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DECOMPOSITIONS OF Km,n INTO 4-CYCl,,ES AND 8-CYCLES

CHIN-MEI FU AND WEN-CHUNG HUANG

Abstract. In this paper it is shown that G can be decomposed into p copies of C4 and q copies
of Ca for each pair of nonnegative integers p and q which 8atisfics the equation 4p+ Sq = IE(G) I,
where 一E(G) is the number of_edges of G, when

(1) G = I<..,.,,., the complete bigartite graph, if m and n are even,
(2) G = I<,..,,. - F, I<.,.,,. with 1-factor removed, if m = n 三 1 (mod 4), and

(3) G = I<rn,n - (FU Ce), K,..,,. with I-factor and one 6-cycle removed, if m = n = 3 (mod
4)

Let m, n, and r be·pos1t1ve integers. Let Km,n denote the complete bipartite graph.
A2,. r~cycle, C2r, 1s an elementary cycle of length 2r and will denoted by the sequence

of 璵 vertices (xi, X2, ... x2,.). A graph G can be decomposed into C4 and Ca if it is

possible to partiton the edge-set of G into of cycles of length 4 or 8. If the edge-set of

G can be decomposed into p copies of C4 and q copies of C8, then G will be denoted by

G = pC4 + qC8.

'J'.he problem of the existence of da ecompos1t1on of the complete graph J{11(the com-
plete graph from which a 1-factor has been removed J(-. n F) into cycles of different
lengths has_ been investigated several times (see[l] for reference). In (5], we can see the
decompos1t1on of the complete bipartite graph Km,n into cycles of length 2k. In this

paper, we show that G can be decomposed into p copies of C4 and q copies of C8 for each

pair of nonegative integers p and q which satisfies th

丨 E(G)I
e equation 4p + Bq = IE(G)I, where

is the number of edges of G, when G == Km,n if m and n are even, G = Km,n - F

if m = n 三 1 (mod 4), and G = Km,n - (FU C6) if m = n 三 1 (mod 4).

For convenience we define D (G) = { (p) I, q p,q are nonnegative mtegers, G = pC4 十

qCa}, and Si= {(p,q) I p,q are nonnegative integers, p + 2q = i}, where i·1s a pos1t1ve
integer. Then D(J<m,n)~Smn/4·

Since the necessary and sufficient. condition for the equation 4p + Bq = mn having
nonnegative integer solution is that mn is the multiple of 4.

Main Theorem. Let s and t be positive integers. Then 1
D(I(

() D(K2s,2t) = Sst, (2)
4s+l,4s+1-F) = ss(4s+I), where Fis a 1 f- actor m J(

(FUC6)) = S
4s+l ,4s+l, and (3) D(K4s+3,4a+3 一

s(4s-t-5), where FUC6 is a 1-factor and one cycle of length 6 in J(
4s+3,•is+3·
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Let A and n be two sets of ordered pairs, we define t.hat A+ B = { (a1 + b1, a丑伍 ）I

(a1,a2) E A, (bi, 柘 ）E fl}, and 2·A = A+A. Let V(K111,11) = {x1,x2,···,Xm,Y1,

Y2,···,Yn}.

Lemma 1. Let a and b be any positive integers. If one of a,b i.5 even, then S。-1-b =
S。+s斫 if a and b are odd, then Sa+b = (S。+ Sb) u {(O, (a+ b)/2)}.

Proof. If a an<l b are odd, then the minimum value of p in S。and Sb is 1, but the

murnnum value of p is O in Sa+b·

Next, we will show that D(K2s,2t) = Sst·

Lemma 2. D(J<2,u) = {(t,O} It is a positive integer}.

Proof. For each positive integer t, K2,u can be decomposed into t copies of K2,2

and K2,2 = C,1.

It is e邸y to get the decomposition of K4,4.

I .
.,emma 3. D(K1,.i) ,;··{(4,0),(0,2)}.

Lemma 4. Let t be positive integer, t~3, then D(/(4,u) = Su.

Proof.

(1) t = 3. K4,G can be viewed as adding two vertices and two 4-cycles to K4,1, thus K4,6 =
鷗 =2C1 + 2Cs. K1,6 = 4C1 + Cs for which we use the cycles (x1, y1,:互 霆 乓 瓦

x4,y1), (x1,Y2,X4,y5), (x1,Y:i,x2,y5), (x2,Y4,X3,y5), and (x3,?/l,X1,y6), and K1,6 =
鷗 for which we take t.he 8-cycles (x1, y1,:互 霆 ·瓦 囧 X4, Y1),(x1, YJ, x2, Y1, x3, Y和

X4, Y6), and (xi, 臨 互 頲 功，Y1,x1,Y2). Hence D(K,i,o) = S6

(2) t = 4. K4,8 can be viewed as an edge-disjoint. union of K1,2 andK1,6. Then we get

{(8,0), (G, 1), (4, 2), (2,3)} C D(K4,s). Since K4,8 can also be decomposed into two

copies of K4,4, that means (0, 4) E D(K4,8). Thus D(J( 囯 =Sa.

