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DVORETZKY-ROGERS THEOREM FOR SEQUENCE SPACES
WITH op-TOPOLOGY

G. M. DEHERI

Abstract. In this article Dvoretzky-Rogers theorem has been established for the sequence spaces
equipped with op-topology.

The famous classical theorem of Dvoretzky-Rogers asserts that if E is a normed space
for which £} (E) = £ {E} (or equivalently, ! ® E =~ ¢'®,E), then E is of finite dimension
(cf. [10], p.67). This property also remains preserved for any £P(1 < p < o0) in place
of £1 (cf [6], p-104 and [2] Corollary 5.5). In this context, De Grande-De Kimpe [3]
provides an extension of Dvoretzky-Rogers theorem for perfect Banach sequence spaces
and Andreu [1] brings forth the validity of the aforementioned theorem for any echelon
space of order p(1 < p < oo) or order (p,q)- It has been investigated that the result
remains still true when one replaces £! by any non-nuclear perfect sequence space having
the normal topology (cf. [12]).

As a generalization of normal topology Ruckle [13] considers the op-topology associ-
ated with the sequence space p on an arbitrary sequence space ). This opu-topology on
) is defined by the family {p,,.:y € A*,z € p*} of semi-norms, where

M={yew:yz€p, Y€}
and .
(o0}
py12($) = Z |$nynzn|, T €A
n=1
~ (w denotes the space of all scalar sequences)

Note. For p = £, we obtain M = XX, p® = £ and op-topology on A becomes the
normal topology n(A, A*). Furthermore, it is easily observed that this p-dual A* enoelops
in particular, the well known a-, S-and ~-duals (cf. [14]).

The sequence space A is said to be p-perfect if A = A#¥ = (A*)*; where

Mi={zew:zy€ep, Vye€IN}
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Theorem F. Suppose p is a Hilbert space having a monotone normalized Schauder
basis. Then A, (p) is nuclear if and only if A(P) is nuclear.

Proof. A,(P) is nuclear if and only if to each a € P, there corresponds a b € P,

~

(b > a) such that the canonical map RKY = Ag(P5B) —3 A,(P;a) is nuclear (A-denotes
completion). One can identify the quotient space A, (p;a) = A(P)/ker p, with

po={z€p:z,=0 for n where a, = 0}
via the unique extension to the isometrical isomorphism 1/}(, of the embedding
Yo : Au(P3a) — e
where
Vo(z) = {anzn}, = € Au(P).
Then ) X
Db =1, 0 Kb o 9;!

is a diagonal map on p, determined by the sequence {a,/bn}. In view of the observation
made in page 144 in [16], K? is nuclear if and only if D? is nuclear and by the Theorem
8.3.3 in [10] this is equivalent to the fact that

{an(DZ)} et

where a,, denotes the n-th approximation numbers. Hence by lemma 3.3 in (7], D} is
nuclear if and only if
Z G s < 00

n>1

i.e., P C P{'. By the Grothendieck-Pietsch Criterion, this condition is equivalent to the
nuclearity of A(P) (cf., [10], Theorem 6.1.2).

Remarks. In view of Theorem F, proceeding in a similar way as in the case of
Theorem D, one can obtain first the analogous of Corollary B and then prove that; for
a normed space E, the following are equivalent:

(i) Au(P)(E) = Au(P){E},
(i) Au(P)[E] = Au(P){E},

i1) Ay(P) ®: E =~ A.(P)®x E,
(i) Au(
(v) Al

P)&.E ~ Au(P)&E,

4(P) is nuclear or E is finite dimensional.
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and C7 =0 if § > n. Since a review of the structure of C™ reveals that C™ belongs to
A(E) for all n, it follows from (*) that

# E Cil|=—=—= ¢ < sup E < Ciyu> |
{ ” ]” |bJZ.7| ueu* j:] ‘ !

i=1

O
< sup }:I < Ciuz|
j=1

ueu®

and consequently

(+) r Zuc,-nlﬁ%”—: <o, VCel(E).

Applying the Dvoretzky-Rogers Lemma to (+), in view of Lemma 2.3.14[16] we conclude

that
{ajyj } € £2
bjz;
and hence by Corollary B the space (A, op) is nuclear.
Given a Kothe set P and sequence space p, we have the generalized Kothe space
A, (P);
Au(P)={pew:nyE i Vy € P}.

