TAMKANG JOURNAL OF MATHEMATICS Volume 28, Number 4, Winter 1997

DVORETZKY-ROGERS THEOREM FOR SEQUENCE SPACES WITH $\sigma\mu$ -TOPOLOGY

G. M. DEHERI

Abstract. In this article Dvoretzky-Rogers theorem has been established for the sequence spaces equipped with $\sigma\mu$ -topology.

The famous classical theorem of Dvoretzky-Rogers asserts that if E is a normed space for which $\ell^1(E) = \ell^1\{E\}$ (or equivalently, $\ell^1 \otimes_{\varepsilon} E \simeq \ell^1 \otimes_{\pi} E$), then E is of finite dimension (cf. [10], p.67). This property also remains preserved for any $\ell^p(1 in place$ $of <math>\ell^1$ (cf [6], p.104 and [2] Corollary 5.5). In this context, De Grande-De Kimpe [3] provides an extension of Dvoretzky-Rogers theorem for perfect Banach sequence spaces and Andreu [1] brings forth the validity of the aforementioned theorem for any echelon space of order p(1 or order (p,q). It has been investigated that the result $remains still true when one replaces <math>\ell^1$ by any non-nuclear perfect sequence space having the normal topology (cf. [12]).

As a generalization of normal topology Ruckle [13] considers the $\sigma\mu$ -topology associated with the sequence space μ on an arbitrary sequence space λ . This $\sigma\mu$ -topology on λ is defined by the family $\{p_{y,z} : y \in \lambda^{\mu}, z \in \mu^{\times}\}$ of semi-norms, where

$$\lambda^{\mu} = \{ y \in \omega : yx \in \mu, \quad \forall x \in \lambda \}$$

and

$$p_{y,z}(x) = \sum_{n=1}^{\infty} |x_n y_n z_n|, \quad x \in \lambda$$

(ω denotes the space of all scalar sequences)

Note. For $\mu = \ell^1$, we obtain $\lambda^{\mu} = \lambda^{\times}$, $\mu^x = \ell^{\infty}$ and $\sigma\mu$ -topology on λ becomes the normal topology $\eta(\lambda, \lambda^{\times})$. Furthermore, it is easily observed that this μ -dual λ^{μ} enoelops in particular, the well known α -, β -and γ -duals (cf. [14]).

The sequence space λ is said to be μ -perfect if $\lambda = \lambda^{\mu\mu} = (\lambda^{\mu})^{\mu}$; where

$$\lambda^{\mu\mu} = \{ z \in \omega : zy \in \mu, \quad \forall y \in \lambda^{\mu} \}$$

Received September 2, 1996, revised May 31, 1997.

¹⁹⁹¹ Mathematics Subject Classification. Primary 46A12, Secondary 46A35.

Key words and phrases. Dvoretzky-Rogers theorem, nuclear spaces, $\sigma\mu$ -topology.

Theorem F. Suppose μ is a Hilbert space having a monotone normalized Schauder basis. Then $\Lambda_{\mu}(p)$ is nuclear if and only if $\Lambda(P)$ is nuclear.

Proof. $\Lambda_{\mu}(P)$ is nuclear if and only if to each $a \in P$, there corresponds a $b \in P$, $(b \geq a)$ such that the canonical map $\hat{K}_a^b : \hat{\Lambda}_{\mu}(P; b) \longrightarrow \hat{\Lambda}_{\mu}(P; a)$ is nuclear (\wedge -denotes completion). One can identify the quotient space $\Lambda_{\mu}(p; a) = \Lambda(P)/\ker p_a$ with

 $\mu_a = \{ x \in \mu : x_n = 0 \quad \text{for } n \text{ where } a_n = 0 \}$

via the unique extension to the isometrical isomorphism $\hat{\psi}_a$ of the embedding

$$\psi_a: \Lambda_\mu(P; a) \longrightarrow \mu_a$$

where

$$\psi_a(x) = \{a_n x_n\}, \quad x \in \Lambda_\mu(P).$$

Then

$$D^b_a = \hat{\psi}_a \ o \ K^b_a \ o \ \hat{\psi}_b^{-1}$$

is a diagonal map on μ , determined by the sequence $\{a_n/b_n\}$. In view of the observation made in page 144 in [16], K_a^b is nuclear if and only if D_a^b is nuclear and by the Theorem 8.3.3 in [10] this is equivalent to the fact that

$$\{\alpha_n(D_a^b)\} \in \ell^1$$

where α_n denotes the *n*-th approximation numbers. Hence by lemma 3.3 in [7], D_a^b is nuclear if and only if

$$\sum_{n\geq 1} a_n/b_n < \infty$$

i.e., $P \subseteq P\ell^1$. By the Grothendieck-Pietsch Criterion, this condition is equivalent to the nuclearity of $\Lambda(P)$ (cf., [10], Theorem 6.1.2).

