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ON STRONGLY PRIME I'-NEAR RINGS

C. SELVARAJ AND R. GEORGE

Abstract. In this paper we prove some equivalent conditions for strongly prime I'— near rings N and radicals
P (N) (P (N)) of strongly prime (equiprime) I'— near ring N coincides with the 2 (L)* (2. (L)) where P (L) (2 (L))

is strongly prime radicals(equiprime radicals) of left operator near-ring L of N.

1. Introduction

The concept of I'- near ring, a generalization of both the concepts near ring and I'-
ring was introduced by Satyanarayana [11]. Later, several authors such as Satyanarayana
[10], Booth and Booth, Groenewald [2, 3, 4] studied the ideal theory of I'— near rings. In
this paper we prove some equivalent conditions for strongly prime I'— near rings N and
radicals 22 (N) (22, (N)) of strongly prime (equiprime) I'- near ring N coincides with the
2 (L) (@e (L)+) where 2 (L) (%, (L)) is strongly prime radicals (equiprime radicals) of left
operator near-ring L of N.

2. Preliminaries
In this section we recall certain definitions needed for our purpose.

Definition 2.1. Let N be an additive group (not necessarily abelian) and I be a non empty
set. Then N is said to be aI'— near ring if there exists a mapping N xI' x N — N (The image of
(a,a, b) is denoted by aab) satisfying the following conditions

(i) (a+b)ac=aac+bac
(i) (aab)pc=aa(bpfc) Ya,b,ce Nand a,feT.

Definition 2.2. Let N be aI'—near ring, then a normal subgroup I of (IV, +) is said to be left
ideal (rightideal) if aa (b+i)—aabel Ya,be N,ieIanda eT'(iaacl Viel,ae Nanda e
I'). I is said to be an ideal if it is both left and right ideal of V.

Definition 2.3. A subgroup I of (IV, +) is said to be left (right) I'— subgroup of N if NT'I <
I(UITN < I). Iissaid to be I'- a subgroup if it is both left and right I'-subgroup.
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Definition 2.4. A I'-near ring N is said to be 3-prime if a,b € N,al'NT'b = 0 implies a =0
or b=0.

Definition 2.5. Let N be a I'- near ring. Let Z be the set of all mappings of N on to itself
which act on the left. Then Z is a right near ring with operations pointwise addition and
composition of mappings. Let x € N,a € T, define [x,a] : N — N by [x,aly = xay Vy e N.
The sub near ring L of £ generated by the set {[x,a] /x € N,a €T} is called the left operator
nearringof N.If IC L, thenI" ={xe N/ [x,al € IVa e I}.IfJ < N,J"' ={¢elLltxeJVYxeN}.
Itis shown in [3] that I is an ideal in L implies I" is an ideal in N and J is an ideal in N implies
J*'isanideal in L.

Aright operator near ring R of N is defined analogously to the definition of L. Let Z be the
left near ring of all mappings of N in to itself which act on the right. If y € ',y € N, we define
[v,y]: N— Nby x[y,y] = xyy forall x € N. R is the sub near ring of # generated by the set

{lr.yliyeT,yent.
Definition 2.6. A T'— near ring N is said to be zero symmetricif al'0 =0 Vae N.

Definition 2.7. An element x of a I'-near ring N is called distributive if xa (a+ b) = xaa +
xabforall a,be N and a € T. If all the elements of a I'-near ring N are distributive, then N is
said to be distributive I'-near ring.

Definition 2.8. An element m in a I'— near ring N is said to be left zero divisor if man =0
Va € I'implies that n # 0. An element 7 is said to be right zero divisor man =0 Va € I' implies
that m # 0. An element in a I'- near ring is said to be zero divisor if it is both left and right zero
divisor of N.

Definition 2.9. Let N be a I'-near ring with left operator near ring L. If ) [d;,6;] € L has
i
the property that }_d;6;x = x Vx € N, then }_ [d;,6;] is called a left unity for N. A strong left
i i
unity for N is an element [d, 6] of L such that ddx =xVxe N.

3. Strongly prime I'- near ring

In this section we shall prove that some equivalent conditions for strongly prime I'— near
rings.

Definition 3.1. Let N be aI'— nearringand a € I'. Then the right a— annihilator of a subset
Aof Nisrq(A)={xe N/Aax =0}.

Definition 3.2. A I'— near ring N is said to be strongly prime if for each a # 0 € N, there
exists a finite subset F of N such that ro (al'F) =0 Ya €T'. F is called an insulator for a in N.

