TAMKANG JOURNAL OF MATHEMATICS Volume 39, Number 1, 33-43, Spring 2008

ON STRONGLY PRIME Γ -NEAR RINGS

C. SELVARAJ AND R. GEORGE

Abstract. In this paper we prove some equivalent conditions for strongly prime Γ – near rings N and radicals $\mathscr{P}_{S}(N)(\mathscr{P}_{e}(N))$ of strongly prime (equiprime) Γ – near ring N coincides with the $\mathscr{P}_{S}(L)^{+}(\mathscr{P}_{e}(L)^{+})$ where $\mathscr{P}_{S}(L)(\mathscr{P}_{e}(L))$ is strongly prime radicals(equiprime radicals) of left operator near-ring L of N.

1. Introduction

The concept of Γ - near ring, a generalization of both the concepts near ring and Γ ring was introduced by Satyanarayana [11]. Later, several authors such as Satyanarayana [10], Booth and Booth, Groenewald [2, 3, 4] studied the ideal theory of Γ - near rings. In this paper we prove some equivalent conditions for strongly prime Γ - near rings N and radicals $\mathscr{P}_s(N)(\mathscr{P}_e(N))$ of strongly prime (equiprime) Γ - near ring N coincides with the $\mathscr{P}_s(L)^+(\mathscr{P}_e(L)^+)$ where $\mathscr{P}_s(L)(\mathscr{P}_e(L))$ is strongly prime radicals (equiprime radicals) of left operator near-ring L of N.

2. Preliminaries

In this section we recall certain definitions needed for our purpose.

Definition 2.1. Let *N* be an additive group (not necessarily abelian) and Γ be a non empty set. Then *N* is said to be a Γ - near ring if there exists a mapping $N \times \Gamma \times N \rightarrow N$ (The image of (a, α, b) is denoted by $a\alpha b$) satisfying the following conditions

(i) $(a+b)\alpha c = a\alpha c + b\alpha c$

(ii) $(a\alpha b)\beta c = a\alpha (b\beta c) \forall a, b, c \in N \text{ and } \alpha, \beta \in \Gamma.$

Definition 2.2. Let *N* be a Γ -near ring, then a normal subgroup *I* of (N, +) is said to be left ideal (right ideal) if $a\alpha (b+i) - a\alpha b \in I \quad \forall a, b \in N, i \in I$ and $\alpha \in \Gamma(i\alpha a \in I \quad \forall i \in I, a \in N \text{ and } \alpha \in \Gamma)$. *I* is said to be an ideal if it is both left and right ideal of *N*.

Definition 2.3. A subgroup *I* of (N, +) is said to be left (right) Γ – subgroup of *N* if $N\Gamma I \subseteq I$ ($I\Gamma N \subseteq I$). *I* is said to be Γ – a subgroup if it is both left and right Γ –subgroup.

Received August 7, 2006.

2000 Mathematics Subject Classification. 15D25, 16Y30, 16Y99.

Key words and phrases. Strongly prime, left operator, equiprime.

Definition 2.4. A Γ -near ring *N* is said to be 3-prime if $a, b \in N$, $a\Gamma N\Gamma b = 0$ implies a = 0 or b = 0.

Definition 2.5. Let *N* be a Γ – near ring. Let \mathscr{L} be the set of all mappings of *N* on to itself which act on the left. Then \mathscr{L} is a right near ring with operations pointwise addition and composition of mappings. Let $x \in N, \alpha \in \Gamma$, define $[x, \alpha] : N \to N$ by $[x, \alpha] y = x\alpha y \quad \forall y \in N$. The sub near ring *L* of \mathscr{L} generated by the set $\{[x, \alpha] | x \in N, \alpha \in \Gamma\}$ is called the left operator near ring of *N*. If $I \subseteq L$, then $I^+ = \{x \in N / [x, \alpha] \in I \forall \alpha \in I\}$. If $J \subseteq N, J^{+'} = \{\ell \in L / \ell x \in J \forall x \in N\}$. It is shown in [3] that *I* is an ideal in *L* implies I^+ is an ideal in *N* and *J* is an ideal in *N* implies $J^{+'}$ is an ideal in *L*.

A right operator near ring *R* of *N* is defined analogously to the definition of *L*. Let \mathscr{R} be the left near ring of all mappings of *N* in to itself which act on the right. If $\gamma \in \Gamma, y \in N$, we define $[\gamma, y] : N \to N$ by $x[\gamma, y] = x\gamma y$ for all $x \in N$. *R* is the sub near ring of \mathscr{R} generated by the set $\{[\gamma, y] | \gamma \in \Gamma, y \in N\}$.