Remarks. In view of Theorem F, proceeding in a similar way as in the case of Theorem D, one can obtain first the analogous of Corollary B and then prove that; for a normed space E, the following are equivalent:

- (i) $\Lambda_{\mu}(P)(E) \simeq \Lambda_{\mu}(P)\{E\},\$
- (*ii*) $\Lambda_{\mu}(P)[E] \simeq \Lambda_{\mu}(P)\{E\},$
- (*iii*) $\Lambda_{\mu}(P) \otimes_{\varepsilon} E \simeq \Lambda_{\mu}(P) \otimes_{\pi} E$,
- (iv) $\Lambda_{\mu}(P)\tilde{\otimes}_{\varepsilon}E \simeq \Lambda_{\mu}(P)\tilde{\otimes}_{\pi}E$,
- (v) $\Lambda_{\mu}(P)$ is nuclear or E is finite dimensional.

Acknowledgement

We acknowledge with thanks the comments and the suggestions of the referee.

and $C_j^n = 0$ if j > n. Since a review of the structure of C^n reveals that C^n belongs to $\lambda(E)$ for all n, it follows from (*) that

$$r\left\{\sum_{j=1}^{n} \|C_{j}\| \frac{|a_{j}y_{j}|}{|b_{j}z_{j}|}\right\} \leq \sup_{u \in \cup^{\circ}} \left\{\sum_{j=1}^{n} |\langle C_{j}, u \rangle|\right\}$$
$$\leq \sup_{u \in \cup^{\circ}} \left\{\sum_{j=1}^{\infty} |\langle C_{j}, u \rangle|\right\}$$

and consequently

(+)
$$r\left\{\sum_{j=1}^{\infty} \|C_j\| \frac{|a_j y_j|}{|b_j z_j|}\right\} < \infty, \quad \forall C \in \ell^1(E).$$

Applying the Dvoretzky-Rogers Lemma to (+), in view of Lemma 2.3.14[16] we conclude that

$$\left\{\frac{a_j y_j}{b_j z_j}\right\} \in \ell^2$$

and hence by Corollary B the space $(\lambda, \sigma \mu)$ is nuclear.

Given a Kothe set P and sequence space μ , we have the generalized Kothe space $\Lambda_{\mu}(P)$;

$$\Lambda_{\mu}(P) = \{ x \in \omega : xy \in \mu, \quad \forall y \in P \}.$$

The natural locally convex topology on $\Lambda_{\mu}(P)$ is generated by the family

$$\{p_{a,y}: a \in P, y \in \mu^{\times}\}$$

of semi-norms, where

$$p_{a,y}(x) = \sum_{n \ge 1} |a_n x_n y_n|, \qquad x \in \Lambda_{\mu}(P).$$

For $\mu = \ell^1$, $\Lambda_{\mu}(P) = \Lambda(P)$ the Köthe space (cf. [10], p.97 and [16], p.190).

The following result in [15] characterizes the nuclearity of the space $\Lambda_{\mu}(P)$.

Theorem E. $\Lambda_{\mu}(P)$ is nuclear if and only if to each $a \in P$ and $y \in \mu^{\times}$, there correspond $b \in P$ and $z \in \mu^{\times}$ such that

$$\left\{\frac{a_n y_n}{b_n z_n}\right\} \in \ell^1$$

To strengthen the above result we assert that, nuclearity of a Köthe space $\Lambda(P)$ is synonymous with the nuclearity of the $\Lambda_{\mu}(P)$ if μ is a Hilbert space with a monotone normalized Schauder basis. Precisely, we have the following

268

Lemma C. Let (E, || ||) be an infinite dimensional normed space and let $\delta = \{\delta_n\}$ be an element of ℓ^2 . Then there is an $x = (x_n) \in \ell^1(E)$ with $||x_n|| = |\delta_n|$ for all $n \in \mathbb{N}$.

