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HADAMARD PRODUCTS OF CERTAIN MEROMORPHIC
UNIVALENT FUNCTIONS

OH SANG KWON* AND NAK EUN CHO**

Abstract. The object of the present paper is to show convolution properties, order of starlike-
ness, integral transforms and the extreme points for certain classes of meromorphic univalent
functions having postive coefficients. All of the results are sharp.

1. Introduction

Let ¥ denote the class of functions of the form
1 o0
k
= = E 1.1
f(z ) = + 2 apz ( )

which are regular and univalent in the punctured disk E = {z: 0 < |z| < 1}. A function
f belonging to X is said to be meromorphically starlike of order « if it satisfies

—Re {z;’((zz)) } >a

for some a(0 < a < 1) and all z € U = {z: |2] < 1}. We denote by X*(a) the class of
all meromorphically starlike functions of order a.

The class £*(a) and related classes have been extensively studied by Bajpai[2], Clunie
[4], Pommerenke [7], Morgra, Reddy and Juneja [6] and others ([1], [3])-

The Hadamard product or convolution of two functions f,g in £ will be denoted by
f * g. Robertson [8] has shown that if f,g € X, then so is their convolution f * g.

Let (A, a, 8,7) denote the class of functions f in ¥ satisfying the condition

Re|2*(D*f(2)) + 1| < B2y - D)22(D*f(2))' + (2ay - 1)

for some (0 < @ < 1), B(0 < B <1),v(3 <~ < 1) and for all z € U, where D :X 5%
is the operator defined by

D f(z) = E——I;W * f(2)(A > —1). (1.2)
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Notice that from the identity

1 B 1 A+2 2z —1
z(1—2)M2 7 z(1 = 2) 1L * (()\ +1)z(1 - 2) i A+1)z(1 - z)2> ’

we get
2(DAf(2)) = (A + DM f(2) — (A +2)D* f(2)(A > -1). (1.3)
For A\=n € Np = {0,1,2,...}, we note [9] that the relation (1.2) may be expressed
as
. 1 ()|

Let ¥,, £7(a) and X,(), @, 8,7) denote the subclasses of X, £*(a) and (X, a, 3,7),
respectively, whose elements can be expressed in the form

1 (oe]
i = ;+Z~:akzk (ax >0,z € U). (1.5)

In particular, the classes ¥,(0,a,1,1) and £,(0,, 3,7) are introduced by Aouf[1]
and Cho, Lee and Owa[3], respectively.

For the classes £,(0, @, 3,7) and ¥} (a), Cho, Lee and Owa[3] and Mogra, Reddy and
Juneja [6] proved the following results

Theorem A. Let f be of the form (1.5) and 0 < a < 1,0<B<1, 1 <y < 1. Then
f€2,(0,a,B,7) if and only if

D _Kk(1+26y — Blar < 26v(1 - a).

k=¥

Theorem B. The extreme points of £,(0,0,3,7)(0<a<1,0< <1, % <v<1)
are the functions given by fo(z) = % and

287(1 - a) Sk
k(l + 281—f)

fie(2) = (k=1,2,...).

Theorem C. Let f be of the form (1.5) and 0 < a < 1. Then f € X5 (a) if and only
if
Z(k +a)ap <1-a.
k=1

In this paper, we obtain certain properties of f * g when f € X (), ,,7) and
g€ Zp(py0,8,7) for A,p>0and 0<@<1,0<6<1,0<f<1, 3 <7<1 Wealso
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determine the order of starlikeness and consider integral transforms for the functions in
2,(A, 0, B,77). Further, we find extreme points of the class £,(A, a, 3,7).

2. Convolution Properties
We first prove the following result which will be used heavily in the paper.

Lemma 1. Let f of the form (1.5) be regular in U, A > -1,0<a<1,0<8<1
and £ <y < 1. Then f € Z,(\,, 8,7) if and only if

> k(1 +28y - B)Br(Nax < 28Y(1—a) (2.1)
k=1
where A+1D)A+2)--A+k+1)
Bk(A) = %+ 1) (2.2)
Proof. Since -
DAf() =~ + Y BilWaust, (23)
k=1

in view of (1.3) and the definition of ¥,(A, a, 8,7), we have
f e EP(A’ahB)’Y) <: D/\f e Zp(05a7lga 7)’ (24)

and so Lemma 1 follows immediately from Theorem A.

