DECOMPOSITIONS OF $K_{m, n}$ INTO 4-CYCLES AND 8-CYCLES

CHIN-MEI FU AND WEN-CHUNG HUANG

> Abstract. In this paper it is shown that G can be decomposed into p copies of C_{4} and q copies of C_{8} for each pair of nonnegative integers p and q which satisfies the equation $4 p+8 q=\| E(G) \mid$, where $-\mathrm{E}(G)$ is the number of edges of G, when (1) $G=K_{m, n}$, the complete bigartite graph, if m and n are even, (2) $G=K_{m, n}-F, K_{m, n}$ with 1 -factor removed, if $m=n \equiv 1(\bmod 4)$, and (3) $G=K_{m, n}-\left(F \cup C_{e}\right), K_{m, n}$ with 1 -factor and one 6 -cycle removed, if $m=n \equiv 3$ (mod 4).

Let m, n, and r be positive integers. Let $K_{m, n}$ denote the complete bipartite graph. A 2 r -cycle, $C_{2 r}$, is an elementary cycle of length 2 r and will denoted by the sequence of its vertices $\left(x_{1}, x_{2}, \ldots x_{2 r}\right)$. A graph G can be decomposed into C_{4} and C_{8} if it is possible to partiton the edge-set of G into of cycles of length 4 or 8 . If the edge-set of G can be decomposed into p copies of C_{4} and q copies of C_{8}, then G will be denoted by $G=p C_{4}+q C_{8}$.

The problem of the existence of a decomposition of the complete graph K_{n} (the complete graph from which a 1 -factor has been removed, $K_{n}-F$) into cycles of different lengths has been investigated several times (see[1] for reference). In [5], we can see the decomposition of the complete bipartite graph $K_{m, n}$ into cycles of length $2 k$. In this paper, we show that G can be decomposed into p copies of C_{4} and q copies of C_{8} for each pair of nonegative integers p and q which satisfies the equation $4 p+8 q=|E(G)|$, where $|E(G)|$ is the number of edges of G, when $G=K_{m, n}$ if m and n are even, $G=K_{m, n}-F$ if $m=n \equiv 1(\bmod 4)$, and $G=K_{m, n}-\left(F \cup C_{6}\right)$ if $m=n \equiv 1(\bmod 4)$.

For convenience, we define $D(G)=\left\{(p, q) \mid \mathrm{p}, \mathrm{q}\right.$ are nonnegative integers, $G=p C_{4}+$ $\left.q C_{8}\right\}$, and $S_{i}=\{(p, q) \mid p, q$ are nonnegative integers, $p+2 q=i\}$, where i is a positive integer. Then $D\left(K_{m, n}\right) \subseteq S_{m n / 4}$.

Since the necessary and sufficient condition for the equation $4 p+8 q=m n$ having nonnegative integer solution is that mn is the multiple of 4 .

Main Theorem. Let s and t be positive integers. Then (1) $D\left(K_{2 s, 2 t}\right)=S_{s t}$, (2) $D\left(K_{4 s+1,4 s+1}-F\right)=S_{s(4 s+1)}$, where F is a 1 -factor in $K_{4 s+1,4 s+1}$, and (3) $D\left(K_{4 s+3,4 s+3}-\right.$ $\left.\left(F \cup C_{6}\right)\right)=S_{s(4 s+5)}$, where $F \cup C_{6}$ is a 1 -factor and one cycle of length 6 in $K_{4 s+3,4 s+3}$.

[^0]Let A and B be two sets of ordered pairs, we define that $A+B=\left\{\left(a_{1}+b_{1}, a_{2}+b_{2}\right)\right\}$ $\left.\left(a_{1}, a_{2}\right) \in A,\left(b_{1}, b_{2}\right) \in B\right\}$, and $2 \cdot A=A+A$. Let $V\left(K_{m, n}\right)=\left\{x_{1}, x_{2}, \cdots, x_{m}, y_{1}\right.$, $\left.y_{2}, \cdots, y_{n}\right\}$.

Lemma 1. Let a and b be any positive integers. If one of a, b is cven, then $S_{a+b}=$ $S_{a}+S_{b} ;$ if a and b are odd, then $S_{a+b}=\left(S_{a}+S_{b}\right) \cup\{(0,(a+b) / 2)\}$.

Proof. If a and b are odd, then the minimum value of p in S_{a} and S_{b} is 1 , but the minimum value of p is 0 in S_{a+b}.

