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QUOTIENTS OF GROUPS

J. D. PHILLIPS

Abstract. Right loop right multiplication groups are identified as groups generated by a right
transversal to a corefrcc subgroup.

1. Introduction

A quotient, or homomorphic image, of a group is the set of all cosets of some normal

subgroup, together with the natural binary operation. Would it surprise you to learn that

sets of cosets of arbitrary, i.e., not necessarily normal, subgroups are also endowed with
a natural groupoid structure? This paper introduces such quotients and describes the

central role they play in a hard problem from the theory of groupoids : the classification
of multiplication semigroups of groupoids.

2. Basic Definitions

A groupoid is a set with a single binary operation, hereafter denoted by juxtaposi

tion. Asemigroup is a groupoid whose binary operation is associative. A quasigroup is
a groupoid with inverses, that is, a groupoid such that in xy = z, knowledge of any
two of x, y and z specifies the third uniquely (y is the right inverse of x with respect to

z, x is the left inverse of y with respect to z; when z is a two sided identity element,

the language here meshes with the common usage of "inverse"). A group is a nonempty
groupoid whose binary operation makes it both a semigroup and a quasigroup. These
four binary systems can viewed schematically as:
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groupoids

semigroups
(associative)

quasigroups
(inverses)

groups
(associative & inverses)

Thus, quasigroups are dual to semigroups in a natural way: quasigroups are "nonasso
ciative groups" while semigroups are "groups without inverses." (For a through overview
of groupoids, see [l].)

Given a groupoid Q, for every qc:Q, there corresponds two set maps, right and left
translation by q:

R(q): Q-+ Q;x-+ xq
L(q): Q-+ Q;x-+ qx.

The right translations generate a subsemigroup of the semigroup of all self maps on Q,
called the right multiplication semigroup, RMltQ, of Q:

RMltQ :=< R(q) : qEQ > .

Similarly, the left translations generate the left multiplication semigroup, LMltQ, of Q:

LMltQ :=< L(q) : qEQ > .

Together, these two semigroups generate the (two-sided) multiplication semzgroup,
MltQ, of Q:

MltQ :=< RMltQ, LMltQ >=< R(q), L(q) : qcQ > .
A groupoid Q is called right Cf!,ncellative if for each q in Q, R(q) is an injective map. If
each R(q) is also surjective, we shall say Q is a right quasigroup. A right loop is a right
quasigroup with a left identity element. The analogous left binary systems are defined
in the obvious manner.
The determination of which semigroups are MltQ for different classes of groupoids

Q is a difficult problem. MltQ has been characterized for certain groupoids, though [8].
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For instance, if Q is a group, then MltQ is isomorphic to (Q x Q)/Z, where Z is the
image of Z(Q) under the·diagonal embedding of Qin Q x Q. A right loop Lis an abelian
group iff MltL is isomorphic to L itself. The multiplication semigroups of various classes
of loops, i.e., quasigroups with a two-sided identity element, have also been classified [3],
[4], [5), but the general classification problem, frought with a welter of thorny obstacles,
remains open.
The study of quasigroups and their multiplication semigroups is a rich and active

field [2]. Unfortunately, to some, lack of associativity seems to shroud quasigroups in
mystery. But nonassociativity is no more mysterious than ordinary subtraction : the
integers Z under subtraction form a nonassociative quasigroup. The Cayley table of the
binary operation of a finite quasigroup takes the rather appealing form of a Latin square,
i.e., an n x n matrix such that each of {1, 2, ... , n} appears precisely once in each row
and precisely once in each column. Conversely, each Latin square determines a unique
quasigroup. For example, the Latin square

1 2 3
1 1 3 2
2 3 2 1
3 2 1 3

determines the unique three element, idempotent quasigroup. An important algebraic
reason for interest in quasigroups is the following basic result: MltQ is a group if and
only if Q is a quasigroup. In this case, MltQ is called the multiplication group. Similarly,
RMltQ is a group if and only if Q is a right quasigroup.

