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AN INVERSE PROBLEM FOR A GENERAL DOUBLY-CONNECTED
BOUNDED DOMAIN: AN EXTENSION TO HIGHER DIMENSIONS

E. M. E. ZAYED

(==
Abstract. The spectral function ©(t) = E exp{—tA.), where {)\,}52, are the eigenvalues of
v=1
3
the negative Laplacian — V2 = — 2(8_27)2 in the (2!, 2, 2%)-space, is studied for an arbitrary
i=1
doubly connected bounded domain Q in R® together with its smooth inner bounding surface
51 and its smooth outer bounding surface S, where piecewise smooth impedance boundary
conditions on the parts S}, S3 of 51 and 53, S; of §; are considered, such that §; = ST usS;

and So = 53 US;.

1. Introduction

The underlying inverse problem is to determine some geometric quantities associated
with a bounded domain, from a complete knowledge of the eigenvalues {A}32, for the
3 Pa
negative Laplacian —V? = — 3~ (52;)? in the (z!, 22, z3)-space.
i=1
Let @ C R? be a simply connected bounded domain with a smooth bounding surface
S. Consider the impedance problem

—Viu = du in Q, (1.1)
0
(%) +7)u=0 onS, (1.2)

where % denotes differentiation along the inward pointing normal to S and 7y is a positive
constant, with u € C2(2) N C(Q).
Denote its eigenvalues, counted according to multiplicity by

0<A <A<A< <A<~ 00 asv— oo (1.3)

The problem of determining some geometric quantities associated with bounded domain
@ has been discussed by Zayed [6] and Hsu [2] using the asymptotic expansion of the
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spectral function
cQ

O(t) = ) exp(—th,) ast—0%. (1.4)
v=1
The problem (1.1) - (1.2) has been investigated by many authors (see, for example the
articles [1 - 5]) in the following special cases:
Case 1. v = 0 (the Neumann problem)
v |S|

+ -

00 = ey * Tom Pt

/HdS + ag + O(t*/?) as t — 0. (1:5)

Case 2. v — oo (the Dirichlet problem)

v _ 18,
(4rt)3/2 ~ 16wt 1271'3/2 172

o(t) = f HdS + a0 +O0(8/2) ast - 0F.  (1.6)

In these formulae, V' and |S| are respectively the volume and the surface area of 2,

while H = %(-Rl—l + R%) is the mean curvature of S, where R; and R, are the principal

radii of curvature. It has been shown that the constant term ao has the following forms:

5127 f(_ - -1— )2dS, In the case 1 (see [2]),
0 = 12 )2dS, In the case 2 (see [5]), (1.7)
In terms of the mean curvature H and the Gaussian curvature N = Elfz" the constant
term ag can be rewritten in the forms:
267 g‘(Hz — N)dS, in the case 1,
= ﬁ“lg;g(ﬂz — N)dS, in the case 2. (1.8)

Case 3. (the mixed problem)
If |S1]is the length of a part S; of the bounding surface S with the Neumann boundary
condition, and if | Sz| is the length of the remaining part S» = S\S; of S with the Dirichlet
boundary condition, such that S = S; U S, then with reference to [8,10], we get

_Y [S1] = |Sa|
o) = (4mt)3/2 * 167t "+ 127r3/2t1/2 [HdSl +/Hd,5’2} +
S
1
" 128 7/(H2 — M /(H2 - N)dSz} +O0(t/?) as t - 0% (1.9)
51

Zayed [10] has recently discussed the equation (1.1) together with the piecewise
smooth impedance boundary conditions:

o, ]
(3 1+’71)"u 0 in S, (=— 2+72)u—'0 on Sy, (1.10)

or
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where 3 and 7 - denote differentiations along the inward pointing normals to S; and
S respectlvely, m which S; is a part of S and S; = S\ S is the remaining part of
S, such that S = S; U Sz, while the impedances 7, and 7, are positive constants. The
author has calculated only the first three terms of the asymptotics of the heat kernel of
the problem (1.1), (1.10) and has determined some geometric quantities of the domain
{1

Now, let € be an arbitrary doubly connected domain in R® consisting of a simply
connected bounded inner domain §; with a smooth bounding surface S; and a simply
connected bounded outer domain Q. O ; with a smooth bounding surface S, where
@ = 0, US,;. Suppose that the eigenvalues (1.3) are given for the eigenvalue equation

—V2u = du in Q, (1.11)

together with the impedance boundary conditions
a ~
(a_m +7)u=0 on S, ( +’}'2)u =0 on Sz, (1.12)

where «; and 7, are positive constants.

