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DECOMPOSITIONS OF Kmn INTO 4-CYCLES AND 8-CYCLES

CHIN-MEI FU AND WEN-CHUNG HUANG

Abstract. In this paper it is shown that G can be decomposed into p copies of C4 and g copies
of Cg for each pair of nonnegative integers p and ¢ which satisfies the equation 4p+8q = |E(G)],
-where —E(G) is the number of edges of G, when

(1) G = K., ,n, the complete bigartité graph, if m and n are even,

(2) G=Kunn — F, K,.,n with 1-factor removed, if m = n =1 (mod 4), and

B) G=K,un—-(FuU Ce), Kin,n with 1-factor and one 6-cycle removed, if m = n = 3 (mod
4). ’

Let m, n, and r be positive integers. Let Ko n denote the complete bipartite graph.
A 2r-cycle, Cy,, is an elementary cycle of length 2r and will denoted by the sequence
of its vertices (x1,z3,...72,.). A graph G can be decomposed into C4 and Cy if it is
possible to partiton the edge-set of G into of cycles of length 4 or 8. If the edge-set of
G can be decomposed into p copies of Cy4 and g copies of Cg, then G will be dencted by
G = pCy + qCs. '

The problem of the existence of a decomposition of the complete graph K, (the com-
plete graph from which a 1-factor has been removed, X, — F) into cycles of different
lengths has been investigated several times (see[1] for reference). In (5], we can see the
decomposition of the complete bipartite graph Ko, , into cycles of length 2k. In this
paper, we show that G can be decomposed into p copies of Cy4 and g copies of Cg for each
pair of nonegative integers p and g which satisfies the equation 4p + 8q = |E(G)|, where
|E(Q)] is the number of edges of G, when G = K, if mand n areeven, G = K, ,, — F
ifm=n=1(mod4),and G =K, , - (FUCg)ifm=n=1 (mod 4).

For convenience, we define D(G) = {(p,q) | p,q are nonnegative integers, G = pCy +
qCs}, and S; = {(p,q) | p,q are nonnegative integers, p + 2¢ = i}, where 7 is a positive
integer. Then D(K;,n) € Smnya. :

Since the necessary and sufficient. condition for the equation 4p + 8¢ = mn having
nonnegative integer solution is that mn is the multiple of 4. ‘ :

Main Theorem. Let s and t be positive integers. Then (1) D(K24,2¢) = Sy, (2)
D(I(43+1.4,+1 —F) = Ss(4s+1)) where F is a I—fa.ctor in 1(43.*.1’43.,.1, and (3) D(K4,+3l4,+3—
(FUCG))?, Ss(4s+5), where FUCs is a 1-factor and one cycle of length 6 in K443 4543.
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Let A and B be two scts of ordered pairs, we define that A+ B = {(a;+by,az2+02) |
(a1,a2) € A,(b1,b2) € B}, and 2- A = A+ A. Let ViEKmml = {05857 13 iy
Yoyt ’yn}-

Lemma 1. Let a and b be any positive integers. If one of a,b is cven, then Foped =
Sa + Sy; if a and b are odd, then S,y = (S, + Sp) U {(0, (a + 0)/2)}.

Proof. If a and b are odd, then the minimum value of p in S, and S, is 1, but the
minimum value of p is 0 in S, 4.

Next, we will show that D(K,,.9;) = Ss.
Lemma 2. D(I(3 ) = {(t,0) | t is a positive integer}.

Proof. For each positive integer t, I{3 3¢ can be decomposed into ¢ copics of K,
and 1(2’2 = C4.

It is casy to get the decomposition of Ky 4.

Lemma 3. D(I(4,4) = {(4,0), (0, 2} - ' -
Lemma 4. Let t be positive integer, t > 3, then D(I4,2t) = Sat.

Proof.

(1) ¢t = 3. K4, can be viewed as adding two vertices and two 4-cycles to Ky,4,thus I{4 6 =
6Cq = 2C4 + 2Cs. K46 = 4Cy -+ Cy for which we use the cycles (zy1,y1,T2,¥2, %3, V3,
I4wy4)1 (:Cl)y2:x41y5)) (zhySth’yG)) ($Z)y4’m3vy5)) and (:1:37.7/11‘7;4’:’/5)) and 1(4.5 =
3C3 for which we take the 8-cycles (z1,y1,%2,Y2, %3, Y3, T4, Y4),(T1, U3, T2, Y4, T3, Y5,
Z4,Ys), and (31,5, %2,¥6, T3, V1,24, y2). Hence D(K4 6) = S;.