Definition 3.3. AT'— nearring N is said to be left weakly semiprime if [x,I'] #0 Vx#0€ N.

Note that if N is a distributive I'— near-ring, then the elements of L are expressible in the
form Y [x;, a;].
i
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Proposition 3.4. If a'— near ring N is distributive strongly prime then, the left operator
near ring L is strongly prime.

Proof. LetZ[x,, ;1 #0€ L, then there exists x € N such that ) [x;,a;] x#0,i.e., Zx,a X #

1
0. Since N is strongly prime, there exists a finite subset F = {ay, a, ..., a,} (say) such that for
anybe N,
Zx,-aml"Fl“b:Oimplies b=0 1)
i

Consider G = {[xI'ay,I'1,...[xI"a,,I']}. Our claim is that G is an insulator for Z [xi,a;]. Let

1
Y [yj,Bj] € Lsuchthat ¥ [x;,a;] G [y}, ;] = 0. We shall prove that _ [y;, 8;] = 0. Now
J i J J

> lxi,a ]GZ[YJ’ﬁ]
i
implies

1

Y Ixiai) (xTag,T1Y_ [yj, Bj] =0V¥k=1,2,...n
i J
Hence
Z [x;, a; ][xFak,F]Z[y] Bjl|z=0Vze N, k=1,2,.
i
This implies that

Y [xi,ai ][xFak,F]Z[y] Bjlz=0Vze N, k=1,2,.
i

Hence
ina,-xl“Fl"Zyjﬁjz= 0VzeN.
i J

By (1), Y yjBjz=0 Vze N.Therefore Y. [y;, f;] = 0. Thus L is strongly prime.
J j

Theorem 3.5. Let N be a left weakly semiprime and a distributive I'— near ring having no
zero divisor, then N is strongly prime if and only if L is strongly prime.

Proof. Suppose that L is strongly prime. To prove N is strongly prime, let x # 0 € N. Since
N is left weakly semiprime, [x,I'] # 0 and since L is strongly prime, there exists a finite subset

n
F= { Y (Vi Bl k= 1,2,...m} (say) such that for any ¥ [z,,6,] € L.
= 7
[x,T1F) [2¢,6,] = 0 implies Y  [z¢,6,1 =0 @)
l l

Consider F' = {yjkﬁjkx/j =12,...,n,k=1,2,... m} Our claim is that F' is an insulator for x.
Let y € N such that xT'F'T'y = 0. We shall prove that y = 0. Now xI'F'Ty = 0 implies xT'y;, B, xI'y =
0Vj=12,...n,k=1,2,...m. Therefore

[xTy; B xTy,T]=0Vj=12,..nk=12,...m
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Hence
(%, T1[Yj, B ) [XTy, T =0Vk=1,2,...m

By (2), [xF N2 F] = 0. Since N is weakly semiprime and N has no zero divisor, y = 0 and conse-
quently F’ is an insulator for x. Therefore N is strongly prime. Converse part is follows from
Proposition 3.4.

We recall that for X < N, (X) is constructed by the following recursive rules
(i) ae(X) YaeX.
(i) If b,ce (X),then b+ ce (X)
(iii) Ifbe(X), x,y€ N,andy €T, then xy (b+y) — xyy € (X).
(iv) f be(X), xe N,and y €T, then byx € (X)
(v) If be(X)and x € N,then x— b e (X)
(vi) Nothing else is in (X).

Definition 3.6. Suppose X € N and d € (X). We call a sequence si, $2,::, S, of elements
of N, a generating sequence of length m for d with respect to X.If s; € X, s;,, = d and for each
i =2,3,...m. One of the following applies

sieX

Si sj+ sp,l<jl<i

si= sjyx,1<j<iandxe N,yeTl
si=xy(sj+y)-xyyl<j<iandx,yeN,yel

si=x+sj—x,1<j<iand xeN.

The complexity of d with respect to X denoted by Cx (d), is the length of a generating se-
quence of least length for d with respect to X.

Lemma3.7. Let N beal — nearring. If X #0 and XI'N =0, then (X)IT'N = 0.