Corollary 1. Let f be of the form (1.5), A > -1, 0< a < 1,0< 8 <1 and
5 <Y<l IffeX,(\a,B,), then

o < —2B1(1-0)
= k(1 + 2By — B)Bi(A)
with equality for the functions of the form

1 26v(1 - a)
Te)= P k(1 + 26y — B)Bi()) d

For the next theorem and its corollaries, we assume that f is given by (1.5) and g by

(k>1),

1 (o o] i
— Tan e > . -r
9(2) - + kE=1 biz® (b > 0,z € U) (2.5)

Theorem 1. Let A >0, 0 >0, v =00rland0 < a<1,0< 4§ < 1. If
f€Zp(Aa,B,7) and g € Ep(p,6,B,7), then f x g € Ty(v, p, B,7), where

_ (T+28y-0B)A+1)A+2)(p+ 1) (e +2) — 48y(1 — a)(1-8)w+1)(v+ 2)
# 1+267-B) A+ D +2)(p+ D)z +2)

(2.6)
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Proof. We need to find the largest p = p(a, 8, A, i, v, B,7) for which

= k(1 + 28y — B)
:L;Bk()\) 2Bl —a) arp <1 (2.7)
and
- k(1+ 28y - B)
,;Bk(ﬂ) ) bp <1 (2.8)
imply that
% k(1 + 28y - f)
;Bk(l/) 2By(1 = p) apbr <1. (2.9)
Using the Cauchy-Schwarz inequality, (2.7) and (2.8) together yield
o~ k(L +267 - B) ( Bu(N)Bi(p)
> 2 ((1 STER) ) Vagb < 1. (2.10)

k=1

Thus it is sufficient to show that

B (v) Bi(\)Bi(u) \?
T, akbe < ((15a><1k—6>)

arby

for all p < p(e, 6, A, p1,v, 8,7) and each k > 1. Equivalently, we need to prove that

Bi(\) By () ) 1-p

arb; < 2.11

< (o0 0s) o B

for all p < p(e, 6, A, p,v,8,7) and each k > 1. On the other hand, it follows from (2.10)
that 1
26y ((l—a)(1—5)>5

arbr < 2.12

Vot S KT 28y —B) \ BiVER) -

for each k > 1. Therefore, in view of (2.11) and (2.12), it is sufficient to establish that

28y ((1~a><1—6))% . ( Bi(\)Bi () ) 1=
k(1+2B7—-B) \ Be(N)Br(p) 1-a)1-0)) Br@)

that is, that

268v(1 - a)(1 — §)Br(v)
k(1 + 2By — B)Br(A\)Bi ()

<1-

which is equivalent to

26v(1 — a)(1 - 6)Bi(v)
k(14 2By - B)Br(N)Bi(p)

(2.13)
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Note that :
1 =20,
B’“(”)‘{k+2ifu=1.
Als
" . <1 - <1
Bi(A) = 77 Bi(p) —

Thus it follows that the right hand side of (2.13) is an increasing function of & > 1.
Setting k = 1 in (2.13), we have

g5 26v(1 — a)(1 — 8)Bi(v)
- (14 287)B1(A)Bi(p)
_(1+28y-B)A+1DA+2)(p+1)(p+2) - 4871 —a)(1 - &) (v + 1)(v + 2)
a (14287 = B)A+ 1A +2)(p+1) (e +2)

This completes the proof of Theorem 1. The result is sharp for the functions

4687(1 — a)
(1 +28y—-B) A+ 1)(A+2)

f\ )"‘ zezp(’\:a,ﬁa7)

and

el = 45(1 — 8)
(1 + 28y - B)(n+ 1)(p+ 2)

Taking A = p = v =0 and a = § in Theorem 1, we have

Z€ EP(#’:(ss :8’}/)

Corollary 2. If f,g € 5,(0,a,8,7), then f xg € 5,(0,1— 22112’ g ).