Next, we will show that $D\left(K_{2 s, 2 t}\right)=S_{s t}$.
Lemma 2. $D\left(K_{2,2 t}\right)=\{(t, 0) \mid t$ is a positive integer $\}$.
Proof. For each positive integer $\mathrm{t}, K_{2,2 t}$ can be decomposed into t copies of $K_{2,2}$ and $K_{2,2}=C_{4}$.

It is easy to get the decomposition of $K_{4,4}$.
Lemma 3. $D\left(K_{4,4}\right)=\{(4,0),(0,2)\}$.
Lemma 4. Lei t be positive integer, $t \geq 3$, then $D\left(K_{4,2 t}\right)=S_{2 t}$.

Proof.

(1) $t=$ 3. $K_{4,6}$ can be viewed as adding two vertices and two 4 -cycles to $K_{4,4}$, thus $K_{4,6}=$ $6 C_{4}=2 C_{1}+2 C_{8} . K_{4,6}=4 C_{4}+C_{8}$ for which we use the cycles ($x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}$, $\left.x_{4}, y_{4}\right),\left(x_{1}, y_{2}, x_{4}, y_{5}\right),\left(x_{1}, y_{3}, x_{2}, y_{6}\right),\left(x_{2}, y_{4}, x_{3}, y_{5}\right)$, and $\left(x_{3}, y_{1}, x_{4}, y_{6}\right)$, and $K_{4,6}=$ $3 C_{8}$ for which we take the 8 -cycles $\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}, x_{1}, y_{4}\right),\left(x_{1}, y_{3}, x_{2}, y_{4}, x_{3}, y_{5}\right.$, $\left.x_{4}, y_{6}\right)$, and ($\left.x_{1}, y_{5}, x_{2}, y_{6}, x_{3}, y_{1}, x_{4}, y_{2}\right)$. Hence $D\left(K_{4,6}\right)=S_{6}$.
(2) $t=4$. $K_{4,8}$ can be viewed as an edge-disjoint union of $K_{4,2}$ and $K_{4,6}$. Then we get $\{(8,0),(6,1),(4,2),(2,3)\} \subset D\left(K_{4,8}\right)$. Since $K_{4,8}$ can also be decomposed into two copies of $K_{4,4}$, that means $(0,4) \in D\left(K_{4,8}\right)$. Thus $D\left(K_{4,8}\right)=S_{8}$.
(3) $t=5$. Since $D\left(K_{4,10}\right) \supseteq D\left(K_{4,4}\right)+D\left(K_{4,6}\right)=S_{10}$, it means that $D\left(K_{4,10}\right)=S_{10}$.
(4) $t \geq 6, K_{4,2 \iota}$ can be viewed as an edge-disjoint union of $K_{4,2 t-6}$ and $K_{4,6}$. Then $D\left(K_{4,2 t}\right) \supseteq D\left(K_{4,2 t-6}\right)+D\left(K_{4,6}\right)$. If $D\left(K_{4,2 t-6}\right)=S_{2(t-3)}$, then by Lemma 1, $D\left(K_{4,2 \ell}\right) \supseteq S_{2(\ell-3)}+S_{6}=S_{2 \ell}$. Thus the conclusion can be done recursively.

Theorem 5. Let s, t be positive integers, $t \geq 3$. Then $D\left(K_{4 s, 2 t}\right)=S_{2 s t}$.
Proof. We can think of $K_{4 s, 2 t}$ as an edge-disjoint union of s copies of $K_{4,2 t}$.
Lemma 6. Let t be positive integer, $t \geq 3$, then $D\left(K_{6,2 t}\right)=S_{3 t}$.
Proof. Now $D\left(K_{6,6}\right) \supseteq D\left(K_{4,6}\right)+D\left(K_{2,6}\right)=S_{9} \backslash\{(1,4)\}$. And $C_{4}+4 C_{8}$ is given by $\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}, x_{4}, y_{1}\right),\left(x_{1}, y_{5}, x_{2}, y_{6}, x_{5}, y_{2}, x_{6}, y_{3}\right),\left(x_{1}, y_{2}, x_{4}, y_{1}, x_{3}, y_{5}, x_{6}, y_{6}\right),\left(x_{3}\right.$, $\left.y_{6}, x_{4}, y_{5}, x_{5}, y_{1}, x_{6}, y_{4}\right),\left(x_{2}, y_{3}, x_{5}, y_{4}\right)$. For $t \geq 4, D\left(K_{6,2 t}\right) \supseteq D\left(K_{6,2 t-4}\right)+D\left(K_{6,4}\right)$. By

Lemma 4, we have $D\left(K_{4,6}\right)=S_{6}$, and by Lemma 1, $S_{3(\ell-2)}+S_{6}=S_{3 t}$, then we can recursively obtain the conclusion.