Definition 2.6. A Γ – near ring *N* is said to be zero symmetric if $a\Gamma 0 = 0 \quad \forall a \in N$.

Definition 2.7. An element *x* of a Γ -near ring *N* is called distributive if $x\alpha (a + b) = x\alpha a + x\alpha b$ for all $a, b \in N$ and $\alpha \in \Gamma$. If all the elements of a Γ -near ring *N* are distributive, then *N* is said to be distributive Γ -near ring.

Definition 2.8. An element *m* in a Γ – near ring *N* is said to be left zero divisor if $m\alpha n = 0$ $\forall \alpha \in \Gamma$ implies that $n \neq 0$. An element *n* is said to be right zero divisor $m\alpha n = 0$ $\forall \alpha \in \Gamma$ implies that $m \neq 0$. An element in a Γ – near ring is said to be zero divisor if it is both left and right zero divisor of *N*.

Definition 2.9. Let *N* be a Γ -near ring with left operator near ring *L*. If $\sum_{i} [d_i, \delta_i] \in L$ has the property that $\sum_{i} d_i \delta_i x = x \forall x \in N$, then $\sum_{i} [d_i, \delta_i]$ is called a left unity for *N*. A strong left unity for *N* is an element $[d, \delta]$ of *L* such that $d\delta x = x \forall x \in N$.

3. Strongly prime Γ – near ring

In this section we shall prove that some equivalent conditions for strongly prime Γ – near rings.

Definition 3.1. Let *N* be a Γ - near ring and $\alpha \in \Gamma$. Then the right α - annihilator of a subset *A* of *N* is $r_{\alpha}(A) = \{x \in N | A\alpha x = 0\}$.

Definition 3.2. A Γ – near ring *N* is said to be strongly prime if for each $a \neq 0 \in N$, there exists a finite subset *F* of *N* such that $r_{\alpha}(a\Gamma F) = 0 \quad \forall \alpha \in \Gamma$. *F* is called an insulator for *a* in *N*.

Definition 3.3. A Γ – near ring *N* is said to be left weakly semiprime if $[x, \Gamma] \neq 0 \quad \forall x \neq 0 \in N$.

Note that if *N* is a distributive Γ – near-ring, then the elements of *L* are expressible in the form $\sum_{i} [x_i, \alpha_i]$.

34

Proposition 3.4. If a Γ – near ring N is distributive strongly prime then, the left operator near ring L is strongly prime.

Proof. Let $\sum_{i} [x_i, \alpha_i] \neq 0 \in L$, then there exists $x \in N$ such that $\sum_{i} [x_i, \alpha_i] x \neq 0$, i.e., $\sum_{i} x_i \alpha_i x \neq 0$. Since *N* is strongly prime, there exists a finite subset $F = \{a_1, a_2, ..., a_n\}$ (say) such that for any $b \in N$,

$$\sum_{i} x_{i} \alpha_{i} x \Gamma F \Gamma b = 0 \text{ implies } b = 0$$
(1)

Consider $G = \{[x\Gamma a_1, \Gamma], \dots, [x\Gamma a_n, \Gamma]\}$. Our claim is that *G* is an insulator for $\sum_i [x_i, \alpha_i]$. Let $\sum_j [y_j, \beta_j] \in L$ such that $\sum_i [x_i, \alpha_i] G \sum_j [y_j, \beta_j] = 0$. We shall prove that $\sum_j [y_j, \beta_j] = 0$. Now

$$\sum_{i} [x_i, \alpha_i] G \sum_{j} [y_j, \beta_j] = 0$$

implies

$$\sum_{i} [x_i, \alpha_i] [x \Gamma a_k, \Gamma] \sum_{j} [y_j, \beta_j] = 0 \ \forall k = 1, 2, \dots n$$

Hence

$$\left(\sum_{i} [x_i, \alpha_i] [x \Gamma a_k, \Gamma] \sum_{j} [y_j, \beta_j]\right) z = 0 \ \forall z \in N, k = 1, 2, \dots n.$$

This implies that

$$\sum_{i} [x_i, \alpha_i] [x \Gamma a_k, \Gamma] \sum_{j} [y_j, \beta_j] z = 0 \ \forall z \in N, k = 1, 2, \dots n.$$

Hence

$$\sum_{i} x_{i} \alpha_{i} x \Gamma F \Gamma \sum_{j} y_{j} \beta_{j} z = 0 \ \forall z \in N.$$

By (1), $\sum_{j} y_{j} \beta_{j} z = 0 \quad \forall z \in N$. Therefore $\sum_{j} [y_{j}, \beta_{j}] = 0$. Thus *L* is strongly prime.