Proof. Let XT'N = 0 and suppose x € (X) arbitrary. We use induction on Cx (x). If Cx (x) =
1, then x € X and from our assumption we have XI' N = 0. Suppose yI'N =0 Vy € (X) such
that Cx (y) < nand let Cx (x) = n. We have the following possibilities:

(i) x=a+ bwhere a,be (X) and Cx (a),Cx (b) < n. Hence

xI'N=(a+b) TN
=alN+bI'N
=0

(i) x=aynwhereac(X),ne NandyeTI and Cx (a) < n. Hence

xI'N = (ayn)TN
cal'N
=0
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(iii) x=ay(d+b)—aybwhered e (X), a,be N and y € I' with Cx (d) < n. If m is arbitrary
element of N, and 6 €T, then

x6m = (ay (d+b)—ayb)6m
= ay (dém+bém) — (ayb)ém
= aybém—aybdm
=0.

Hence xI'N = 0.
(iv) fx=a+b—-awherebe(X),ae Nand Cx (b) <n.Let me N,yeT,then

xym=(a+b—a)ym

aym+bym—aym
=0.

This completes the proof.

Corollary3.8. Ifevery non zeroideal of aT - near ring N contains a subset F with ry (F) =0,
Va €T, then foreachae N,a#0, thereisay € N with al'y # 0.

Proof. Let a # 0 € N and suppose F is a subset of (a) such that r (F) =0 Va €T For every
n#0¢e N, wehave FT'n # 0 and therefore (a) ' N # 0. From Lemma 3.7, there exists y #0€ N
such that al'y # 0.

Theorem 3.9. Let N be a I'— near ring, then N is strongly prime if and only if every non
zero ideal of N contains a finite subset F with r, (F) =0, VaeT.

Proof. Let I # 0 be an ideal in N and a # 0 € I. Since N is strongly prime, there exists a
finite subset F < N such that r, (al'F) =0, Va € I'. Put F; = al'FE. Hence F; is a finite subset
of I with ry (F1) =0, VYa €T. Conversly, let a # 0 € N, then (a) # 0. From our assumption,
there exists a finite subset F of {a) such that r, (F) =0, Va €T. It follows from the Corollary
3.8 that there exists y € N with al'y # 0. Again we use our assumption, we can find a finite
subset G1 = {g1,82,...8n} < (al'y) with 4 (G) =0, VYa €. For each i, let s;,,$i,,...,Si, be
the corresponding generating sequence of g;. Each of these sequence involve a finite number
of terms of the form al'y or (al'y)Tt, tx € N. Let G, = {al'y,(al'y)T't;/ these occur in the
generating sequence of an element of G}. Clearly G, is finite and r, (G1) €14 (G) =0, Va eT.
Take H = {x/al'x € Gy}. Our claim is that H is an insulator for a. Now r4 (G;) = 0 implies that
forany ne N,Gian =0, Ya € I implies n = 0. Since al'H < G, we have H is an insulator for
a and consequently N is strongly prime.

Proposition 3.10. Let N be zero symmetric T — near ring then the following are equivalent.

(1) N is strongly primeT — near ring.
(2) Every non zero rightT'— subgroup of N contains a finite subset F such thatrq (F) =0, Ya €
I.
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(3) Every non zero right ideal of N contains a finite subset F such thatrq (F) =0, Va eT.
(4) Every non zero ideal of N contains a finite subset F such thatrq (F)=0, Va eT.

Proof. (1) = (2) : Let I # 0 be a right I'- subgroup of N and let a # 0 € I. Since N is
strongly prime, a has an insulator F such that r4 (al'F) =0, VaeT.Let G=allE. Then G I
andrq (G) =0, VaeTl.

(2) = (3) = (4) is obvious.

(4) = (1) : It follows from Theorem 3.9.

Proposition 3.11. Let N be a zero symmetricI'— near ring with DCC on right annihilators,
then N is 3-prime if and only if N is strongly prime.

Proof. Suppose N is strongly prime. To prove N is 3-prime, let a, b € N such that a # 0 and
b # 0. Since N is strongly prime, there exists a finite subset F of N such that al'FT'b # 0. Hence
al'NTh # 0. Conversly, let I # 0 be an ideal in N and for each a € T, consider the collection
of right a— annililators {r, (F)}, where F runs over all finite subset of I. From our hypothesis,
there exists a minimal element M =r, (Fp) . If M #0,let m #0€ M and a # 0 € I. Since N is
3-prime, there exists n # 0 € N such that mI'nT’'a # 0. Hence nT'a # 0. Let S = rq (Fy U {nI'a})
Va € T. Now m € M but m ¢ S implies that S is smaller than M, a contraction. This forces
that M = (0). Hence for every non zero ideal I of N, there exists a finite subset F such that
rq (F) =0 Ya eI and consequently N is strongly prime.