Theorem 7. Let s, t be positive integers, $t \geq 2 . D\left(K_{4 s+2,2 t}\right)=S_{l(2 s+1)}$.
Proof. For $s \geq 2, t \geq 3, D\left(K_{4 s+2,2 t}\right) \supseteq D\left(K_{4 s-4,2 t}\right)+D\left(K_{6,2 t}\right)$. And we have $D\left(K_{4 s-4,2 t}\right)=S_{\iota(2 s-2)}$ and $D\left(K_{6,2 t}\right)=S_{3 \iota}$. By Lemma $1, S_{t(2 s-2)}+S_{3 t}=S_{\ell(2 s+1)}$. Combine Lemma 6, $D\left(K_{4 s+2,2 t}\right)=S_{t(2 s+1)}$, for $s \geq 1, t \geq 2$.

From Theorem 5 and 7, we have shown that
Theorem 8. Let s, t be positive integers, $s \geq 2$ and $t \geq 3$. Then $D\left(K_{2 s, 2 t}\right)=S_{s t}$. That is $K_{2 s, 2 t}$ can be decomposed into p copies of C_{4} and q copies of C_{8} for each pair of nonnegative integers p and q which satisfies the equation $4 p+8 q=4$ st.

Next, we consider the decomposition of $K_{4 s+1,4 s+1}-F$. We will show that $D\left(K_{4 s+1,4 s+1}\right.$ $-F)=S_{s(4 s+1)}$.

Theorem 9. Let s be positive integer, then $D\left(K_{4 s+1,4 s+1}-F\right)=S_{s(4 s+1)}$, where F is a 1 -factor of $K_{4 s+1,4 s+1}$.

Proof.
(1) $s=1$. The decomposition of $K_{5,5}-F$ is given as follows. $5 C_{4}:\left(x_{1}, y_{2}, x_{4}, y_{3}\right)$, $\left(x_{3}, y_{1}, x_{5}, y_{2}\right),\left(x_{2}, y_{1}, x_{4}, y_{5}\right),\left(x_{2}, y_{3}, x_{5}, y_{4}\right)$, and $\left(x_{1}, y_{4}, x_{3}, y_{5}\right) .3 C_{4}+C_{8}:\left(x_{1}, y_{2}\right.$, $\left.x_{5}, y_{4}, x_{3}, y_{1}, x_{2}, y_{3}\right),\left(x_{1}, y_{4}, x_{2}, y_{5}\right),\left(x_{3}, y_{2}, x_{4}, y_{5}\right)$, and $\left(x_{4}, y_{1}, x_{5}, y_{3}\right) . C_{4}+2 C_{8}$: $\left(x_{1}, y_{2}, x_{4}, y_{5}, x_{3}, y_{4}, x_{2}, y_{3}\right),\left(x_{1}, y_{4}, x_{5}, y_{3}, x_{4}, y_{1}, x_{2}, y_{5}\right)$, and $\left(x_{3}, y_{1}, x_{5}, y_{2}\right)$. Thus $D\left(K_{5,5}-F\right)=S_{5}$.
(2) $s=2 . K_{9,9}-F$ can be viewed as an edge-disjoint union of two copies of $K_{5,5}-F$ and two copies of $K_{4,4}$. Then $D\left(K_{9.9}-F\right) \supseteq 2 \cdot D\left(K_{5,5}-F\right)+2 \cdot D\left(K_{4,4}\right)=2 \cdot S_{5}+2$. $\{(4,0),(0,2)\}=S_{18} \backslash\{(0,8)\}$. And $K_{9,9}-F$ can be decomposed into 9 copies of C_{8} : $\left(x_{1}, y_{2}, x_{4}, y_{5}, x_{3}, y_{4}, x_{2}, y_{3}\right),\left(x_{1}, y_{4}, x_{9}, y_{1}, x_{2}, y_{9}, x_{4}, y_{6}\right),\left(x_{1}, y_{5}, x_{9}, y_{6}, x_{7}, y_{8}, x_{3}, y_{7}\right)$, $\left(x_{1}, y_{8}, x_{4}, y_{7}, x_{2}, y_{6}, x_{3}, y_{9}\right),\left(x_{2}, y_{5}, x_{7}, y_{1}, x_{6}, y_{7}, x_{5}, y_{8}\right),\left(x_{3}, y_{1}, x_{4}, y_{3}, x_{8}, y_{4}, x_{5}, y_{2}\right)$, $\left(x_{5}, y_{1}, x_{8}, y_{2}, x_{6}, y_{4}, x_{7}, y_{3}\right),\left(x_{5}, y_{6}, x_{8}, y_{7}, x_{9}, y_{8}, x_{6}, y_{9}\right)$ and $\left(x_{6}, y_{3}, x_{9}, y_{2}, x_{7}, y_{9}, x_{8}\right.$, y_{5}): Thus $D\left(K_{9,9}-F\right)=S_{18}$.
(3) For $s \geq 3, D\left(K_{4 s+1,4 s+1}-F\right) \supseteq D\left(K_{4 s-7,4 s-7}-F\right)+D\left(K_{9,9}-F\right)+2 \cdot D\left(K_{8,4 s-8}\right)$. By Theorem $5, D\left(K_{8,4 s-8}\right)=S_{4(2 s-4)}$, and $D\left(K_{9,9}-F\right)=S_{18}$. By Lemma 1, we can obtain that $S_{(s-2)(4 s-7)}+S_{18}+2 \cdot S_{4(2 s-4)}=S_{s(4 s+1)}$. then the theorem is proved recursively.

