′

= P [2, Proposition 5]. Suppose Q is strongly prime in N , then

by Proposition 4.6, Q+′ is strongly prime in L and
(

Q+
)+′

= Q [2, Proposition 5]. Thus the

mapping P → P+ defines a 1-1 correspondence between the set of strongly prime ideals of L

and N .

Hence P s (L)+ = (∩P )+ =∩P+ =P s (N ) .

5. Radicals of equiprime

In this section we shall prove that equiprime radical Pe (N ) of N coincides with Pe (L)+

where Pe (L) is the equiprime radical of left operator near ring L of N .

Definition 5.1. Let N be a Γ-near ring, and P be an ideal in N . Then P is said to be

equiprime if a, x, y ∈ N , a ∉ P, aαnβx −aγnδy ∈P ∀n ∈ N ,α,β,γ,δ ∈Γ implies x − y ∈ P.

Proposition 5.2. Let N be a Γ-near ring. If P is an equiprime ideal of N , then P+′ =

{ℓ ∈ L/ℓx ∈ P ∀x ∈ N } is an equiprime ideal of L.
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Proof. Let ℓ ∉ P+′ and ℓ′,ℓ′′ ∈ N such that ℓ′ − ℓ′′ ∉ P+′. From definition of P+′, there

exist a,b ∈ N such that ℓa ∉ P and
(

ℓ′−ℓ′′
)

b ∉ P, that is ℓa ∉ P and ℓ′b −ℓ′′b ∉ P. From the

hypothesis, there exists c ∈ N such that

(ℓa)αcβ
(

ℓ′b
)

− (ℓa)γcδ
(

ℓ′′b
)

∉ P, ∀α,β,γ,δ ∈Γ

i.e., [ℓa,α]
[

c,β
]

ℓ′b −
[

ℓa,γ
]

[c,δ]ℓ′′b ∉ P, ∀α,β,γ,δ ∈Γ

i.e., ℓ [a,α]
[

c,β
]

ℓ′b −ℓ
[

a,γ
]

[c,δ]ℓ′′b ∉ P, ∀α,β,γ,δ ∈Γ.

Hence
(

ℓ
[

aαc,β
]

ℓ′−ℓ
[

aγc,δ
]

ℓ′′
)

b ∉ P, ∀α,β,γ,δ ∈Γ.

This proves that

ℓ
[

aαc,β
]

ℓ′−ℓ
[

aγc,δ
]

ℓ′′ ∉P+′, ∀α,β,γ,δ ∈Γ

and consequently P+′ is an equiprime ideal of L.

Proposition 5.3. Let N be a distributive Γ− near ring. If Q is an equiprime ideal of L, then

Q+ =
{

x ∈ N /[x,α] ∈Q ∀ α ∈ Γ
}

is an equiprime ideal of N .

Proof. Let x ∉Q+ and a,b ∈ N such that a −b ∉Q+. We claim that xΓNΓa − xΓNΓb 6⊂Q+.

Since x ∉ Q+ and a −b ∉ Q+, then there exist α,β ∈ Γ such that [x,α] ∉ Q and
[

a −b,β
]

∉ Q

implies that [x,α] ∉ Q and
[

a,β
]

−
[

b,β
]

∉ Q . Since Q is a equiprime ideal in L, there exists

ℓ=
∑

i

[

yi ,βi

]

∈ L such that [x,α]ℓ
[

a,β
]

− [x,α]ℓ
[

b,β
]

∉Q . Hence
[

xαℓa − xαℓb,β
]

∉Q . This

implies that xαℓa − xαℓb ∉Q+.

i.e., xα
∑

i

[

yi ,βi

]

a − xα
∑

i

[

yi ,βi

]

b ∉Q+

i.e., xα
∑

i

yiβi a − xα
∑

i

yiβi b ∉Q+.

But clearly

xα
∑

i

yiβi a − xα
∑

i

yiβi b ∈ xΓNΓa − xΓNΓb.

Thus xΓNΓa − xΓNΓb 6⊂Q+ and consequently Q+ is an equiprime ideal of N .

Theorem 5.4. Let N be a distributive Γ− near ring with left operator near ring L, then

Pe (L)+ =Pe (N ).

Proof. Let P be an equiprime ideal of L. Then by Proposition 5.3, P+ is an equiprime ideal

of N . Moreover
(

P+
)+′

= P by [2, Proposition 5]. Suppose Q is an equiprime ideal in N , then

by Proposition 5.2, Q+′ is an equiprime ideal in L and
(

Q+′
)+

=Q by [2, Proposition 5]. Thus

the mapping P → P+ defines a 1-1 correspondence between the set of equiprime ideals of L

and N . Hence Pe (L)+ = (∩P )+ =∩P+ =Pe (N ) .
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