Zayed [7] has recently discussed the problem (1.11), (1.12) and has determined the first
four terms of the asymptotic expansions of the spectral function @(t) for small positive
t. The author has determined some geometric quantities associated with the problem
(1.11)-(1.12). The object of this paper is to discuss a more general inverse eigenvalue
problem consisting of the eigenvalue equation (1.11) together with the piecewise smooth
impedance boundary conditions:

(52—1 +7)u=0 on S (j=1,2,3,4), (1.13)
where S} is a part of the inner bounding surface S; of Q and S} = S;\ S is the remaining
part of .5'1, such that S, = ST U S3, while S5 is a part of the outer bounding surface S,
of @ and S; = S, \ S} is the remaining part of S,, such that $, = S3 U S;, and the
impedances v; (j = 1,2, 3,4) are positive constants.

The basic problem is to determine some geometric quantitics associated with the
arbitrary doubly connected domain 2 in R? from the complete knowledge of the eigen-
values {A, }$2; for the impedance problem (1.11), (1.13) using the asymptotic expansion
of ©(t) as t — 0F.

We close this section with the remark that a similar inverse problem has been dis-
cussed recently by Zayed [12] where (2 is a two-dimensional doubly connected bounded
domain.

2. Statement of the Results

Suppose that the outer bounding surface S; of the domain  is given locally by
infinitely differentiable functions 28 = yB(0,)(8 = 1,2, 3) of the parameters ol (1=1,2).
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If these parameters are chosen so that o} = constant, are lines of curvature, the first and
second fundamental forms of S; can be written in the form:

2
ITi(03, Aoy) = Z gii(02)(Aod)?, (2.1)

and

IT (03, Aos) = Z dii(02)(A0E)?, (2.2)

In terms of the coefficients g;;, d;; the principal radii of curvature are Ry; = gi; /ai,’M (£ =
1,2). Consequently, the mean curvature H; and the Gaussian curvature N; of S, are

given as follows:
1,1 1 1

~ RuRa

Similarly, suppose that the inner bounding surface 5; of 0 is given locally by infinitely
differentiable functions z° = y#(0y1) (8 = 1,2, 3) of the parameters o% (¢ = 1,2). If these
parameters are chosen so that ! = constant, are lines of curvature, the first and second
fundamental forms of S; can be written in the forms:

2
I (01, 801) = ) gii(01)(Ad})?, (2.3)
1=1
and
I3 (01, Doy = de (01)(Aci)?, (2.4)

In terms of the coeflicients gj; ,dj; the principal radii of curvature are R}, = g%/d%;(i =
1,2). Consequently, the mean curvature H; and the Gaussian curvature N7 of S; are

given as follows:

., 1,1 1
Hl _ = — * R* %
22

2 Ry, Rzz
Let |S7], |S5] be the surface areas of the parts ST, S5 of S1 respectively, and let |S3],
|S:| be the surface areas of the parts Si, Si of 3, respectively. Then, the results of our
main problem (1.11)-(1.13) can be summarized in the following cases:
Case 1. 0< 71 <<1,12>>1,0< 13 << 1,94 >>1)

_ V i -1 * *
O) = 7 + 75 171~ 1531 - 203 ,, HiasDl+

+1531 - (511 -2 | masp} +

4

1 ) ) o
+W{ /S;(Hl — 871)dST + /S HydS; +
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/ (Hy ~ 335)ds; + [ Hyas;}

St

. 2, 4T,
g 7 [ L = 30" = (¥ = P + S

+ [ 1B - (N7~ 1605 Hp)ls
2

26 47

+7/ [(Hl o 3’)/3)2 — (N1 — —-—")/3H1 + 7
S3

7 ’73)]d3*

+ [ - 16751H1)]dsz}
S*

4

RS 34g% _ L g5

13 3 1 3 *
— - dS; — — | H;dS
1220 /S;(Hl 373)°dS;3 315 Js. id 4}
+0(t) ast—0%. (2.5)

Case 2. (0< <<, >>1,13>>1,0<y<<1)

In this case, the asymptotic expansion of ©(¢) has the same form (2.5) with the
interchanges 73 < 74, 55 & S}.
Case 3. (71, 72>>1,0< 73, 14 << 1)

2

1% 1 (= . . e
@(t)—(47rt)3/2+16ﬂt{§|5i| (1871 — 277 fﬂds

g7

1 2 . )
AE T { Z " Hl ds; + ; fs : (Hy - 3y:)ds; }

12871-{ Z f ) [Hy" — (Nf — 167, H;)]dS}

+7Z / [(Fy = 3%)? = (Vs = Doy + S 42)]ds; }

2
+3 )W{ 3102 H' dS] + 14402/* (H1 = 37) dS*}

St
+0(t) ast— 0+. (2.6)