The degree of each vertex in $K_{4 s+3,4 s+3}$ is odd and the number of edges is not a multiple of 4, Thus we need to remove at least one factor such that the degree of each vertex is even, and take away one 6-cycle such that the number of edges in $K_{4 s+3,4 s+3}-\left(F \cup C_{6}\right)$ is a multiple of 4 .

Theorem 10. Let s be positive integer, then $D\left(K_{4 s+3,4 s+3}-\left(F \cup C_{6}\right)\right)=S_{s(4 s+5)}$, where F is a 1 -factor of $K_{4 s+3,4 s+3}$.

Proof.
(1) $s=1$. We can think $K_{7,7}-\left(F \cup C_{6}\right)$ as an edge-disjoint union of $K_{5,5}-F$ and two copies of $K_{2,4}$. Then $D\left(K_{7,7}-\left(F \cup C_{6}\right)\right) \supseteq D\left(K_{5,5}-F\right)+2 \cdot D\left(K_{2,1}\right)=S_{5}+2 \cdot\{(2,0)\}=$ $S_{9} \backslash\{(1,4),(3,3)\} .3 C_{1}+3 C_{8}$ can be obtained: $\left(x_{1}, y_{2}, x_{5}, y_{1}, x_{3}, y_{6}, x_{2}, y_{5}\right),\left(x_{1}, y_{3}, x_{4}\right.$, $\left.y_{2}, x_{6}, y_{1}, x_{2}, y_{7}\right),\left(x_{1}, y_{4}, x_{3}, y_{2}, x_{7}, y_{1}, x_{4}, y_{6}\right),\left(x_{5}, y_{3}, x_{6}, y_{4}\right),\left(x_{2}, y_{3}, x_{7}, y_{4}\right)$, and $\left(x_{3}\right.$, $\left.y_{5}, x_{4}, y_{7}\right)$. And $C_{4}+4 C_{8}:\left(x_{1}, y_{2}, x_{5}, y_{1}, x_{3}, y_{6}, x_{2}, y_{5}\right),\left(x_{1}, y_{6}, x_{4}, y_{3}, x_{5}, y_{4}, x_{2}, y_{7}\right)$, $\left(x_{1}, y_{3}, x_{6}, y_{2}, x_{4}, y_{5}, x_{3}, y_{4}\right),\left(x_{2}, y_{1}, x_{4}, y_{7}, x_{3}, y_{2}, x_{7}, y_{3}\right)$, and $\left(x_{6}, y_{1}, x_{7}, y_{4}\right)$.
(2) $s=2$. We can view $K_{11,11}-\left(F \cup C_{6}\right)$ as an edge-disjoint union of $K_{7,7}-(F \cup$ $\left.C_{6}\right), K_{5,5}-F^{F}$ and two copies of $K_{4,6}$. Then $D\left(K_{11,11}-\left(F \cup C_{6}\right)\right) \supseteq D\left(K_{7,7}-\left(F \cup C_{6}\right)\right)+$ $D\left(K_{5,5}-F\right)+2 \cdot D\left(K_{4,6}\right)=S_{9}+S_{5}+2 \cdot S_{6}=S_{26} \backslash\{(0,13)\} \cdot 13 C_{8}$ is defined as follows: $\left(x_{1}, y_{2}, x_{5}, y_{4}, x_{3}, y_{1}, x_{2}, y_{3}\right),\left(x_{1}, y_{4}, x_{9}, y_{1}, x_{8}, y_{7}, x_{6}, y_{5}\right),\left(x_{1}, y_{6}, x_{10}, y_{3}, x_{4}, y_{8}, x_{2}, y_{7}\right)$, $\left(x_{2}, y_{4}, x_{7}, y_{3}, x_{6}, y_{2}, x_{4}, y_{5}\right),\left(x_{4}, y_{1}, x_{5}, y_{3}, x_{8}, y_{5}, x_{3}, y_{6}\right),\left(x_{2}, y_{6}, x_{7}, y_{2}, x_{9}, y_{7}, x_{5}, y_{9}\right)$, $\left(x_{1}, y_{8}, x_{5}, y_{6}, x_{11}, y_{2}, x_{3}, y_{9}\right),\left(x_{1}, y_{10}, x_{7}, y_{8}, x_{11}, y_{7}, x_{3}, y_{11}\right),\left(x_{2}, y_{10}, x_{6}, y_{4}, x_{10}, y_{7}\right.$, $\left.x_{4}, y_{11}\right),\left(x_{3}, y_{8}, x_{10}, y_{1}, x_{7}, y_{9}, x_{4}, y_{10}\right),\left(x_{5}, y_{10}, x_{8}, y_{6}, x_{9}, y_{8}, x_{6}, y_{11}\right),\left(x_{6}, y_{9}, x_{8}, y_{11}\right.$, $\left.x_{7}, y_{5}, x_{11}, y_{1}\right)$, and $\left(x_{8}, y_{2}, x_{10}, y_{5}, x_{9}, y_{3}, x_{11}, y_{1}\right)$.
(3) For $s \geq 3$. Let $G=K_{4 s+3,4 s+3}-\left(F \cup C_{6}\right)$. G can be viewed as an edge-disjoint union of $K_{11,11}-\left(F \cup C_{6}\right), K_{4 s-7,4 s-7}-F$, and two copies of $K_{10,4 s-8}$. Then $D(G) \supseteq D\left(K_{4 s-7,4 s-7}-F\right)+D\left(K_{11,11}-\left(F \cup C_{6}\right)\right)+2 \cdot D\left(K_{10,4 s-8}\right)$. By Theorem 7, $D\left(K_{10,4 s-8}\right)=S_{5(2 s-4)}$, and by Theorem $9, D\left(K_{4 s-7,4 s-7}-F\right)=S_{(s-2)(4 s+1)}$. And by Lemma 1, $S_{(s-2)(4 s+1)}+S_{26}+S_{5(2 s-1)}=S_{s(1 s+5)}$. Therefore $D(G)=S_{s(1 s+5)}$.

References

[1] D. E. Bryant and P, Adams, "Decomposing the complete graph into cycles of many lengths," Graphs Combin., 11(1995),97-102.
[2] K. Heinrich, P. Horák and A. Rosa, "On Alspach's conjecture," Discrete Math. 77(1989), 97-121.
[3] K. Heinrich and G. Nonay, "Exact coverings of 2-paths by 4-cycles," J. Combin. Theory Ser. (A), 45(1987),50-61.
[4] J. L. Ramirez-Alfonsin, "Cycle decompositions of complete and complete multipartite Graph," Australas. J. Combin., 11(1995),233-238.
[5] Sotteau, "Decomposition of $K_{m, n}\left(K_{m, n} *\right)$ into cycles (Circuits) of length $2 k$," J. Combin. Theory Ser. (B), 30(1981),75-81.

Department of Mathematics, Tamkang University, Tamsui, Taipei Shien, Taiwan, Republic of China.
E-mail address:cmfu@mail.tku.cdu.tw

[^0]: Received April 4, 1997.
 1991 Mathematics Subject Classification. Primary 05C70.
 Key words and phrases. Complete bipartite graph, decomposition into cycles .

 - This Research is supported by NSC86-2115-M032-011.