Theorem 3.5. Let N be a left weakly semiprime and a distributive Γ – near ring having no zero divisor, then N is strongly prime if and only if L is strongly prime.

Proof. Suppose that *L* is strongly prime. To prove *N* is strongly prime, let $x \neq 0 \in N$. Since *N* is left weakly semiprime, $[x, \Gamma] \neq 0$ and since *L* is strongly prime, there exists a finite subset $E = \int_{-\infty}^{\infty} \sum_{k=0}^{n} [w_{k-1}, \beta_{k-1}] dk = 1, 2, \dots, m$ (cav) such that for any $\sum_{k=0}^{\infty} \sum_{k=0}^{n} \sum_{k=0}^{n} [w_{k-1}, \beta_{k-1}] dk = 1, 2, \dots, m$

$$F = \left\{ \sum_{j=1}^{L} \left[y_{j_k}, \beta_{j_k} \right] / k = 1, 2, \dots m \right\} \text{ (say) such that for any } \sum_{\ell} \left[z_{\ell}, \delta_{\ell} \right] \in L.$$
$$[x, \Gamma] F \sum_{\ell} \left[z_{\ell}, \delta_{\ell} \right] = 0 \text{ implies } \sum_{\ell} \left[z_{\ell}, \delta_{\ell} \right] = 0 \tag{2}$$

Consider $F' = \{y_{j_k}\beta_{j_k}x/j = 1, 2, ..., n, k = 1, 2, ..., m\}$. Our claim is that F' is an insulator for x. Let $y \in N$ such that $x\Gamma F'\Gamma y = 0$. We shall prove that y = 0. Now $x\Gamma F'\Gamma y = 0$ implies $x\Gamma y_{j_k}\beta_{j_k}x\Gamma y = 0$ $\forall j = 1, 2, ..., n, k = 1, 2, ..., m$. Therefore

$$[x\Gamma y_{j_k}\beta_{j_k}x\Gamma y,\Gamma] = 0 \forall j = 1,2,\dots,n, k = 1,2,\dots,m.$$

Hence

$$[x,\Gamma] \left[y_{j_k}, \beta_{j_k} \right] \left[x \Gamma y, \Gamma \right] = 0 \; \forall k = 1,2,\dots m$$

By (2), $[x\Gamma y, \Gamma] = 0$. Since *N* is weakly semiprime and *N* has no zero divisor, y = 0 and consequently *F*' is an insulator for *x*. Therefore *N* is strongly prime. Converse part is follows from Proposition 3.4.

We recall that for $X \subseteq N$, $\langle X \rangle$ is constructed by the following recursive rules

- (i) $a \in \langle X \rangle \quad \forall a \in X$.
- (ii) If $b, c \in \langle X \rangle$, then $b + c \in \langle X \rangle$
- (iii) If $b \in \langle X \rangle$, $x, y \in N$, and $\gamma \in \Gamma$, then $x\gamma (b + y) x\gamma y \in \langle X \rangle$.
- (iv) If $b \in \langle X \rangle$, $x \in N$, and $\gamma \in \Gamma$, then $b\gamma x \in \langle X \rangle$
- (v) If $b \in \langle X \rangle$ and $x \in N$, then $x b \in \langle X \rangle$
- (vi) Nothing else is in $\langle X \rangle$.

Definition 3.6. Suppose $X \subseteq N$ and $d \in \langle X \rangle$. We call a sequence s_1, s_2, \dots, s_n of elements of *N*, a generating sequence of length *m* for *d* with respect to *X*. If $s_1 \in X$, $s_m = d$ and for each $i = 2, 3, \dots m$. One of the following applies

$$s_{i} \in X$$

$$s_{i} = s_{j} + s_{\ell}, 1 \leq j, \ell < i$$

$$s_{i} = s_{j}\gamma x, 1 \leq j < i \text{ and } x \in N, \gamma \in \Gamma$$

$$s_{i} = x\gamma(s_{j} + y) - x\gamma y, 1 \leq j < i \text{ and } x, y \in N, \gamma \in \Gamma$$

$$s_{i} = x + s_{j} - x, 1 \leq j < i \text{ and } x \in N.$$

The complexity of *d* with respect to *X* denoted by $C_X(d)$, is the length of a generating sequence of least length for *d* with respect to *X*.

Lemma 3.7. Let N be a Γ - near ring. If $X \neq 0$ and $X\Gamma N = 0$, then $\langle X \rangle \Gamma N = 0$.