Case 4. (0 < 71, 72 << 1, 73, 74 >> 1)

In this case, the asymptotic expansion of ©(t) has the same form (2.6) with the
interchanges v1 <> 13, 72 +* 74, Hy 4 H} and Sf(i = 1,2) 4 SF (i = 3,4).
Case 5. (11 >>1,0< 12 <<, >>1,0< << 1)
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In this case, the asymptotic expansion of O(t) as t — 0 has the same form (2.5) with
the interchanges v1 <> v2, 73 ¢ 74 ,57 < S5 and S} & S;.
Case 6. (11 >>1,0< 12 <<1,0<y3<<1,74>>1)

In this case, the asymptotic expansion of @(t) as ¢ — 0 has the same form (2.5) with
the interchanges v, <> 72 and S} < S53.
Case 7. (0 <1 << 1,72 >>1,7v3, 14 >>1)

V * *
O(t)—(m)w {11851 - (s51 - 205 , F1asD)

—Eusn 7 [ Hds)}

W / (Hl 3’)’1 dSl f Hl dSz + Z 5 .H]_dS:}
1 5 . 26 47 .
+1aga /;[(Hl = 3m)" = (NI = S HE + Z)lds]
+ [ 1B - (7 = 1695 D)l
2
4
+3 [ [ - 0% - 169 H)las;
i=3 Y51
i 1/2 13 ® 3 * L 53 *
(WS) 1440 Js. (Hi = 3n)°d5 ~ 315 sz i dss
-5 Z Hfdsg‘} +O(t) ast— 0F. (2.7)

Case 8. (71 >>1,0< 12 << 1, 73, 74 >> 1)

In this case, the asymptotic expansion of ©(t) as ¢ — 0 has the same form (2.7) with
the interchanges v; > 2 and S} < S;.
Case 9. (1,72 >>1,0< 13 << 1,74 >> 1)

In this case, the asymptotic expansion of ©(t) as ¢ — 0 has the same form (2.7) with
the interchanges v1 < 3, 72 <> V4, ST ¢ 53, S5 « Sy and H; & HS.
Case 10. (71,12 >> 1,13 >>1,0< 74 << 1)

In this case, the asymptotic expansion of G(t) as ¢ — 0 has the same form (2.7) with
the interchanges vy; < 4, v2 ¢ 73, S & S;, S5 <> S5 and H, < H{.
Case 11. (1 >>1,0< 12 <<1,0< 93, 74 << 1)

Hids3)) + 3 (1571}

ST i=3

@(t) — V. 1 * * -1
= @eE 1o 1881 - (81 - 2
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127r3/2t1/2 / H{dS} + f (H{f — 372)dS; + Z (H1 *371)515*}

1 2 * —1 gy *
"‘%{ S;[Hl — (N — 16, “H7)|dS}

" . 26 47
+7 [ 1 = 3m)? = (v = Doty + tylass

= 5 26 A7 5
73 [ (H3)? = (Mo~ oy + Tl |

t 1/2 1 *3 = 13 * _ 3 ®
+Hz) { 305 /s Hi dST+ 75 *(Hl 312)°dS;
* +
144052/*(111 37:)%dS? } +0(t) ast—0 (2.8)

Case 12. (0< 7 <<1,72>>1,0< 73, 14 << 1)

In this case, the asymptotic expansion of ©(t) as t — 0 has the same form (2.8) with
the interchanges v; < v, and S} + S;.
Case 13. (0 <71, 72 << 1,93 >>1,0< 7 << 1)

In this case, the asymptotic expansion of ©(t) as ¢ — 0 has the same form (2.8) with
the interchanges 71 ¢ v3, v2 > 14, S§ < S3, S5 < S} and H} « H,;.
Case 14. (0 <1, 12 << 1,0 < 73 << 1, v4 >> 1)

In this case, the asymptotic expansion of ©(t) as ¢ — 0 has the same form (2.8) with
the interchanges v1 <> y4, 72 ¢ 73, S§ ¢ S;, S3 ¢ S} and H] < H;.
Case 15. (0 < 71, 72, 73, 14 << 1)

4
Ot) =tz + (3 IST /16w

1 2 . . )

* 26 47 .
ugﬂ Z/ [(H] _3%)2 (NY - ’Y‘LH1 =i 7 = Vi )]dS

26 47
+Z/ [(H1 - 3%:)* — (N1 - 7%H1+~*%)]d5*}

=3

1440 )1/2 Z/ (H*—?)’}’E 3d8*+z (H1—37i)3d52‘}
+0(t) ast— 0%, (2.9)

Case 16. (71, 12, 13, 14 >> 1)
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14 1 ]
. s _ ¥ G H*dS*
4