Now, for the sequence spaces equipped with $\sigma\mu$ -topology we present Dvoretzky-Rogers theorem, which is basically contained in

Theorem D. For a normed space E, the following are equivalent:

(i) $\lambda(E) \simeq \lambda\{E\},\$

- (ii) $\lambda[E] \simeq \lambda\{E\},\$
- (iii) $\lambda \otimes_{\varepsilon} E \simeq \lambda \otimes_{\pi} E$,

(iv) $\lambda \tilde{\otimes}_{\varepsilon} E \simeq \lambda \tilde{\otimes}_{\pi} E$,

(v) $(\lambda, \sigma\mu)$ is nuclear or E is finite dimensional.

Proof. (i) \Rightarrow (ii): since $\lambda(E)$ is provided with the ε -topology and $\lambda\{E\} \subset \lambda(E) \subset \lambda[E]$, we need only to establish that $\lambda[E] \subset \lambda\{E\}$. Let $x = (x_j)$ be an element in $\lambda[E]$. Then every $x^{(n)}$ of x is in $\lambda(E)$. By the hypothesis, given a $\in \lambda^{\mu}$ and $y \in \mu^{\times}$ there exist $b \in \lambda^{\mu}$, $z \in \mu^{\times}$ and a real number r > 0 such that

$$r\pi_{a,y}(x^{(n)}) = r\left\{\sum_{j=1}^{n} ||x_j|| |a_j y_j|\right\}$$
$$\leq \sup_{u \in \cup^{\circ}} \left\{\sum_{j=1}^{n} |\langle x_j, u \rangle b_j z_j|\right\}$$
$$= \varepsilon_{b,z}(x^{(n)}).$$

Since this holds for all n, we obtain

$$r\pi_{a,y}(x) \leq \varepsilon_{b,z}(x) < \infty.$$

(ii) \Rightarrow (i) is obvious. Also (iii) \Leftrightarrow (ii) is clear and (v) \Rightarrow (iii) follows from Theorem 4.1 [16] (which is a well known Grothendieck's result (Theorem 7.3.8 [10])). (iii) \Rightarrow (i) follows by an argument analogous to that of [9], p.197 and p. 291.

(i) \rightarrow (v). Suppose *E* is infinite dimensional. Given $a \in \lambda^{\mu}$ and $y \in \mu^{\times}$ there exist $b \in \lambda^{\mu}, z \in \mu^{\times}$ and r > 0 such that

$$r\pi_{a,y}(x) \le \varepsilon_{b,z}(x)$$

for all x in $\lambda(E)$, i.e.,

(*)
$$r\left\{\sum_{j=1}^{\infty} ||x_j|| |a_j y_j|\right\} \le \sup_{u \in \cup^{\circ}} \left\{\sum_{j=1}^{\infty} |\langle x_j, u \rangle b_j z_j|\right\}$$

for all x in $\lambda(E)$. Let $C = (C_j)$ be an element in $\ell^1(E)$. Define $C^n = (C_j^n)$ for every n in \mathbb{N} such that

$$C_j^n = \frac{C_j}{|b_j z_j|} \quad \text{if} \quad j \le n$$

The details concerning the $\sigma\mu$ -topology and the related aspects can be found from [13]. In this paper we show that Dvoretzky-Rogers theorem holds if the traditional normaltopology is replaced by $\sigma\mu$ -topology.

All classical notations and properties concerning locally convex spaces and sequence spaces are taken from [8] and [14]. We adhere to [10] and [16] for nuclearity and [9] and [16] for tensor products.

Given locally convex spaces E and F, the symbol $E \simeq F$ has the following meaning: E and F are equal as vector spaces and the identity map is a topological isomorphism between them.

