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AN ANALYSIS TO THE TRAVELLING WAVE SOLUTION OF A
DIFFUSIVE MODEL OF AN EPIDEMIC

M. S. ABUAL-RUB

Abstract. An SIR model of an epidemic with spatial spread is considered, an equilibrium and
stebility analysis has been done and then the behavior to the travelling wave solution of the
mode! is obtained.

1. Introduction

The epidemic models have been initiated by Kermack and McKendrick[5]. Such
models are useful in giving good estimates for the level of vaccination for the control of
directly transmitted infectious diseases.

These epidemic models are often called SIR models because they describe a population
which is partitioned into several distinct c]asses by an infection. In particular, the classes
are the susceptibles (denoted by S),infectives (denoted by I),and individuals removed
from the process (denoted by R). There are other classes of the population which are not
considered in the SIR Models. ,

The Susceptibles is the class of the population who can catch the disease, the Infectives
is the class of the population who have the disease and can transmit it, and the removed
class have either had the disease, or are recovered, immune or isolated until recovered.

As mentioned before, the basic SIR (1927) model, which is given by Kermack and
Mckendrick [5], assumed that (i) The gain of infective class is at a rate proportional to
the number of infectives and susceptibles, that is a.ST, where a > 0 is a constant, and
of course the susceptibles are lost at the same rate; (ii) the rate of removal of infectives
to the removed class is proportional to thie number of infectives, that is ~I where v > 0
is a constant; (iii) The incubation period for which the susceptibles who contracts the
disease became infectives is short enough to be negligible. Also,it is assumed that every
pair of individuals has equal probability of coming into contact with one another.

Using all the above assumptions, the SIR model can be written as:

ds

Et— = —'OSI (11)
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dl

_ _ 1.2
5 =Sl -1l (1.2)
dR -

_ 1.3
¢35 = I (1.3)

where @ > 0 is the infection rate and v > 0 is the removal rate of infectives. It is very
clear, by adding equations (1.1)-(1.3),that:

dS 4 dl L anr
dt dt dt

This means that S(t) + I(t) + 12(t) = N, where N is the total size of the population.
An analysis to cquations (1.1)-(1.3) is considered in Murray [6], pp.612-616. Abual-

rub (1] has considered a model for which S = S(z,t) and I = I(z,t) with diffusion and
an incubation period of ¢ days to get:

=0

85
5, ~AS=A-cls, v (1.4)
gi Al = (IS(t) - IS(t - o)) (1.5)

where A, ¢, and o are diflusion parameters.

Also in [1] p.26, c is considered to be a function of I and the local behavior of
epidemics has been analyzed in L™ spaces. Now the SIRR model which we will consider
here is taking into consideration spatial spread and this model has been considered by
F. Hoppensteadt [4] p.G8.

Fisher (3] and Baily [2] have considered a variety of problems and models for the
spread and control of infectious diseases.

The model can be written as:

as

55 = ~Sled + ﬂa 2] (1.6)
ol 021

S . Bzl - | ) (1.7)
08—1: =y (1.8)

where ~00 < z < 00, S = S(z,1), I = I(z,t) and R = Riz,t).

2. Equilibrium and Stability Analysis:

Looking at equations (1.6)-(1.8), we have two possibilities for the steady states,
namely (i) .5—-1—-0(11) S = = I =o0.

Lets investigate both cases of steady states:

() S=I=o.

It is obvious that without diffusion, this state is unstable, i.c., if 1t is perturbed the
infective and susceptible populations will deviate from the zero statc.
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(i) S=2,I=0.

This me:ns that the infectives die out and all the population becomes susceptibles
and removables which is possible. v )

Let S = X 4 5,1 = i; where s and i are very small. Substitute into equations
(1.6)-(1.8) and ignore non-linear terms to obtain:

Os . 8%

7 == Lo, el
di B 8%

5t oo 2
dR .

Tl A (2.3)'4

Lets consider equation (2.2) with —0o < z < 0o and suppose that i(z,0) = f(z) ; where
f(z) is bounded for all values of z and integrable in every finite interval. The solution
of the heat equation (2.2) will be:

—a(z —v)?

iz, 1) = 2——%\/% /;0; f(v)exp {W}dv ' (2.4)

From (2.4) we may conclude that this state is locally stable.

3. Travelling Wave Solutions:

We now seck a travelling wave solution to the system (1.6)-(1.8) by setting z = = —ct;
where c¢ is the wave velocity. We obtain the following equations:

¢S = S(al + BI"), (3.1)

cl' =~I - S(al + BI"), (3.2)
cR' = —4I; (3:3)

where ' = d/dz. _
- We will impose the following conditions:

0 < S(—00) < S(00) = Sp; where Sp is a constant, I(—o0) = I(oc0) =0 (3.4)

Lets now linearize equation (3.2) as z — co near the leading edge of the wave where
S —+ Sp and I — 0 to get:

cI' &I - So(al + BI") L (3.5)

we obtain solutions to (3.5) of the form:

I(z) ~ O(exp[—C:t {c? + 4vBS, - 4aﬁ3§}1/2]z) |

T (3.6)
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In order for a travelling wave solution to exist and since we require I(z) — 0 then using
(3.6) we must have:

¢ 2 2(apiS3 — YBS0) /%S0 > L (3.7)

Therefore from (3.7) we can say that the computed wave solution from the full non-linear
system will involve into a travelling wave form with the minimum wave speed, namely,

Cmin = 2(afSa — vSo)*/? (3.8)

Lets now linearize equation (3.1) as z = oo by setting S = Sp — s ; where s is very small
to get

3 = —ﬂ(al + pI'" (3.9)
c
Since S = Sp — s, the solution to (3.9) takes the form:

—c % {c? +4vfS, — 4aﬁS§}1/2]7)
26So '

Of course the same thing can be done to get the solution to (3.3) using (3.6).

5(2) ~ 8y + O(exp[ (3.10)

Conclusion

From (3.7) we got Sp > I or aSp > v, this result is the most important condition
here because if this condition is not satisfied there will be no progressing wave possible
and this condition coincides with the result in F. Hoppensteadt [4], p.70. This result
is interpreted as a lower bound on the population dcnmty of susccptlblcs for them to
support a progressing epidemic.

References

[1] Abual-rub, M. S., Non-linear partial differential equations applied to diffusion problems
arising in mathematical biology, Ph.D. Thesis, University of Illinois at Chicago, USA, 25-

30, 1992.
[2] Bailey, N. T. J., The mathematical theory of infectious discases, 2nd Ed., London; Griffin,
1975.

[3] Fisher, R. A., “The wave of advance of advantageous genes,” Ann. Eugenics, 7(1937),
353-369.

{4] Hoppensteadt, F. C., Mathematical theories of popluations:demographics, genctics and epi-
demics, CBMS Lectures Vol. 20. Philadelphia: SIAM Publications, 1975.

{5] Kermack, W. O., McKendrick, A. G., “Contributions to the mathematical theory of epi-
demics,” Proc. Roy. Soc. A 115(1927), 700-721; 138(1932), 55-83; 141(1933), 94-122.

[6] Murray, J. D., Mathematical Biology, Vol. 19, Biomathematics Tezts, New York, Springer
Verlag, 1989.

Department of Mathematics, University of Qatar, P. O. Box 2713, Doha, State of Qatar