+3o38:1 -2t | Hiasy)}
i=3 S¢

2 4
1 * * *
+121r3/2t1/2 { Z . Hids + Z . H,dS; }
i=1 751 i=3 ¥ 5!
2
]- * * ot * *
+%{ Zf*[H12 — (N7 — 16v; ' Hy)]dS;
L Ml |

4
+ 3 [ 1 - v - 167 E)las:
=3 &

2 4
1 4 1/2 %3 * 3 *
v e : H3dS:
315 (73 {2 S:Hl d5; +§ - 4,
+0(t) ast—0F. (2.10)

With reference to the formulae (1.5) - (1.9), and to the articles [7], [8], [10], [11], the
asymptotic expansions (2.5)-(2.10) may be interpreted as follows:
(i) §2 is an arbitrary doubly connected domain in R3 and we have the piecewise impedance
boundary conditions (1.13) with small/large impedances v; (j = 1,2, 3,4) as indicated
in the specifications of the sixteen respective cases.
(ii) For the first five terms, 2 is an arbitrary doubly connected bounded domain in R®
of volume V.

In (2.5), the part S§ of S; is of surface are |S}|, mean curvature (Hf —3v,) and Gaus-

sian curvature (N} — £y, Hi + ££4?) together with the Neumann boundary conditions,

while the remaining par S3 = S; \ St of S is of surface area (|S3] — 275 [ 5+ H1dS3),
2
mean curvature Hy and Gaussian curvature (Nf — 16y, 'H ) together with the Dirichlet

boundary condition. Similarly, the part S3 of S, is of surface area |S5|, mean curvature
(H; — 3v3) and Gaussian curvature (N} — 27673H 1+ 47773?) together with the Neumann

boundary conditions, while the remaining part Sj = S5 \ S¥ of S; is of surface area
(155 = 2yt [s. H1dS}), mean curvature H; and Gaussian curvature (N; — 16, ' H;)
together with the Dirichlet boundary condition.

Similarly, we can interpret the asymptotic expansions (2.6)-(2.10) in a similar way as
we have done above for the formula (2.5).

3. Formulation of the Mathematical Problem

In analogy with the two-dimensional problem [12], it is easy to show that the spectral
function O(t) associated with the problem (1.11)-(1.13) is given by the formula:
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o) = f{sz’(-:@@; t)dz (3.1)
where G(2,2,;t) is the Green’s function for the heat equation

ou
2= — 2
Vu 5 [22)

subject to the piecewise smooth impedance boundary conditions

a -
(""—an_ +79)G(21,25t) =0 forz, € S5, (j=1,23,4), (3.3)
J

and the initial condition

i T ) = Ay — ! ;
t_l)r(%(’(@l:?.'z:) (z, -?.32) (3.4)

where 6(z; — 2,) is the Dirac delta function located at the source point z,. Let us write

G(Z1,Z2;1) = Go(Zy, Ta3t) + x(21, 295 1), (3.5)
where | ,
Golan, 22it) = (4mt) ™ exp { — B BLY, (36)

is the “fundamental solution” of the heat equation (3.2), while x(z,, z,;¢) is the “regular
solution” chosen in such a way that G(z,, z,;t) satisfies the piecewise smooth impedance
boundary conditions (3.3).

On setting z; = z, = z, we find that

Ot) = ET}%”W + R(), (3.7)
where i
R(t) = fgf)jx(:y,@;t)drg- (3.8)

‘The problem now is to determine the asymptotic expansion of R(t) as t — 07. In what
follows, we shall use Laplace transforms with respect to ¢, and use s2 as the Laplace
transform parameter; thus we define

+o0 5
Clangis) = [ e ™Glay,an it (3.9)
JO

An application of the Laplace transform to the heat equation (3.2) shows that

G(z;,%,; s*) satisfies the membrane equation

(V2 = s¥)G(z,,2,;8%) = —6(z,,2,) in 9, (3.10)
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together with the piecewise smooth impedance boundary conditions
(~-§"~+ NG (z m'z)—() for z, € S7,(j =1,2,3,4) (3.11)
8nj i L1:L2;5 ) = ~1 449 J =149, %) .