(2) t =4. K45 can be viewed as an edge-disjoint, union of K4 > andI{; . Then we get
{(8,0),(6,1),(4,2),(2,3)} C D(I{4). Since K48 can also be decomposed into two
copies of Iy 4, that means (0,4) € D(K4,). Thus D(I48) = Ss.

(3) t = 5. Since D(I(,"lo) 2 D(I{,x‘,‘) + D(I('I.G) = 510, it means that D(Kmo) = Sm.

(4) t > 6, K4, can be viewed as an edge-disjoint union of I{4,5:..¢ and K4 6. Then
D(I(.q'zg) 2 D(I(.g'gt_(;) + D(I(ms). If D(I(4|2(__6) = Sg(t_:;), then by Lemma 1,
D(X4,2t) 2 Sp(1—-3) + Se = Sar. Thus the conclusion can be done recursively.

Theorem 5. Let 3,1 be positive integers, t > 3. Then D(K4s,2:) = Sast-
Proof. We can think of Iy as an edge-disjoint union of s copies of I(4 .

Lemma 6. Let ¢ be positive integer, t > 3, then D(Kg,2t) = S3t.

Proof. Now D(Ks,6) D D(K4) + D(K26) = So\{(1,4)}. And C, + 4Cs is given by
(xl|y1|I2>y2’I31y31$4)y4)a (-’51,ysyfcz,ys,xs,yz,ﬂis,ya),(-731,3/2,-’174,?/1,153,%:13613’6)’ (.'173,
Y61 T41 Y5, T5y Y1y T6, Y4 ),(T2, Y3, T5,Y4) - For t > 4, D(Kg2) D D(I(6,20—4) + D(I{6,4). By
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Lemma 4, we have D(K ) = S5, and by Lemma 1, Si(t-2) + Sg = S3, then we can
recursively obtain the conclusion.

Theorem 7. Lei s, t be positive integers, t > 2. D(Ky542,2) = St(28+1)-

Proof. Tor s > 2,t > 3, D(Kisp2,2:) D D(Kys5-4.2:) + D(Keg,2:). And we have
D(K4s—4,21) = Si(24-2) and D(Ks2) = S3;. By Lemma 1, Si2s—2) + S3t = Sy(2441).-
Combine Lemma 6, D Kiyepa.9) = Sitgaay, JOr 85 1,4 3 9.

From Theorem 5 and 7, we have shown that

Theorem 8. Let s,t be positive integers, s > 2 and t 2 3. Then DiKy,a:) = 8.
That is Kag 9 can be decomposed into p copies of Cy and q copies of Cg for each pair of
nonnegative integers p and q which satisfies the equation 4p + 8q = 4st.

Next, we consider the decomposition of K41 4541 —F. We will show that D(K 4541 4541
—F) = Ss(4s+l)-

Theorem 9. Let s be positive integer, then D(K4s41,4541- F) = Ss(4s41), where F
is a I-factor of K541 4541.

Proof.

(1) s = 1. The decomposition of Kss — F is given as follows. 5Cy : (z1,92,Z4,v3),
(23,91, %5, ¥2), (22,v1,74,95), (T2, ¥3, T5, y4), and (21,94,23,45). 3Cs + Cs : (71,1,
5,Y4,23,Y1,%2,Y3), (Z1,¥4,%2,9s), (€3,92,%4,¥5), and (z4,v1,75,y3). Cy + 2Cs :
(21,92, %4, Y5, T3, Y4, Z2,93), (21,v4,%s5,93,%4,v1, T2, 9s5), and (z3,91,25,¥2). Thus
D(I{5'5 i .F) = 55.

(2) s =2. Ky9 — F can be viewed as an edge-disjoint union of two copies of Kgs - F
and two Copieé of 1(4'4. Then D(I(gg —-F) 2 2'D(K5.5 ~F)+2D(I(4.4) =2-5S5+2.
{(4,0),(0,2)} = S18\{(0,8)}. And Ky — F can be decomposed into 9 copies of Cy :
(21, Y2, T4, Ys, T3, Y4, T2, ¥3), (%1, Y4, To, 41, %2, Y9, 24, ¥6),(%1, Y5, To, Vs, 7, Vs, T3, 47),
(%1, Y8, T4, Y7, T2, Y6, T3, ¥0), (%2, Vs, T7, Y1, T6, Y7, T5, ¥a), (z3,¥1,%4,93, T8, Y4, 5, ¥2),
(%5, Y1, T8, Y2, T6, Y4, T1,Y3), (5, Ys, T8, Y7, Te, Y8, Ts, yo) and (z6,v3: 9,2, 27, Y9, Ts,
ys).. Thus D(I(g,g e F) = Slg.