Proof. Let $X\Gamma N = 0$ and suppose $x \in \langle X \rangle$ arbitrary. We use induction on $C_X(x)$. If $C_X(x) = 1$, then $x \in X$ and from our assumption we have $X\Gamma N = 0$. Suppose $y\Gamma N = 0 \quad \forall y \in \langle X \rangle$ such that $C_X(y) < n$ and let $C_X(x) = n$. We have the following possibilities:

(i) x = a + b where $a, b \in \langle X \rangle$ and $C_X(a), C_X(b) < n$. Hence

$$x\Gamma N = (a+b)\Gamma N$$
$$= a\Gamma N + b\Gamma N$$
$$= 0$$

(ii) $x = a\gamma n$ where $a \in \langle X \rangle$, $n \in N$ and $\gamma \in \Gamma$ and $C_X(a) < n$. Hence

$$x\Gamma N = (a\gamma n)\Gamma N$$
$$\subseteq a\Gamma N$$
$$= 0$$

36

(iii) $x = a\gamma (d + b) - a\gamma b$ where $d \in \langle X \rangle$, $a, b \in N$ and $\gamma \in \Gamma$ with $C_X(d) < n$. If *m* is arbitrary element of *N*, and $\delta \in \Gamma$, then

$$x\delta m = (a\gamma (d + b) - a\gamma b)\delta m$$

= $a\gamma (d\delta m + b\delta m) - (a\gamma b)\delta m$
= $a\gamma b\delta m - a\gamma b\delta m$
= 0.

Hence $x\Gamma N = 0$.

(iv) If x = a + b - a where $b \in \langle X \rangle$, $a \in N$ and $C_X(b) < n$. Let $m \in N$, $\gamma \in \Gamma$, then

$$x\gamma m = (a+b-a)\gamma m$$
$$= a\gamma m + b\gamma m - a\gamma m$$
$$= 0.$$

This completes the proof.

Corollary 3.8. If every non zero ideal of $a \Gamma$ - near ring N contains a subset F with $r_{\alpha}(F) = 0$, $\forall \alpha \in \Gamma$, then for each $a \in N$, $a \neq 0$, there is $a y \in N$ with $a \Gamma y \neq 0$.

Proof. Let $a \neq 0 \in N$ and suppose *F* is a subset of $\langle a \rangle$ such that $r_{\alpha}(F) = 0 \quad \forall \alpha \in \Gamma$. For every $n \neq 0 \in N$, we have $F\Gamma n \neq 0$ and therefore $\langle a \rangle \Gamma N \neq 0$. From Lemma 3.7, there exists $y \neq 0 \in N$ such that $a\Gamma y \neq 0$.

Theorem 3.9. Let N be a Γ - near ring, then N is strongly prime if and only if every non zero ideal of N contains a finite subset F with $r_{\alpha}(F) = 0$, $\forall \alpha \in \Gamma$.

Proof. Let $I \neq 0$ be an ideal in N and $a \neq 0 \in I$. Since N is strongly prime, there exists a finite subset $F \subseteq N$ such that $r_{\alpha}(a\Gamma F) = 0$, $\forall \alpha \in \Gamma$. Put $F_1 = a\Gamma F$. Hence F_1 is a finite subset of I with $r_{\alpha}(F_1) = 0$, $\forall \alpha \in \Gamma$. Conversly, let $a \neq 0 \in N$, then $\langle a \rangle \neq 0$. From our assumption, there exists a finite subset F of $\langle a \rangle$ such that $r_{\alpha}(F) = 0$, $\forall \alpha \in \Gamma$. It follows from the Corollary 3.8 that there exists $y \in N$ with $a\Gamma y \neq 0$. Again we use our assumption, we can find a finite subset $G_1 = \{g_1, g_2, ..., g_n\} \subseteq \langle a\Gamma y \rangle$ with $r_{\alpha}(G) = 0$, $\forall \alpha \in \Gamma$. For each i, let $s_{i_1}, s_{i_2}, ..., s_{i_{m_i}}$ be the corresponding generating sequence of g_i . Each of these sequence involve a finite number of terms of the form $a\Gamma y$ or $(a\Gamma y)\Gamma t_k, t_k \in N$. Let $G_1 = \{a\Gamma y, (a\Gamma y)\Gamma t_k/$ these occur in the generating sequence of an element of G}. Clearly G_1 is finite and $r_{\alpha}(G_1) \subseteq r_{\alpha}(G) = 0$, $\forall \alpha \in \Gamma$. Take $H = \{x/a\Gamma x \in G_1\}$. Our claim is that H is an insulator for a. Now $r_{\alpha}(G_1) = 0$ implies that for any $n \in N, G_1 \alpha n = 0$, $\forall \alpha \in \Gamma$ implies n = 0. Since $a\Gamma H \subseteq G_1$, we have H is an insulator for a and consequently N is strongly prime.