(3) t = 5. Since D(K4,10) 2 D(I<4.1) + D(K4,6) = S10, it means that JJ(/(4.10) = S10.
(4) t > G I(, 4,2t can be viewed as an edge-disjoint union of K4,21._6 and K4,6. Then

庫4,2t) 2 D(K1,2t-o) + D(K4,5). If D(/(4,21. 一 5) = S2(t-J), then Ly Lemma 1
D(/(4,u) 2 S2(t一 J) + S5 = Su. Thus ti) e conclus1on can be done rccurs1 vely.

Theorem 5. Lets t b, e positive integers, t~3. Then D(I<4s,u) = S2st.

Proof. We can think of I(-1s,2t as an edge-disjoint union of s copies of !(4,21..

Lemma G. Lett bc positwe integer, t~3, then D(Ko,u) = S3t,

Proof. Now D(K6,6) 2 D(K4,6) + D(J( 辺 =So\ { (1, 4)}. And C4 + 4Cs is given by

(x1,Y1, 互 互 X3, 瓦 x1,Y4), (x1,Y5,:互，闞 乓 霆 乓 缸 (.-z:1, 霆 叩叩，X3, 麗 x6,Y6), (x3,

Yo,X4,y5,X5,y1,xo,Yi1),(x2,Y3,x5,y4). Fort~4,D(}〈o,u) 2 D(J<6,2t-i1) + D(/(5,4). Dy
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Lemma 4, we have D(K4,6) = S6, and by Lemma 1 S, :i(t-2J + S6 = S:it, then we can
recursively obtain the conclusion.

Theorem 7. Let s t b, e positive integers, t 2: 2. D(/(48+2,u) = St(2s+I).

Proof. For 8 2: 2, t 2: 3, D(K4s+2,2t) 2 D(K4s-4,2t) + D(K6,2t), And we have

D(K心-4,2t) = Sti2s 一 2) and D(K6,2t) = S3t·By Lemma 1 S
Combine Lemma 6, D(J(

, t(2a-2) + S3t = Sc(211+1>·
411+2,2t) = st(2s+l), for 8 2: 1, t 2: 2.

From Th~orem 5 and 7, .we have shown that

Theorem 8. Let s t b, e positive mtegers, s >
That is J(

_ 2 and t 2: 3. Then D(J(互2d = S,t·
2s,2t can be decomposed into P copies of C4 and q copies of Ca for each pair of

nonnegative integers p and q which satisfies the equation 4p + Bq = 4st.

Next, we consider the decomposition of I(4s+i ,4s+1 -J,. We will show that D J(
-F) = S

(4s+l,4s+l
3(43 十·l) .

Theorern 9. Lets be positive integer, then D(I(43+i,4s+i - F) = S8c43+I), where F
is a 1-/actor of K4s+l,4s+l.

Proof.

(I) s = 1. The decomposition of I(s,s-Fisg1venasfollows. 5C4: (x1,y2,x4, 即 ），

包 Y1,xs,Y2), (x2,Y1,X4 甩s), (x2,Y3,X5,y4), and (x1,Y,1,x3,y5). 3C4 + C8: (x1,y2,

:1:5,y4,X3,Y1,x2,y3), (x1,Y4,x2,Ys), (x3,Y2,X4,y5), and (x4,y1,x5,y3). 04 + 208:

(x1,Y2,X4,y5,X3,y4,X2,y3), (x1,Y,i,X5,y3,X4,Y1,x2,y5), and (x3,y1, 互 Y2). Thus
D(K5,s - P) = S5.