(3) For s > 8, D(K4s11,4541 — F) D D(Kyy-7.45-7 — F)+D(Kgo—F)+2- D(Kjg 4,-3).
By Theorem 5, D(Kjg 45-5) = Sy(2s-4), and D(Kp g — F) = Sy5. By Lemma 1, we
can obtain that S(s—2)(4s-7) +S18 +2-Sy(25-4) = Ss(4s+,). then the theorem is proved
recursively. :

The degree of each vertex in K4s43,4543 is odd and the number of edges is not a multiple
of 4, Thus we need to remove at least one factor such that the degree of each vertex is
even, and take away one 6-cycle such that the number of edges in Kyy43,4443 — (FU Cs)
is a multiple of 4.

Theorem 10. Let s be positive integer, then D(Kys43,4043 — (FUCs)) = Ss(4s+5)
where F' is a 1-factor of Kyois.4543.
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Proof.

s = 1. We can think K77 — (J7U Cs) as an edge-disjoint union of K55 — F and two
copies of I{3.4. Then D(I(7.7—(FUCg)) 2 D(K5,5—F)+2:-D(I{3,4) = Ss+2-{(2,0)} =
Se\{(1,4),(3,3)}. 3C4+3Cs can be obtained: (z1,Y2,Ts, Y1, T3, Y6, T2, Y5),(T1, Y3, T4,
Y2, %6, Y1, T2, Y7), (T1, Y4, T3, Y2, T7, Y1, %4, Y6), (T5,Y3,T6,Y4), (z2,Y3,T7,Y4), and (z3,
vs,Z4,y7). And Cy + 4Cs : (T1, Y2, Ts, Y1, T3, Y6, T2,Y5), (T1,%0, T4, Y3, T5, Y4, T2, Y7),
(1,3, T6, Y2y T, Us, T3, Y4)s (T2,91,T4, Y7, T3, Y2, %7, Y3), and (T6,Y1,T7,Y4)-

s = 2. We can view Kj; 11 — (FF U Cg) as an edge-disjoint union of K77 — (I"U
Cﬁ), 1(5,5—F‘ and two COpiCS of 1{4'5. Then D(I(“'“ —(IPUCG)) 2 D(I(7,7—(FUC(;))+
D(Kss—F)+2-D(K4,6) = Sg+Ss+2-56 = S26\{(0, 13)}. 13Cj is defined as follows:
(331,1/2,375,1/4,-7?3‘!/1,372,1/3), (-’Ux,y4,-’59,yl,1?8,y7»-"36»y5), (ml,yﬁs-’510,?/3,-'54,?/8,-732:?17),
(T2, Ya, T7+ Y3, T6, Y2, T4, Us), (T4, Y1, Ts,Y3, %8, Y5, T3, Y6), (T2, Yo, T7, Y2, T9, Y7, T5, Y9),
(z1, ys,-’cs,ys,mu,yz,fva,yg), (z1,Y10,%7, Y8, T11, Y7, T3, Y11), (T2,Y10,%6, Y4, T10,Y7,
T4.Y11), (xa,ys,-’ﬂlo,yl,-’177,.1/9,-’54,3/10), (5,Y10, T8, Y6, T9, ys, T, Y11), (T6,Y9, T8, Y11,
T7,Ys, T11, Y1), and (Ts,¥2, %10, ¥s; T9,Y3, T11,Y4)-

For s > 3. Let G = K4s434543 — (F U Cg). G can be viewed as an edge-disjoint
union of Kyy,1; — (F U Cg), Kys—7,4s—7 — I7, and two copies of Kyp4s—-8. Then
D(G) =) D(I(43_7'4,_7 — F) +D(I(11'11 = (FUC(;)) +2'D(I{10'4s~3). By Theorem 7,
D(I(10,45—-8) = Ss(2s—4), and by Theorem 9, D(K45-1,45-7 — F) = S(s—2)(as+1)- And
by Lemma 1, S(s—2)(4s+1) + S26 + Ss(20-4) = Ss(4s+5)- Therefore D(G) = Ss(4s+5)-
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