Proposition 3.10. Let N be zero symmetric Γ – near ring then the following are equivalent.

- (1) *N* is strongly prime Γ near ring.
- (2) Every non zero right Γ subgroup of N contains a finite subset F such that $r_{\alpha}(F) = 0, \forall \alpha \in \Gamma$.

(3) Every non zero right ideal of N contains a finite subset F such that $r_{\alpha}(F) = 0$, $\forall \alpha \in \Gamma$.

(4) Every non zero ideal of N contains a finite subset F such that $r_{\alpha}(F) = 0, \forall \alpha \in \Gamma$.

Proof. (1) \implies (2) : Let $I \neq 0$ be a right Γ - subgroup of N and let $a \neq 0 \in I$. Since N is strongly prime, a has an insulator F such that $r_{\alpha}(a\Gamma F) = 0$, $\forall \alpha \in \Gamma$. Let $G = a\Gamma F$. Then $G \subseteq I$ and $r_{\alpha}(G) = 0$, $\forall \alpha \in \Gamma$.

 $(2) \Longrightarrow (3) \Longrightarrow (4)$ is obvious.

 $(4) \Longrightarrow (1)$: It follows from Theorem 3.9.

Proposition 3.11. Let N be a zero symmetric Γ – near ring with DCC on right annihilators, then N is 3-prime if and only if N is strongly prime.

Proof. Suppose *N* is strongly prime. To prove *N* is 3-prime, let $a, b \in N$ such that $a \neq 0$ and $b \neq 0$. Since *N* is strongly prime, there exists a finite subset *F* of *N* such that $a\Gamma F\Gamma b \neq 0$. Hence $a\Gamma N\Gamma b \neq 0$. Conversly, let $I \neq 0$ be an ideal in *N* and for each $\alpha \in \Gamma$, consider the collection of right α - annihilators $\{r_{\alpha}(F)\}$, where *F* runs over all finite subset of *I*. From our hypothesis, there exists a minimal element $M = r_{\alpha}(F_0)$. If $M \neq 0$, let $m \neq 0 \in M$ and $a \neq 0 \in I$. Since *N* is 3-prime, there exists $n \neq 0 \in N$ such that $m\Gamma n\Gamma a \neq 0$. Hence $n\Gamma a \neq 0$. Let $S = r_{\alpha}(F_0 \cup \{n\Gamma a\}) \forall \alpha \in \Gamma$. Now $m \in M$ but $m \notin S$ implies that *S* is smaller than *M*, a contraction. This forces that M = (0). Hence for every non zero ideal *I* of *N*, there exists a finite subset *F* such that $r_{\alpha}(F) = 0 \forall \alpha \in \Gamma$ and consequently *N* is strongly prime.

4. Radicals of strongly prime Γ – near rings

In this section we shall prove that strongly prime radical $\mathscr{P}_s(N)$ of N coincides with $\mathscr{P}_s(L)^+$ where $\mathscr{P}_s(L)$ is the strongly prime radical of the left operator near ring L of N.

Notation 4.1. For a Γ -near ring N, the prime radical and the set of all nilpotent elements are denoted by $\mathcal{P}_o(N)$ and $\mathcal{N}(N)$ respectively.

Definition 4.2. An ideal *I* of a Γ -near ring *N* is said to be 2-primal if $\mathscr{P}_o\left(\frac{N}{I}\right) = \mathscr{N}\left(\frac{N}{I}\right)$.

A Γ-near ring N is called strongly 2-primal if every ideal I of N is 2-primal. If the zero ideal of N is 2-primal, then N is called 2-primal. This equivalent to $\mathcal{P}_{o}(N) = \mathcal{N}(N)$.

The following theorem charactersize 2-primalness for ideals in Γ -near rings. The proof is minor modification of proof of the corresponding theorem in Near-ring theory [1], and we omit it.

Theorem 4.3. Let I be an ideal of a Γ -near ring N. Then

- (i) I is a completely semiprime ideal if and only if I is both a semiprime and 2-primal ideal.
- (ii) If $N\Gamma I \subseteq I$, then the following are equivalent:
 - (a) I is completely prime ideal;
 - (b) *I* is both a prime and a completely semiprime;

38

(c) I is both a prime and a 2-primal ideal.

Lemma 4.4. If Γ -near ring N is a strongly 2-primal, then every prime ideal of N is completely prime.

Proof. It follows from Theorem 4.3.