Putting A = 4 = v = 0 in Theorem 1, we obtain

Corollary 3. If f € £,(0,0,8,7) and g € £,(0,6,8,7)(0 < a,6 < 1), then fxg €
28v(1—a)(1—6
(0,1 — 29020020 g ),
For the next theorem (Theorem 2) and its corollary, we assume that f is given by
(1.5), g by (2.5) and A by
1 o0

h(z)==+ ) (a} +b})2z* (z€E). (2.14)
k=1

N

Theorem 2. LetA20,0§a<1,0<ﬁ§1and%S'ySl. Then

1
1,9 € Zp(h, 0, 8,7) = sh € Tp(A,n,,7),

wher
’ 161(1 - a)?
A+1DA+2)(1+28y-8)

n=1-
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The result is sharp.
Proof. Since f € ¥,(), a,3,7), Lemma 1 yields

) (Bk(A)k(1+2m_ﬁ)) a2 < (ZB ) "’(”21[’3 a)ﬂ)ak) <1

= 28v(1 - a)
Similarly, :
- k(1+2[7"y—,3)) 2
> (e L= g <
Hence -
Z% (Bk(A)k(; [;;(ij ;)ﬂ)> (2 +52) < 1. (2.15)
k=1

We now want to find the largest n = n(a, 8,v, A) such that

= 1 k(1 + 28y — B)
kg{ 2 (Bk('\) 26v(1 —n) ) (af +b;) < 1. (2.16)

Thus (2.15) implies (2.16) if

By(MVk(1+287- ) _ (Bk(A)k(l + 267 - ﬁ))2
28v(1 —n) . 26v(1-a) ’

or equivalently,
28v(1 - @)?
<1- :
"= T B + 287 - B)

Since the right-hand side of (2.17) is an increasing function of k(k > 1), we have

48v(1 — a)?
N S W | TS WD g 7 oy L

The result is sharp for the functions

(2.17)

467(1 - o)
(1 +28y—-B) A+ 1)\ + 2)
For a function f of the form (1.1), it is easy to see that the condition (2.1) provides

only a sufficient condition for the function to be the class (), o, 3,7). More precisely,
the function f € £(\,a, 8,7) if

f(2) =g(z) = (2.18)

D kBe(N(1+ 287 — B)|ax| < 26+(1 - a). (2.19)

k=1

As a consequence of (2.19), we have
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Theorem 3. For A\> -1,0<a<1,0<p<1, 1 5<v<landar >0 (k>1). let

flz)= —+Zakz € Xp(\ a,B,7) —+Zbkz

k=1

for z € D. Then
frgeZXa,B,y) if bk <1 (k>1)

and
fxg€Xp(A\a,B,7)if0<b <1 (k>1).

Proof. We observe that

> kBr(\)(1 + 287 — B)|arbx| = ZkBk (N1 + 28y — B)ay |bx]

k=1 k=
Z EBr(A)(1 + 28y — B)ar, < 26v(1 - a),
and so, in view of (2.19), it follows that f* g € £(\,a,8,7). If 0 < by < 1, then

the above observation yields the inequality (2.19) which, using Lemma 1, proves that
f*g € XA\ a,B,7). This completes the proof of Theorem 3.

Corollary 4. Let f and g be as defined in Theorem 3. If f € £,(\,a, 8,7), then

(1) fxg € 2(0,a,8,7) if |be| <1 (k>1).
(i) f*9€X,(0,a,8,7)if0< b <1 (k>1).

3. Order of Starlikeness

Theorem 4. Let A >0,0<a<1,0<8<1 and%ﬁ’ygl. If fe (M e, 8,7),

then
e ez ((421= 0040049 410 —o))
(1+28y-B)A+1)A+2)+48y(1-a) )’

The result is sharp.

Proof. In view of Lemma 1 and Theorem C, it suffices to show that, for a function
f of the form (1.5), the inequality (2.1) implies that

) (1+23~,—a)(x+1)(x+2)_4;;7(1,—(1)
— | 1 _ (4£287-B)D)O42)=4By(1-a) | “* = -
k=1 (1+287=B)(A+1)(A+2)+48v(1+a)
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which holds if

(14+28v=B)(A+1)(A+2)—46~y(1—a)
k + (T520y—8) (1) (A 3) T4 (1—a) < Bu(V) k(1 + 28y — f)
1 (LR =B) ) O42)—4fy(1-a) = 287(1 - )
(A28 -B)(A+1)(A+2)+48~v(1+a)

or equivalently, when

(k+D(1+28y-BA+ DA+ +4(k-1DBy(1-0) _

Gk, A, @, B,7) = 4kBr (N (1 + 28y — B)

We note that G(1, A, o, 8,7) =1. Therefore, it suffices to show that G(k, A, e, B,7) is a
decreasing function of k(k > 1), that is, that