4. Radicals of strongly prime I' - near rings

In this section we shall prove that strongly prime radical 25 (N) of N coincides with & (L)*
where 2 (L) is the strongly prime radical of the left operator near ring L of N.

Notation 4.1. For al-near ring N, the prime radical and the set of all nilpotent elements
are denoted by 2, (N) and /N (N) respectively.
N

N
Definition 4.2. An ideal I of a I'-near ring N is said to be 2-primal if 22, (7) =N (7) .

AT -nearring N is called strongly 2-primal if every ideal I of N is 2-primal . If the zero ideal
of N is 2-primal, then N is called 2-primal. This equivalent to 22, (N) = A (V).

The following theorem charactersize 2-primalness for ideals in I'-near rings. The proof is
minor modification of proof of the corresponding theorem in Near-ring theory [1], and we
omit it.

Theorem 4.3. Let I be an ideal of al -near ring N. Then
(i) I is acompletely semiprimeideal if and only if I is both a semiprime and 2-primal ideal.
(i) IfNTI < I, then the following are equivalent:
(a) I iscompletely prime ideal;
(b) I is both a prime and a completely semiprime;
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(c) Iisbotha primeand a2-primal ideal.

Lemma 4.4. IfT-near ring N is a strongly 2-primal, then every prime ideal of N is com-
pletely prime.

Proof. It follows from Theorem 4.3.

Definition 4.5. An ideal I of a I'- near ring N is said to be strongly prime if for each a ¢ I,
there exists a finite subset F such that for any b € N, al'’FT'b < I implies that b € I. F is called
an insulator for a.

Proposition 4.6. Let N be a distributive I — near ring. If P is a strongly prime ideal of N,
then P*' = {0 € LI¢x € P VYxe€ N} is astrongly prime ideal of L.

Proof. Suppose that P is a strongly prime ideal of N. We shall prove that P*' is a strongly
prime ideal of L. Let Z [x;,a;] ¢ P™, then there exists x € N such that Z [x;,a;]1x ¢ B, that is

Z x;ja;x ¢ P.Since P is strongly prime in N, there exists a finite subset F {fl,fg, o, fu} of N

such that foranybe N,
Zx,-al-xl"Fl“bQPimplies beP (3)
i

Consider the collection F' = {[xT fi,T],---, [x'f,T']}. Our claim is that F’ is an insulator for
Y [xi,a;]. Let ¥ [y}, B;] € L such that Y [(x;,;]F ¥ [vj,Bj] = P*'. To prove ¥ |y;, Bi] € P*'.
i J i J J

1
Now

Z Xi, FZ[Y]’ﬁ] cp”
1

implies
Z[xi,ai][xffl, 1Y [y, Bj]cP Vi=1.2,
i j

ie, | [xia; [xl"f,,l“]Z[y],ﬁ] zSP VYzeN,i=1,2,-
i j

Hence
Zx,-a,-xl"Fl“Zyjﬁjzg P VY zeN.
i J
By(3),YyjBjz€P V ze N.ie, Y [y;,Bj]z€ P VYze N.Hence Y. [y;, B;] € P*' and therefore
j J J
F'is an insulator for }" [x;, a;] ¢ P*'" and consequently P*' is a strongly prime ideal of L.
i
Proposition 4.7. Let N be a distributive strongly 2-primal T - near ring with strong left

unity.IfQ is a strongly prime ideal of L, then Q* = {x € N/ [x,a] € Q VY a € T} isa strongly prime
ideal of N.
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Proof. Suppose Q is a strongly prime ideal of L. We shall prove that Q¥ is a strongly prime
ideal of N. Let x ¢ Q¥, then there exists a € I such that [x, a] ¢ Q.Since Q is a strongly prime

N

: (Vi Bj ) 1k=1,2,...,m } (say) such that for any

ideal of L, there exists a finite subset F = { .
% [z¢,00) €L,

[x,a] F)_ [2¢,6,] < Q implies that ) _[z,,6,] € Q. 4)
7 7

Consider F' ={y; Bjx/j=1,2,---,n,k =1,2,---,m}. Our claim is that F’ is an insulator for x.
Let a € N such that xTF'Ta< Q*. To prove a€ Q*. Now xI'FTa< Q* implies

[er'ra,r] cQ,
ie, [xTy; BjxTaT]cQ Vj=12,nk=12,-m.