Definition 4.5. An ideal *I* of a Γ – near ring *N* is said to be strongly prime if for each $a \notin I$, there exists a finite subset *F* such that for any $b \in N$, $a\Gamma F\Gamma b \subseteq I$ implies that $b \in I$. *F* is called an insulator for *a*.

Proposition 4.6. Let N be a distributive Γ – near ring. If P is a strongly prime ideal of N, then $P^{+\prime} = \{\ell \in L \mid \ell x \in P \forall x \in N\}$ is a strongly prime ideal of L.

Proof. Suppose that *P* is a strongly prime ideal of *N*. We shall prove that $P^{+\prime}$ is a strongly prime ideal of *L*. Let $\sum_{i} [x_i, \alpha_i] \notin P^{+\prime}$, then there exists $x \in N$ such that $\sum_{i} [x_i, \alpha_i] x \notin P$, that is $\sum_{i} x_i \alpha_i x \notin P$. Since *P* is strongly prime in *N*, there exists a finite subset $F = \{f_1, f_2, \dots, f_n\}$ of *N* such that for any $b \in N$,

$$\sum_{i} x_{i} \alpha_{i} x \Gamma F \Gamma b \subseteq P \text{ implies } b \in P.$$
(3)

Consider the collection $F' = \{ [x\Gamma f_1, \Gamma], \dots, [x\Gamma f_n, \Gamma] \}$. Our claim is that F' is an insulator for $\sum_i [x_i, \alpha_i]$. Let $\sum_j [y_j, \beta_j] \in L$ such that $\sum_i [x_i, \alpha_i] F' \sum_j [y_j, \beta_j] \subseteq P^{+\prime}$. To prove $\sum_j [y_i, \beta_i] \in P^{+\prime}$. Now

$$\sum_{i} [x_i, \alpha_i] F' \sum_{j} [y_j, \beta_j] \subseteq P^{+i}$$

implies

$$\sum_{i} [x_i, \alpha_i] [x\Gamma f_i, \Gamma] \sum_{j} [y_j, \beta_j] \subseteq P^{+\prime} \quad \forall \ i = 1, 2, \cdots, n,$$

i.e.,
$$\left(\sum_{i} [x_i, \alpha_i] [x\Gamma f_i, \Gamma] \sum_{j} [y_j, \beta_j] \right) z \subseteq P \quad \forall \ z \in N, i = 1, 2, \cdots, n.$$

Hence

$$\sum_{i} x_{i} \alpha_{i} x \Gamma F \Gamma \sum_{j} y_{j} \beta_{j} z \subseteq P \quad \forall \ z \in N.$$

By (3), $\sum_{j} y_{j} \beta_{j} z \in P \quad \forall z \in N$. i.e., $\sum_{j} [y_{j}, \beta_{j}] z \in P \quad \forall z \in N$. Hence $\sum_{j} [y_{j}, \beta_{j}] \in P^{+\prime}$ and therefore F' is an insulator for $\sum_{i} [x_{i}, \alpha_{i}] \notin P^{+\prime}$ and consequently $P^{+\prime}$ is a strongly prime ideal of *L*.

Proposition 4.7. Let N be a distributive strongly 2-primal Γ - near ring with strong left unity. If Q is a strongly prime ideal of L, then $Q^+ = \{x \in N | [x, \alpha] \in Q \ \forall \alpha \in \Gamma\}$ is a strongly prime ideal of N.

C. SELVARAJ AND R. GEORGE

Proof. Suppose *Q* is a strongly prime ideal of *L*. We shall prove that Q^+ is a strongly prime ideal of *N*. Let $x \notin Q^+$, then there exists $\alpha \in \Gamma$ such that $[x, \alpha] \notin Q$.Since *Q* is a strongly prime ideal of *L*, there exists a finite subset $F = \left\{ \sum_{j=1}^{n} [y_{j_k}, \beta_{j_k}] | k = 1, 2, ..., m \right\}$ (say) such that for any $\sum_{\ell} [z_{\ell}, \delta_{\ell}] \in L$, $[x, \alpha] F \sum [z_{\ell}, \delta_{\ell}] \subseteq Q$ implies that $\sum [z_{\ell}, \delta_{\ell}] \in Q$. (4)

$$[x, \alpha] F \sum_{\ell} [z_{\ell}, o_{\ell}] \subseteq Q \text{ implies that } \sum_{\ell} [z_{\ell}, o_{\ell}] \in Q.$$
(4)