The asymptotic expansion of R(t) as t — 01, may then be deduced directly from the
asymptotic expansion of R(s*) as s — oo, where

R(s%) = I f?(a;,:z:; s%)dg

Q :. (3.12)

4. Construction of the Green’s Function

It is well known (see [5], [6]) that the membrane equation (3.10) has the fundamental

solution

- exp(—srg, z,)
Go(z1, 225 8%) = 1 ==, (4.1)
WT;Eliyz

where 7y g = |z, — T,| is the distance between the points z; = (zi,z{,2}) and
T, = (z1,22,23) of the region Q. The existence of this solution enables us to construct
integral equations for G(z,z,;s%) satisfying the piecewise smooth impedance bound-
ary conditions (3.11) for small/large impedances v;(j = 1,2,3,4) as indicated in the
specifications of the sixteen respective cases. Therefore, Green’s theorem gives:
Casel. 0 <y <<1lL 12>>1,0<y3<<1,v>>1)

In this case, we have the integral equation

— exp(—srz.z.)
Gz, 225 5°)= =152

47!"!‘:131_152
1 _ o exp(—sryg. ) exp(—sryz.)
+to- G(ﬂ.il,y;sz){a === ]+’Y1—”——2—}dy
™ Jsy iy Tyz, Tyz, -
1 0 —= exp(—sryz,) . 9  exp(—sryg,)
g G(tyl,y;sz){—-—*"z+7 ! =— ]}dy
T gy Onoy YT, Onay "yz, )
1 — o exp(—sryg, ) exp(—sryz,)
5 G(szl,g;sz){a =] 4y = }dy
™ 8z n3y T?j"{"z T:g;gz -
1 o — exp(—sryz. ) o exp(—sryzg._)
= | =iy ,y;sz){ﬂw—ﬁ;”z—+ - Al }d
2 Sy 871431 ( b2 T, V4 3n4y Ty ] g

(4.2)

Similarly, the integral equations of G(z;, Z; s%) for the other fifteen respective cases can
be found easily.
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On applying the iteration methods (see [6], [9], [10]) to the integral equation (4.2),

we obtain the Green’s furiction G(z,,z,; s2) which has the regular part:

(&, 25:68%)

1 / exp(—-srgv;ly){ 8 eXp(“ST@jﬂEz)]_i_ exp(—srygz) p
8t Js;  Try Omy"  Tyz, " g, :
1 8 exp(—srg,y) cexp(—sryg,) | 9 exp(—sryg,)
51 | 5] S 2220 1ay
8% Js3 Ona 2 Tgy Ty, 3”235 Ty,
1 [ exP( exp(—srysgz) exp(—sryg, )
MSﬂ'Q/‘ {8 — I+ ) }dy
53 nsy Tyz, Tyz,
1 ) GXP(—STQ«‘I?}) exp(—sryz,) | 9  exp(-sryg,)
+87r2/ on T i ]{ ) 7 on [ ) ]}dg_;
& Uiy z.Y Tyz, Y Tyz,
exp( sTg b,) 8 exp(—sryg,)
— M, (3, i
Pai 1, )
exp( —sTy'g, )
¥ }dydu
Ty'z,
o exp(—srz y) . (exp(—sryz,)
T s Js: ngy T:l:]:g T?j’g"z
8  exp(—sry T,)
+ = dydy’
72 3n2y1[ Tyr:g ]} y :g
exp(—srz,y) & exp(—sryz )
MMkl .t 4y { ==
+5.3 / ) f ) s (¥:y") Bry [ e ]
oxp( STy,
+93 }dudy
/ exp ~ ST, U)]I ( ’){exp(ﬁsrg,@z)
87(‘2 s /5 3"4y T3'1y K e TEJ'@E:
o exp(— 6TU13;2)
+ 2E }d dy'
74 (9'n,4yr Ty'-’E ] y “J
PXp( sty y) . ’
/t { 8z 871.21 re Y ]M')’z_l(y’y )d@j}
8 exp(—sryg,) exp(—sryg, )y
(e
iy "y'e, "y,
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1 J exp(—-ST:l’jl'U) & GXP(—STqu; )
ey ” {f —%Mﬁ(g,y')dy}{—~z_
2

87['2 T:EI.:Q‘ = ?"gt:’gz
o exp(—sryg. )
My ]}dg'
T zy’ Tyl:£2

]. eXp(ﬁST.Zily) * 6 QXI)(—ST:U,:-I; )
g [ T a2 O
2y S

e,y 3”1?;' Ty,

exp(—sryz. )
ey e }dy'
T!_l’l‘?}z =

g [, Tt )