Given a perfect AK-sequence space μ , (cf.[14]) a sequence space λ which is μ -perfect and (E, || ||) a normed space, we consider the following generalized sequence spaces (cf. [4] and [11]):

$$\lambda[E] = \{x = (x_n) \in \omega(E) : \{\langle x_n, u \rangle\}_n \in \lambda, \forall u \in E^*\}$$

provided with the ε -topology generated by the family $\{\varepsilon_{a,y} : a \in \lambda^{\mu}, y \in \mu^{\times}\}$ of semi-norms where

$$\varepsilon_{a,y}(x) = \sup_{u \in \cup^{\circ}} pa, y(\{\langle x_n, u \rangle\})$$
$$= \sup_{u \in \cup^{\circ}} \sum_{n=1}^{\infty} |\langle x_n, u \rangle a_n y_n|,$$

 \cup° being the (absolute) polar set in E^* of the closed unit ball \cup of E. The subspace of $\lambda[E]$ of all the elements x such that the n-th section $\{x^{(n)}\}$ converges to x for the ε -topology is denoted by $\lambda(E)$ and we consider it endowed with the induced topology. Finally,

$$\lambda\{E\} = \{x = (x_n) \in \omega(E) : \{\|x_n\|\}_n \in \lambda\}$$

endowed with the π -topology defined by the family $\{\pi_{a,y} : a \in \lambda^{\mu}, y \in \mu^{\times}\}$ of semi-norms where

$$\pi_{a,y}(x) = p_{a,y}(||x_n||) = \sum_{n=1}^{\infty} ||x_n|| \ |a_n y_n|.$$

Recently, it has been investigated (cf. [15]) that

Theorem A. The space $(\lambda, \sigma\mu)$ is nuclear if and only if $\lambda^{\mu}\mu^{\times} = \ell^1 \lambda^{\mu}\mu^{\times}$. As a direct consequence of this result we obtain the following:

Corollary B. The space $(\lambda, \sigma\mu)$ is nuclear if and only if $\lambda^{\mu}\mu^{\times} = \ell^{p}\lambda^{\mu}\mu^{\times}$ for some (each) $p \geq 1$.

We need the following Lemma of Dvoretzky-Rogers [5].

266

G. M. DEHERI

References

- F. Andreu, "On the Dvoretzky-Rogers Theorem," Proc. Edinburgh Math. Soc., 27(1984), 105-113.
- [2] H. Apiola "Duality between Spaces of p-summable sequences, (p, q) summing Operators and characterizations of Nuclearity," Math. Ann., 64(1976), 53-64.
- [3] N. De Grande De Kimpe, "Locally convex Space for which $\Lambda(E) = \Lambda[E]$ and the Dvoretzky-Rogers Theorem," Compositio Math., 35(1977), 139-145.
- [4] N. De Grande De Kimpe, "Generalized Sequence Spaces"; Bull. Soc. Math. Belg. 23(1981), 123-126.
- [5] A. Dvoretzky and C. Rogers, "Absolute and unconditional convergence in normed linear space," Proc. Nat. Acad. Sci. U.S.A., 36(1950), 192-197.
- [6] A. Grothendieck, "Sur certains classes de suites dans les espaces de Banach et le theoreme de Dvoretzky-Rogeres," Bol. Soc. Math. Sao Paulo, 8(1956), 81-110.
- [7] K. John, Counter Example to a conjecture of Grothendieck, Math. Ann., 265(1983), 169-179.
- [8] G. Köthe, Topological Vector Spaces I, (Berlin-Heidelberg New York Springer 1969).
- [9] G. Köthe, Topological Vector Spaces II, Berlin-Heidelberg New York: Springer 1980).
- [10] A. Pietsch, Nuclear Locally Convex Spaces, Berlin-Heidelberg New York: Springer 1972).
- [11] R. C. Rosier, "Dual Spaces of certain Vector Sequence Spaces," Pacific J. Math., 46(1973), 487-501.
- [12] R. C. Rosier "Vector Sequence Spaces and the Dvoretzky-Rogers Theorem," (Preprint).
- [13] W. H. Ruckle, "Topologies on Sequence Spaces," Pacific J. Math., 42(1972), 235-249.
- [14] W. H. Ruckle, Research Notes in Mathematics 49(Pitmann, 1981).
- [15] M. A. Sofi, "Some Criteria for Nuclearity," Math. Proc. Camb. Phil. Soc., 100(1986), 151-159.
- [16] Y. C. Wong, "Schwartz Spaces, Nuclear Spaces and Tensor Products," Springer Verlag Lect. Notes 726, 1979.

Department of Mathematics, Sardar Patel University, VALLABH VIDYANAGAR - 388 120., Gujarat - INDIA.