Consider $F' = \{y_{j_k}\beta_{j_k}x/j = 1, 2, \dots, n, k = 1, 2, \dots, m\}$. Our claim is that F' is an insulator for x. Let $a \in N$ such that $x \Gamma F' \Gamma a \subseteq Q^+$. To prove $a \in Q^+$. Now $x \Gamma F' \Gamma a \subseteq Q^+$ implies

$$\begin{bmatrix} x\Gamma F'\Gamma a, \Gamma \end{bmatrix} \subseteq Q,$$

i.e., $[x\Gamma y_{j_k}\beta_{j_k}x\Gamma a, \Gamma] \subseteq Q, \forall j = 1, 2, \dots, n, k = 1, 2, \dots, m.$

This implies that

$$[x,\Gamma] F [x\Gamma a,\Gamma] \subseteq Q. \tag{5}$$

In particular $[x, \alpha] F[x\Gamma a, \Gamma] \subseteq Q$. By (4) $[x\Gamma a, \Gamma] \subseteq Q$. Now since *Q* is strongly prime in *L*, *Q* is prime in *L*. By Proposition 3.3 [3], Q^+ is prime ideal of *N*. Since *N* is strongly 2-primal, Q^+ is completely prime in *N*. Hence $x\Gamma a \in Q^+$ and $x \notin Q^+$ implies $a \in Q^+$. Thus Q^+ is strongly prime in *N*.

Proposition 4.8. Let N be a distributive strongly 2-primal Γ - near ring with strong left unity and L, a left operator near ring of N. Then $\mathcal{P}_s(N) = \mathcal{P}_s(L)^+$.

Proof. Let *P* be a strongly prime ideal of *L*. Then by Proposition 4.7, P^+ is a strongly prime ideal of *N*. Moreover $(P^+)^{+\prime} = P$ [2, Proposition 5]. Suppose *Q* is strongly prime in *N*, then by Proposition 4.6, $Q^{+\prime}$ is strongly prime in *L* and $(Q^+)^{+\prime} = Q$ [2, Proposition 5]. Thus the mapping $P \rightarrow P^+$ defines a 1-1 correspondence between the set of strongly prime ideals of *L* and *N*.

Hence $\mathscr{P}_{s}(L)^{+} = (\cap P)^{+} = \cap P^{+} = \mathscr{P}_{s}(N)$.

5. Radicals of equiprime

In this section we shall prove that equiprime radical $\mathscr{P}_e(N)$ of *N* coincides with $\mathscr{P}_e(L)^+$ where $\mathscr{P}_e(L)$ is the equiprime radical of left operator near ring *L* of *N*.

Definition 5.1. Let *N* be a Γ -near ring, and *P* be an ideal in *N*. Then *P* is said to be equiprime if $a, x, y \in N$, $a \notin P$, $a \alpha n \beta x - a \gamma n \delta y \in P \quad \forall n \in N, \alpha, \beta, \gamma, \delta \in \Gamma$ implies $x - y \in P$.

Proposition 5.2. Let N be a Γ -near ring. If P is an equiprime ideal of N, then $P^{+\prime} = \{\ell \in L \mid \ell x \in P \forall x \in N\}$ is an equiprime ideal of L.

Proof. Let $\ell \notin P^{+\prime}$ and $\ell', \ell'' \in N$ such that $\ell' - \ell'' \notin P^{+\prime}$. From definition of $P^{+\prime}$, there exist $a, b \in N$ such that $\ell a \notin P$ and $(\ell' - \ell'') b \notin P$, that is $\ell a \notin P$ and $\ell' b - \ell'' b \notin P$. From the hypothesis, there exists $c \in N$ such that

$$(\ell a) \alpha c \beta (\ell' b) - (\ell a) \gamma c \delta (\ell'' b) \notin P, \forall \alpha, \beta, \gamma, \delta \in \Gamma$$

i.e., $[\ell a, \alpha] [c, \beta] \ell' b - [\ell a, \gamma] [c, \delta] \ell'' b \notin P, \forall \alpha, \beta, \gamma, \delta \in \Gamma$
i.e., $\ell [a, \alpha] [c, \beta] \ell' b - \ell [a, \gamma] [c, \delta] \ell'' b \notin P, \forall \alpha, \beta, \gamma, \delta \in \Gamma$.

Hence

$$\left(\ell\left[a\alpha c,\beta\right]\ell'-\ell\left[a\gamma c,\delta\right]\ell''\right)b\notin P,\,\forall\alpha,\beta,\gamma,\delta\in\Gamma.$$

This proves that

$$\ell \left[a\alpha c, \beta \right] \ell' - \ell \left[a\gamma c, \delta \right] \ell'' \notin P^{+\prime}, \, \forall \alpha, \beta, \gamma, \delta \in \Gamma$$

and consequently $P^{+\prime}$ is an equiprime ideal of *L*.