3. Right Transversals and Right Loops

The quotient groupoid of a group by a subgroup is usually considered only in those
instances when the subgroup is normal, in which case the quotient is itself a group. A
more general setting arises when the quotient groupoid is a loop [6), [8). In this case, if
the subgroup is Abelian and the transversal is "well-behaved," then the group is actually
solvable (4]! In the most general setting the quotient groupoid becomes a right loop.
More specifically, the (right) quotient of a group by an arbitrary subgroup can be viewed
as a right loop, as will be shown momentarily. This greatly enlarges the scope of the
usual investigation of quotients of groups by only normal subgroups.
Recall that a right transversal T to a subgroup H of a group G is a complete set of

right coset representatives. That is,

G = UtcrHt.

There is a natural G action on T, denoted by*, given by:

t * g := u, where u is the representative in T of the coset Htg.
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This action restricted to T itself, endows T with a binary operation. Thus, Tis naturally
a groupoid, and can be thought of as the right quotient of G by H. We use 工 to denote
this groupoid. If H is normal, then 工 is identical with the standard quotient group G/H.
In the general case (II not necessarily normal), it is easy to show that 工 is a right loop.
It is not necessary that 工 be a loop. For example, let G be the symmetric group on
three symbols. That is, let G =< a,bla2 = b3 = (ab)2 = 1 >. Then T = {l,b,ba} is a
right transversal to < a > in G. Of course, 工 is a right loop. Ilut, the reader can easily
check, 工 is not a loop. Thus, right loops appear naturally in the most general setting of
right quotients of groups by arbitrary subgroups. Left transversals and left quotients are
defined in the obvious manner.

Let T be a right transversal to subgroup H in a group G. There is a natural map
f: T~RMlt工，defined by f(t) = R(t). f extends to an ep1morphism F :< T >~
RMlt工，where < T > is the subgroup generated by T. So RMlt工 is an image of a
subgroup of G. It is easy to show that the kernel of F is the largest normal subgroup
of Hn < T > in < T >, the so-called core of Hn < T > in < T >, denoted by core
<T>(Hn < T >). That is:

< T > /[core<T>(Hn < T >)]~RMltT＿ ．

Of course if core<T>(Hn < T >) = I, then RMlt工 is actually a subgroup of G; that is,
< T >~RMltT The f 11· lo owmg emma summarizes this discussion.

Lemma. Let T be a right transversal to a subgroup H of a group G and let K =
Hn < T >. Then RMltT is a natural homomorphic image of < T >. Further, if
core<T> (K) = 1, then < T >空 RMl忙 ．

Note. A particularly appealing case of the lemma occurs when < T >= G. In this
case, if corea(H) = 1, then G itself is the right multiplication group of some right loop.

Example. Let G be any group. Let H be the trivial subgroup. Then the transversai
Tis all of G. Obviously both conditions in the theorem are satisfied. And so G becomes
the right multiplication group of a right loop. Moreover, this example shows that the
lemma offers a generalization of the right regular representation of G.

Example. Let G be a finite simple group. Let H be a subgroup of G of order p,
where Pis the least prime dividing IGI. Let T be any right transversal to Hin G. Then
< T >= G [7, 1.6.10]. And since core<T>(H) = 1, G is RMlt工

Conversely (to the lemma), let L be a right loop. Let H be the subgroup of RMltL
fixing the identity clement. The set T : = {R(x) : x E L} is a right transversal to H
in RMltL. Clearly, < T >=RMltL. Morcover, 1t 1s easy to show that the core of H in
RMltL is trivial, and that 工= L. These comments combine with the lemma to give the
following:

Theorem. A group G is the right multiplication group of some right loop L if and
only if it has a subgroup H and a right transversal T to H in G, such that 工 coincides
with L, coreo(H) = 1, and< T >= G.
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Note. In the theorem, if corec(H) is not required to be trivial, then G is the
relative multiplication gr'oup of some right lo.op L in another right loop M [6] (relative
multiplication groups are special subgroups of multiplication groups [8]).

4. Conclusion

A right quotient of a group by an arbitrary subgroup is equipped with a natural
right loop structure. Conversely, every right loop is realizable as such a right quotient.
Moreover, right loop right multipilication groups are identified precisely as right quotients
of groups generated by a right transversal to an arbitrary subgroup with trivial core. This
classification fits in naturally to an on-going research program in the theory of groupoids,
and it greatly enlarges the usual study of quotients of groups by only normal subgroups.
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