The natural locally convex topology on A, (P) is generated by the family
{pay:a€ Pyep*}

of semi-norms, where

Pay(@) =D lanTaynl, T € Au(P).

n>1

For p = £, A,(P) = A(P) the Kothe space (cf. [10], p.97 and [16], p.190).
The following result in [15] characterizes the nuclearity of the space Au(P).

Theorem E. A,(P) is nuclear if and only if to each a € P and y € p*, there
correspond b € P and z € p* such that

GnlYn 1
— I
{ bnzn } ©

v To strengthen the above result we assert that, nuclearity of a Kothe space A(P) is
synonymous with the nuclearity of the A, (P) if p is a Hilbert space with a monotone
normalized Schauder basis. Precisely, we have the following
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Lemma C. Let (E, || ||) be an infinite dimensional normed space and let § = {0n}
be an element of £2. Then there is an T = (Tn) € A(E) with ||zp|| = |0n| for alln € N.

Now, for the sequence spaces equipped with ou-topology we present Dvoretzky-Rogers
theorem, which is basically contained in

Theorem D. For a normed space E, the following are equivalent:
(i) ME) =~ ME},
(i) ME] =~ ME},
(iii) A ®. E =~ AQ®r E,
(iv) A®E ~ @ E,
(v) (A, op) is nuclear or E is finite dimensional.

Proof. (i) = (ii): since A(E) is provided with the e-topology and AM{E} C A(E) C A[E],
we need only to establish that A[E] C M{E}. Let z = (z;) be an element in A[E]. Then
every z(™ of z is in A(E). By the hypothesis, given a € A* and y € p* there exist b € M,
z € p* and a real number r > 0 such that

n
Ty (™) = 7‘{ {EA |ajyj|}
=1

n
< sup {Zl < Wy > ijj'}

wewe | ;5
— Eb,z(x("))-
Since this holds for all n, we obtain
ria,y(z) < €,2(x) < 00.

(ii) = (i) is obvious. Also (iii) <> (ii) is clear and (v) = (iii) follows from Theorem
4.1 [16] (which is a well known Grothendieck’s result (Theorem 7.3.8 [10])). (iii) = (i)
follows by an argument analogous to that of [9], p.197 and p. 291.

(i) — (v). Suppose E is infinite dimensional. Given a € M\* and y € p* there exist
be M, z € p* and r > 0 such that

Twa,y(x) S €b,z (:L‘)

for all z in A(E), i.e.,

O (oo
(%) T {lefﬂjll lajy;l p < sup {Z| < zj,u > bjzjl
. = u =1

for all z in A(E). Let C = (Cj) be an element in ('(E). Define C™ = (C}) for every n
in N such that

Cp = % % g
1b; 251
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The details concerning the op-topology and the related aspects can be found from [13].
In this paper we show that Dvoretzky-Rogers theorem holds if the traditional normal
topology is replaced by opu-topology.

All classical notations and properties concerning locally convex spaces and sequence
spaces are taken from [8] and [14]. We adhere to [10] and [16] for nuclearity and [9] and
[16] for tensor products.

Given locally convex spaces E and F', the symbol E ~ F' has the following meaning:
E and F are equal as vector spaces and the identity map is a topological isomorphism
between them.

Given a perfect AK-sequence space p, (cf.[14]) a sequence space A which is u-perfect
and (E, || ||) a normed space, we consider the following generalized sequence spaces (cf.
[4] and [11]):

AE] = {z = (zn) € W(E) : {< Zn,u >}n € A\,Vu € E*}

provided with the e-topology generated by the family {e,y : @ € A,y € p*} of
semi-norms where

Eay(T) = sup pa,y({< Tn,u >})
ueye

= sup Z | < Znyu > GnYnl,
ueu®

U° being the (absolute) polar set in E* of the closed unit ball U of E. The subspace
of A[E] of all the elements = such that the n-th section {z(™} converges to z for the
e-topology is denoted by A(E) and we consider it endowed with the induced topology.
Finally,

ME} = {z = (2a) € W(E) : {l|zall}n € A}

endowed with the m-topology defined by the family {7, : a € M,y € p*} of semi-norms
where

Ta,y(€) = Pay([|Znl])

cO
=" llzall lanyal-
n=1

Recently, it has been investigated (cf. [15]) that

Theorem A. The space (A, o) is nuclear if and only if A p> = £AHp*.
As a direct consequence of this result we obtain the following:

7 Corollary B. The space (A,op) is nuclear if and only if N p* = (PA*p* for some
(each) p > 1.
We need the following Lemma of Dvoretzky-Rogers [5].
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