Proposition 5.3. Let N be a distributive Γ – near ring. If Q is an equiprime ideal of L, then $Q^+ = \{x \in N | [x, \alpha] \in Q \ \forall \ \alpha \in \Gamma\}$ is an equiprime ideal of N.

Proof. Let $x \notin Q^+$ and $a, b \in N$ such that $a - b \notin Q^+$. We claim that $x \Gamma N \Gamma a - x \Gamma N \Gamma b \notin Q^+$. Since $x \notin Q^+$ and $a - b \notin Q^+$, then there exist $\alpha, \beta \in \Gamma$ such that $[x, \alpha] \notin Q$ and $[a - b, \beta] \notin Q$ implies that $[x, \alpha] \notin Q$ and $[a, \beta] - [b, \beta] \notin Q$. Since Q is a equiprime ideal in L, there exists $\ell = \sum_i [y_i, \beta_i] \in L$ such that $[x, \alpha] \ell [a, \beta] - [x, \alpha] \ell [b, \beta] \notin Q$. Hence $[x \alpha \ell a - x \alpha \ell b, \beta] \notin Q$. This implies that $x \alpha \ell a - x \alpha \ell b \notin Q^+$.

i.e.,
$$x\alpha \sum_{i} [y_i, \beta_i] a - x\alpha \sum_{i} [y_i, \beta_i] b \notin Q^{-1}$$

i.e., $x\alpha \sum_{i} y_i \beta_i a - x\alpha \sum_{i} y_i \beta_i b \notin Q^{+1}$.

But clearly

$$x\alpha \sum_{i} y_{i}\beta_{i}a - x\alpha \sum_{i} y_{i}\beta_{i}b \in x\Gamma N\Gamma a - x\Gamma N\Gamma b.$$

Thus $x\Gamma N\Gamma a - x\Gamma N\Gamma b \not\subset Q^+$ and consequently Q^+ is an equiprime ideal of *N*.

Theorem 5.4. Let N be a distributive Γ – near ring with left operator near ring L, then $\mathscr{P}_e(L)^+ = \mathscr{P}_e(N)$.

Proof. Let *P* be an equiprime ideal of *L*. Then by Proposition 5.3, P^+ is an equiprime ideal of *N*. Moreover $(P^+)^{+\prime} = P$ by [2, Proposition 5]. Suppose *Q* is an equiprime ideal in *N*, then by Proposition 5.2, $Q^{+\prime}$ is an equiprime ideal in *L* and $(Q^{+\prime})^+ = Q$ by [2, Proposition 5]. Thus the mapping $P \to P^+$ defines a 1-1 correspondence between the set of equiprime ideals of *L* and *N*. Hence $\mathscr{P}_e(L)^+ = (\cap P)^+ = \cap P^+ = \mathscr{P}_e(N)$.

C. SELVARAJ AND R. GEORGE

References

- [1] G. E. Birkenmeier, H. E. Heatherly and E. K. Lee, *Prime ideals and prime radicals in near rings*, Monatsh. Math. **117**(1994), 179–197.
- [2] G. L. Booth, A note on Gamma near rings, Stud. Sci.Math. Hungarica 23(1988), 471-475.
- [3] G.L.Booth, *Radicals of* Γ- *near ring*, Publ. Math. Debrecen **39**(1990), 223–230.
- [4] G. L. Booth and N. J. Groenewald, On strongly prime near rings, Indian J. Math. 40(1998), 113–121.
- [5] G. L. Booth and N. J. Groenewald, *Equiprime Gamma near rings*, Quaestiones Mathematicae 14(1991), 411–417.
- [6] N. J. Groenewald, Strongly prime near rings, Proc. Edinbwrgh. Math. Soc. 31(1988), 337–343.
- [7] N. J. Groenewald, Strongly prime near rings 2, Comm. in Algebra 17(1989), 735–749.
- [8] N. K. Kim and Y. Lee, On rings whose prime ideals are completely prime, J.Pure Appl.Algebra 17 (2002),255-265.
- [9] G. Pilz, Near rings, North Holland, 1983.
- [10] Satyanarayna Bhavanari, A note on Γ-near rings, Indian J. Math. **41**(1999), 427–433.
- [11] Satyanarayna Bhavanari, Contributions to near rings, Doctoral Thesis, Nagarjuna University, 1984.
- [12] G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184(1973), 43–60.

Department of Mathematics, Periyar University, Salem - 636 011, Tamilnadu, India.

E-mail: selvavlr@yahoo.com

Department of Mathematics, T.D.M.N.S. College, T. Kallikulam - 627113, Tamilnadu, India.