87T2 lely
exp(—sry@z) }

"y,

1 o exp(—srglg) . ’
+§ﬁ[‘f{ S:;a"‘lza![ T,y ]M"f?l(y’y)d:‘f}

o  exp(—sryg,) exp(—sryz. )
X{a e ]+'Yl——y s }dy’
n“ Z 'ry’:t: ’ryfg; <

(“Xp —8Tg y) Oxp .S'T'ryfgz)
87r2/',. /ﬂ,, L3, (y,y')dy {——-———~—

exp( sry, T, )
+ypt | }ay
2 6%41;! [ Ty: y

eXp o ‘;T'_L' y) exp(—STyf:g )
/ {f M:;g (g,g’)dgj}{__..__:_z
* * rm y Ty.'xz

exp(— STy, )]}

l

Y

+73

+'y dy'
2 (3”21 I :g :Ez ':!
+ 1 { 0 exp(—sﬁt.?l@_/)]L*wl(y y’)dy}
87["2 g* S; 8n2:{! Tiljly "Yz g3 4 4

exXpl—S8Tryy CXD{— 8Ty 1
x{ 8 p( y:gz)] p( y-!;z)}d

+73 =
1 { o exp( .S’l"x]y)
T Qo —= 1M -1(q \ Nda }
8 S* L5 3n431 rfE;y ] V4 (‘:’ g) '}_’

[

exp(—sryg. ) 5 exp(—sryg.)
|+ e |}y’
ry'%:z 8n2&-: Ty:‘ryz -
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1 /4{ o, [exp(_sr@ly)ll,h1(y,y’)d.y}

871'2 S aﬂzy Tg’;ly
exp(—sr 'z,) g exp(—sryz,)
<{ L2 L2 gy

4
YT, Onay: ry'z,

exp( STy y)
L ")d
871' f*{ &5 6n4y sz 741(!‘!,9") "}

exXpl—sry- exp ST '

+
8”_3:21 Tyrgz gL y 5
1 exp(—srg, y) exp(——sryr;_gz)
—— R g "Nd 2
87T2 g* {/n ’I':El:g 73( 7?‘{) y}{ Ty:@z
o exp(—sryg,)
B d !
+FY4 8”4@!' T’,g':_f;'z ]} Zj;
(4.3)
where
M, (y,y") ZK‘”) ¥,y (4.4)
v=0
exp(—sryyr) exp(—sry.y')
KP4, y) { =] 4+ == } (4.5)
27T 8nl’y Tyyl '['yyl
o0
M (yy) = D (D)KL (), (4.6)
v=0
exp(——sryy: ) ~ 52 exp(—sryy, )
K 5y —{ LA [ 22 ]}, (4.7)
27 8’!123!1 Tyyf anzy(‘angyr Tﬂgy!
Ly (y,9") = > _(-1)"KEX (W, y), (4.8),
=0

(0)

where Ky, (y', y) has the same form (4.5) with the interchanges v; <> y3 and n,  ns,

1y, 9) ZK('?I v, y), (4.9)

r=0

where K @ )1 (y',y) has the same form (4.7) with the interchanges v, + 74 and n, ¢ n,,

M. (y,y) Z K("_)ly Y), (4.10)
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1 cexp(=sryy) 9 exp(—sryy)
K= LI o 2y
2m T‘yyr a'ngy Tyyf
o0
My (y,y) = 3 (-1 K5 ('), (4.12)
v=0
. 1 52 exp(—sryy)
EQ.y) = 51 =
anlyangyr 'Fy:gt
g exp(—sryy)
+n5———="1}, (4.13)
anly 13!:2'!
Ly (,y) =Y KV y), (4.14)
v=0
1 H? exp(—sryy)
*K(O) 44
(U ’ y) 27T { ansyanlyf T:gyr ]
o exp(— sryyf)
+73 [ = ]}, (4.15)
3113_12 T?jy'
Loy (y,y) Z( )"K', y), (4.16)
where K ( y',y) has the same form (4.5),
M a(y,y) = Ky, y), (4.17)
k v=0 T4

where *K 7((0_)1 (3, ¥) has the same form (4.11) with the interchanges 7, ¢ 4 and n, > N4,
AL

L% (v,) Z+K“’)<y y), (4.18)
FEO () = -2;—-{ exp(—sryy:)
> T 6n136n4yf ryy
. Biy[exp(r;;’:yy') }, : (4.19)
My, () = i(-l)”**ff w(y'y), (4.20)

v=0
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where **K,(,{;) (y',y) has the same form (4.15) with the interchanges 7; <> R,

% v 7-(V)
L -1(y,9) Z( DK (YY), (4.21)

- <
v=0

where *K © .(y',y) has the same form (4.11)

M, (y, y>—Z( 1)K 20 (), (4.22)

where K ©) 1(y',y) has the same form (4.7) with the interchanges v, +» 74 and ny ¢ 14,

ZK( (¥, 1), (4.23)
v=0
where KSJ_)I (v',y) has the same form (4.7)
-1\ Y
L) = 30D DKL (), (4.24)

v=0

where "‘K,(;‘j_)1 (y',y) has the same form (4.11) with the interchanges 2 > 74 and 1y ¢ 74,
A

Wy = Z*K(”) (¥, y), (4.25)

where t K (0 )(y y) has the same form (4.19) with the interchanges v > 3 and 1; + ng.