This implies that
[x,[1F[xI'a, Tl €Q. 6)

In particular [x,a] F[xI'a,I'] € Q. By (4) [xI'a,T'] € Q. Now since Q is strongly prime in L, Q is
prime in L. By Proposition 3.3 [3], Q™ is prime ideal of N. Since N is strongly 2-primal, Q*
is completely prime in N. Hence xI'a € Q" and x ¢ Q" implies a € Q*. Thus Q™ is strongly
prime in N.

Proposition 4.8. Let N be a distributive strongly 2-primal I'— near ring with strong left
unity and L, a left operator near ring of N. Then 23 (N) = P (L)™.

Proof. Let P be a strongly prime ideal of L. Then by Proposition 4.7, P is a strongly prime
ideal of N. Moreover (P+)+' = P [2, Proposition 5]. Suppose Q is strongly prime in N, then
by Proposition 4.6, Q*' is strongly prime in L and (Q*)"' = Q [2, Proposition 5]. Thus the
mapping P — P* defines a 1-1 correspondence between the set of strongly prime ideals of L
and N.

Hence & (L)Y = (NP)t = nP* =2 (N).

5. Radicals of equiprime

In this section we shall prove that equiprime radical 22, (N) of N coincides with 2, (L)*
where 22, (L) is the equiprime radical of left operator near ring L of N.

Definition 5.1. Let N be a I'-near ring, and P be an ideal in N. Then P is said to be
equiprime ifa,x,y€ N,a¢ Baanfx—ayndye P VYne N ,a,B,y,6 €I implies x—y € P.

Proposition 5.2. Let N be a U'-near ring. If P is an equiprime ideal of N, then P*' =
{¢eL/lxePVxe N} isan equiprime ideal of L.
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Proof. Let ¢ ¢ P™' and ¢',¢" € N such that ¢' — ¢ ¢ P™'. From definition of P, there
exist a,b € N such that £a ¢ P and (¢'—¢")b ¢ P, thatis fa ¢ P and ¢'b—¢"b ¢ P. From the
hypothesis, there exists ¢ € N such that

(Ca)ach(¢'b)—(Ca)ycs(¢"b) ¢ B Va,B,y,6 €T
ie, [la,al[c,B]¢'b—[la,y][c,61¢"b¢ P Va,B,y,6 €l
ie, lla,al[c,B]0'b-¢[ay]lc,61¢"b¢ P Va,B,y,6 €T.

Hence
(¢|aac,B] ¢’ —¢|ayc,6]¢")be P, Va,B,y,6 €T.

This proves that
laac,p) ' -C[ayc,6]¢" ¢ PY, Va,B,y,6 €T

and consequently P*’ is an equiprime ideal of L.

Proposition 5.3. Let N be a distributive'— near ring. If Q is an equiprime ideal of L, then
Q" ={xeN/[x,al € Q ¥ a €T} is an equiprime ideal of N.

Proof. Let x ¢ Q* and a, b € N such that a— b ¢ Q*. We claim that xT NTa— xI'NTh¢ Q*.
Since x ¢ Q* and a— b ¢ Q, then there exist a, § € T such that [x,a] ¢ Q and [a—b,] ¢ Q
implies that [x,a] ¢ Q and [a, ] — [b, ] ¢ Q. Since Q is a equiprime ideal in L, there exists
(=% [vi,Bi] € Lsuch that [x,a] ¢ [a, B] - [x,a] ¢ b, B] ¢ Q. Hence [xala— xalb,f] ¢ Q. This

1

implies that xafa— xalb ¢ Q*.
ie., va (i, Bi] a— xaz [yi,Bi]beQ*
1 4
ie., vayl-ﬁl-a— vay,-ﬁ,-b ¢ Q.
l L
But clearly
xa) yifia—-xay yipibe xI NTa—xI'NTb.
i i
Thus xITNTa— xI'NT'h ¢ Q* and consequently Q¥ is an equiprime ideal of N.

Theorem 5.4. Let N be a distributive I'— near ring with left operator near ring L, then
Pe (L)+ =2 (N).

Proof. Let P be an equiprime ideal of L. Then by Proposition 5.3, P* is an equiprime ideal
of N. Moreover (P+)+' = P by [2, Proposition 5]. Suppose Q is an equiprime ideal in NNV, then
N+
by Proposition 5.2, Q*' is an equiprime ideal in L and (Q+ ) = Q by [2, Proposition 5]. Thus
the mapping P — P* defines a 1-1 correspondence between the set of equiprime ideals of L
and N. Hence 2, (L)" = (NP)" =nNP™ =%, (N).
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