(2) s = 2. K9,o - F can be viewed as an edge-disjoint union of two copies of K5,5 -.:. F
and two copies of K4,4. Then D(K9.9-F) 2 2-D(Ks,s-F)+2-D(I(叫 =2-S5 +2·
{ (4, 0), (0, 2)} = S1s \ { (0, 8)}. And J(

（
9,9 - F can be decomposed into 9 copies of Ca :

X1, Y2, X心 Ys, X3, Y-1, x2, y3), (xi, Y4, x趴 Y1,X2
（

溲o,x4,Y6),(x這/s, xo, Ya, x1, Ya, X3, Y1),
X1, 鞨 互 囧 互 麗 乓 Yo), (x2, Ys1 x1, Y1, x6, 如 ，x如 Ya)

（
, (x3,Y1,X4,y趴互 恥 X5, Y2),

x和直 互 霆 互 瓦 互 Y3), (xs,Y6,xs 甩1,Xo,Ya,x6, 國 and

曰 Thus D(J<o,o - F) = S1s.
(x6, 料 互 瓦 x1, Yo, x趴

(3) Fors 2: 3, D(K4s+l,4s+i - F) 2 D(K4s-1,4a 一 1 - F) + D(K9,o - F) + 2·D(K8,411 一a).

By Theorem 5, D(Ka,4s一s) = s4(2s 一4), and D(Ko,9 - F) = Sis-·By Lemma 1, we

can obtain that s(s 一 2)(4s-7) +Sia +2·S4(2s一 4) = Ss(4~+1). then the theorem is proved
recursively.

The degree of each vertex in J(

of 4, Th
4s+3,4s+3 is odd and the number of edges i3 not a multiple

us we need to remove at least one factor such t.hat the degree of each vertex is

even, and take away one 6-cycle such that the number of edges in K
is a multiple of 4.

4s+J,4,+3 - (FU C6)

Theorem 10. Let s be positive integer, then D(K

where F is a 1-factor of 1(4s+3,4s+3.
4s+3,4s+3 - (F LJ C6)) = s11(411+s) 1
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Proof.

(1) s = 1. We can think 1(7,7 - (FU C6) as an edge-disjoint union of Ks,5 - F and two

copies of K2,4. Then D(K7,7 -(FUCo)) 2 D(Ks,s-F)+2·D(K2,-1) = Ss+2·{ (2, 0)} =
S9\{(1,1),(3,3)}. 3C4+3C8 can be obtained: (x1,Y2,xs,Y1,x3,yr,,x2,Y5),(x1,YJ,3沭 ，

Y2, Xo, YI, x2, Y1), (xI, y,i, X3, Y2, x1, YI, x4, YG), (xs, YJ, X6, Y1), (x2, YJ, x1, y,1), antl (x3,

麗 互 Y1). And C,1 + 4Ca : (x1, 直 乓 YI':互 頲 互 咋），(x1, 顾 互 囧 互 四 互 Y1),

(x1, YJ, 互 國 ·叮，瞑 功'y,i), (互 YI, X4, Y1,:五 1/2,:百 , y3), and (:互 Y1,X1, 叫

(2) s = 2. v.,rc can view K11,11 - (FU 句 as an edge-disjoint union of K1,1 - (FU

Co), l〈5,5-F and two copies of !(4,6. Then D(Ku,u -(FUC5)) 2 D(K1,1-(FUC5))+

D(K5,5-F)+2·D(K1,G) = S9+Ss+2· 函 = 526 \ { (0, 13}}. 13C8 is defined as follows:

(x1, 直 互 Y1, 勾，YI' 互 y3), (x1,Y1,x9,Y1,x趴 Y1,:互 Ys), (x1, yr,, X10, YJ, 互 闞 互 Y1),

區 Y1,:衍，Y:1,:冧 ，霆 ·叨，y斗 伍 ，Y1 , x5, YJ, xa, 瞑 店,YG), (x2,Y6,:i:1,Y2,:瓦 囧 互 yg),

(x1, Ya,:互 闞 XtJ, 瓦 ·互 yg), (x1, Y10, 互 鞨 xu, 瓦 呤，Yu), (互 YlO, 互 Y4, X10, Y7,

X4, Yu), (乓，鞨 X10,Y1,X7,y9,:叨，Y10), (xs, 犰 o, 冧 ，麗 互 闞 xo,Y11), (x5,y9, 冧 ，Yu,

互 鞨 x11, Yi), and (:互 關 嘔 鞨 互 闞 X11, y4).

(3) For s 2: 3. Let G = !(4.9.1.3,45+3 - (FU C6). G can be viewed as an edge-disjoint

union of !(11,11 - (FU C6), 1(45_7148_7 - F, and two copies of K10,4s-B·Then

D(G} 2 D(J<4s-7,4s-7 -F) + D(Kll,11 - (FUC5)) + 2. D(R「10,4s-a). By Theorem 7,

D(K10,1s-s) = S5(2s-4), and by Theorem 9, D(K4s一 7,4s-7 - F) = S(s一 2)(1.t+l). And

by Lemma 1, S(s 一2)(4s+l) + 526 + s5(2B-4) = Ss(1s同 ）. Therefore D(G) = Ss(1s+5)·
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