In these formulae, we note that K, 8 )(y y) being the iterates of the kernel K,(h)(y Y),
(1=1,2,3,4).
Similarly, we can find ¥(z,,z,; s2) for the other fifteen cases.

On the basis of (4.3), the function X(z;, z,; %) will be estimated for s — oo together
with small/large impedances v; (§ = 1,2, 3,4). The case when z; and z, lie in the neigh-
bourhood of the parts Sy, S5 of the inner bounding surface S, or in the neighbourhood
of the parts S}, S; of the outer bounding surface S, is particularly interesting. In what
follows, we shall use coordinates similar to those obtained in Zayed [6, 9, 10] to examine
this case.

5. Differential Geometry of the Boundaries

Let h; >0 (j =1,2,3,4) be sufﬁciently small. Let n;(j = 1,2, 3,4) be the minimum
distances from a point 2 = (z!,2?%,2%) of the domain  to the parts S} (j = 1,2,3,4)
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respectively. Let n,(o1), (j = 1,2) denote the inward drawn unit normals to the bound-

ries ST, (j = 1,2) of the inner bounding surface §; and let n;(02)(5 = 3,4) denote the
inward drawn unit normals to the parts S7, (4 = 3,4) of the outer bounding surface
S, respectively. Then, we note that the coordinates in the neighbourhood of the parts
S7(j = 1,2) of S| are in the same form as in Section 5.2 of Zayed [9] with the inter-
changes n1 ¢ nj, by & h;, I & I;, D(I)) D(I;) and 6, ¢ &; (§ = 1,2). Thus, we
have the same formulae (5.2.1) - (5.1.5) of Section 5.2. in Zayed [9] with the interchanges
n < ny, ny(01) < n,(or), (5 = 1,2). Similarly, the coordinates in the neighbourhood
of the parts S; (j = 3,4) of S3 are similar to those obtained in Section 5.1. of Zayed [9]
with the interchanges no < nj, ha & hj, Iy & I;, D() D(I;) and 6, & 0z {j =3,4)
Thus, we have the same formulae (5.1.1) - (5.1.6) of Section 5.1. in Zayed [9] with the
interchanges ny < nj, ny(oy) ¢ n;(02), (4 = 3,4).

6. Some Local Expansions

It now follows that the local expansions of the functions:

exp(—sryy) g exp(—srgy)
4 ), (G =1,2,3,4), (6.1)

T_Z;y : anﬂ! ’l";gy

when the distance between z and y 1s small, are very similar to those obtained in Sections
4 and 5 of Zayed [6]. Consequently, for small /large impednaces ; (j = 1,2, 3, 4) the local
expansions the following kernels:

K’E’?)(y!’y)’ *K'(r?)(:g,’:‘!)v +K’{)‘?)(fy_’!y)7 (.7 — 1:3)3

**K'Ts (:g’? ZJ_'L (6'2)
K20y, "KWy (=24 (6.3)

when the distance between y and y' is small, follows directly from the knowledge of the
local expansions of the functions (6.1).

Definition 1. Let £, and ¢, be points in the half-part €2 > 0, of the (¢1, ¢2, £3)-space.
Define )

pro = /(€ - &) + (& - @) + (& + &)
An e}‘(g 1> &, 8)-function is defined for points ¢, and £, belong to sufficiently small do-
mains D(I;) (j = 1,2,3,4) except when £, = £, € I; (j = 1,2,3,4), where ) is called
the degree of this function. For every positive integer A, it has the local expansion (see

[6], [9] ):

i) =6 E)ED " €D ()" () ()
‘ 1 1
exp(-sp12)
§ p12 - +RA(§1’§255)’ (6.4)



AN EXTENSION TO HIGHER DIMENSIONS 293

where L* denotes a sum of a finite number of terms in which f (€1,€2) is an infinitely
differentiable functions. In this expansion Py, P, Iy, Iy, I3 are integers, where P; > 0,
P,20,0200L>0A=minPi+P,—q),qg=1; +1, + I3 and the minimum is
taken over all terms which occur in the summation ©*. The remainder R (€,,€,58) has
continuous derivatives of order d < A satisfying

DdRA(§1,§2;s) = O(s " exp(—Asp12) as s — oo, (6.5)

where A is a positive constant.

Thus, using methods similar to those obtained in Sections 6-10 of Zayed [6], we can
show that the functions (6.1) are e*-functions with degrees A = —1, -2, respectively.
Consequently, for small impedances v (7 = 1,3) the functions (6.2) are e*-functions
with degrees A = 0, —1, —1, —1, respectively, while for large impedances \; (j = 2,4)
the functions (6.3) are e*-functions with degrees A = 0,1, respectively (see also [8]).

Definition 2. If z; and g, are points in large domains Q + Si(j =1,2,3,4), then
we define

Tig = mﬁn(r;gly + rggz_g) if y € 57,

Ry, = m&n(r;ly + Tq_;zy) if y € S5,

7';2 = mﬁn(?‘g‘:lg + T;EQ:(!) if y € Sg,
and
R, = myin(r@ly + r%g) ify € 5],

An E*(z,,2,;s%)-function is defined and infinitely differentiable with respect to x,
and g, when these points belong to large domains ) + S:(7 = 1,2,3,4) except when
Zy =23 €55 (j =1,2,3,4). Thus, the E*-function has a similar local expansion of the
e*-function (see [6], [9], [10]).

With the help of Section 8 and 9 in Zayed [6], it is easily seen that the formula (4.3)
is an E*(z,, z,; s)-function and consequently

G(z,, 2,;8%) = (){ exp(—A15712) } 4 (){ exp(—A2sR;5) }

T%z R'iag
exp(—Assriz) exp(—A4sR3)
+0{ = }+o{ o 5 (6.6)

which is valid for s — co and for small/large impedances v (3 = 1,2,3,4) as indicated
in the specification of case 1, where A; (7 = 1,2,3,4) are positive constants. Formula,
(6.6) shows that G(z,,z,; s?) is exponentially small for s — co. Similar statements are
true in the other fifteen cases.

With reference to Section 10 in Zayed [6], if the e*-expansions of the functions (6.1)-
(6.3) are introduced into (4.3) and if we use formulae similar to (6.4) and (6.9) of Section
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6 in Zayed [6], we obtain the following local behaviour of X(z;,Z,; s%) when 713, Ri2, 71,
and R}, are small, which is valid for s =+ co and for small ¥, 3 and large 72, 74:

331;-7»'2: ‘7"15"521 a (67)

H‘M,ﬁ

where
(a) if £, and z, belong to a sufficiently small domain D(/1), then

exp(—sp12) N O{ exp(—Ai15p12) } (6.8)

0
— . 2 — 1 s 1
Xl(-’Eu-?Ez: 8 { N 553) } D12 o12

(b) if 7, and z, belong to a sufficiently small domain D(I3), then

- exp(—sp12) exp(—Az5p12)
. ; ,s + O ,
X2(Z1, To = % { -7t 651 } o pos }

(c) if z, and z, belong to a sufficiently small domain D(I3), then

- 2y L _1\1exp(—sp12) exp(—Azsp12)
X3iZ1,L2; 8 )_ 871'{ 73(663) } 12 +O{ 1o }, (610)

(d) if ; and z, belong to a sufficiently small domain D(ly), then

Xa(Z1, 22 8°) = — (6.11)

1 o exp(—sp12) exp(—Asspi2)
s +0
877{ (851 )} P12 { P12

When ri3 > 8y > 0, Ryja > 8 > 0, iy > 835 > 0 and R, > é4 > 0 the function
X(z1,T5;5?) is of order O{exp(— Bs)} as § —» 0o, where B is a positive constant. Thus,

since lim 22 = lim 212 = Jim "2 = lim =1 (see [6], [9]), then we have the
rip—0 P12 R12—+0 P12 rio—0 Pz R" —0 P

asymptotic formulae (6.8)-(6.11) with p;2 in the small domains D(I;) (j = 1,2,3,4) being
replaced by 712, Ri2, r}; and RY, in the large domains 2 + 57 (j = 1,2, 3,4) repsectively.
Similar formulae for the other fifteen cases can be found.

7. Construction of Qur Results

Since, for & > h; > 0 (j = 1,2,3,4), the functions ‘)‘{j(g:,@;sz) are of order
O{'exp(—QsAjhj)}, (7 = 1,2,3,4),the integral over the region  of the function
%(z,T; s*) can be approximated in the following way (see (3.12)):

. 4 . hj
Re)=3 [ [ xms{1-26m + @7 Jagas;

IJ=3Gx e3_
83 €3=0
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5 hj
5/ [ nimnfssaenm s enmaes
J= 131‘ £3=0
4

+Z {exp 23Ajhj)} as s — 00. (7.1)
j=1

If the e*-expansions of X;(z,2;5%) (j = 1,2,3,4) are introduced into (7.1), and with
the help of the formula (10 2) of Section 10 in Zayed [9], (see, also [6]) we deduce, after
inverting Laplace transforms and using (3.7), that our results (2.5)-(2.10) have been

constructed.
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