Glk+1,2a8y  [(k+2)1A+28y-B)(A+1)(A+2)+4kBy(1 - a)]
Gk, N\ o, B,7) [(k+1)(1+28y=B)A+1)(A+2)+4(k—1)8y(1 - a)]
k(k + 2)

x(k+1)(A+k+2) s1 4.4

But the inequality (3.2) holds if and only if, for each fixed A(A > 0) and a(0 < a < 1),
B(0 < B<1)and v(3 <v<1), we have

HkE)=[k+1)Q+28y-BA+1)(A+2)+4(k - 1)ByQ - a)](k + 1)(A+k+2)
—[(k+2)(1+ 28y - B)A+1)(A+2) +4kBy(1 — a)lk(k+2) > 0.

We observe that H(1) = (4A +3)(A + 1)(A +2)(1 + 28y — B) — 123y(1 — o) > 0 and

H(k+1)—HKk) =20+ 28y -8 A+1)(A+2)+88y(1 — a)l\k
+BA+D)AZ+3N1+287 - B8) +48v(BA+ a) + (1 — a)))
+2(1 - B)(3A+1) > 0.

forallA>0,0<a<1,0<fB<1land % < 4 < 1. This completes the proof of Theorem
4. The result is sharp for the functions
46v(1 — a)

1
f6) =90 =2+ Tramr-pO+ DT D)

By a similar proof of Theorem 4, we can obtain the following theorem.

Theorem 5. Let f and g be as defined in (1.5) and (2.5), respectively. Then, for
A>0,0<a<1,0<f<land i <vy<1,

P~ ((J\ +1)>(A +2)*(1 + 28y - B)* — 16(By(1 - a))z)
2 PAA+1)2A+2)2(1+28y-pB)2+16(By(1 — )2 )’

f,9 € (X, @, 8,7) =

where h is given by (2.14). The result is sharp for the function given by (2.18).
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4. Integral Transforms

Theorem 6. Let f be of the form (1.5) and X > 0. If f € Tp(A,a,B,7), then the
integral transforms

Felz) = c/ojL u’ f(uz)du (0 < ¢ < )

are in the class Lp(A, —:g—*f%,ﬁ,fy). the result is sharp.

Proof. From the definition of F,, we have

1 0
1 cag k
F: ¢ d — ] .
% c-/ouf(uz)u z+;k+c+1z

In view of Lemma 1, it is sufficient to show that

k(l +2.3’Y B) cag
ZB N3 =y £l (4.1)

Since f € Z,(A, @, 8,7), (4.1) will be satisfied if,

¢ 1
< ’
(1-3%22)(k+c+1) " 1-a

or equivalently, when

1-a)c &
(1— 32y (k+c+1) ~

I(k,\,a,c) =

Since I(k, )\, @, c) is a decreasing function of k(k > 1), our proof is completed. The result
is sharp for the function

267(1 — a)

Hz) = tax B -+ L2

5. Extreme Points and Its Application

In view of Lemma 1, we observe that £,(}, a, 8,7) is a closed convex family. Using
Theorem B (or Lemma 1), we may obtain the extreme points of ¥,(}, @, 8,7).

Theorem 7. The extreme points of Tp(\,a,8,7), where A > -1, 0 < a < 1,
0<pB<1and -é- < v <1, are the functions given by

—}_ , zzl 2py(1 - a)
Bifz) =<y Fle) = + kB (N (1 +28y - B)

ol T (5.1)
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where By(X) is defined in (2.2).

Proof. Since the operator D> : YoM, 8,7) = £,(0,a,8,7) is an isomorphism
from X,(A, «, 8,7) onto £,(0,a, 3,7), it preserves extreme points. In view of (2.3) and
Theorem B, it follows that the extreme points of Yp(A, @, B,7) are given by (5.1).

Corollary 5. Let f be of the form (1.5), and X > 0. If f € £,(\, @, B,7) then

1 4(1 - a)
r (28 - B0+ 012 WIS T s e No+2)"

with equality for the function Fi(z) defined in (5.1).

1 46v(1 — a)

(2] = r),

Proof. As a consequence of Theorem 7, we have
. 1
1 - mE‘XM()Ha:ﬁ)’Ya k)rk _<. If(z)' S ; + mka'XM(Aa a’lB”Y, k)rka
r

where

__ 28y(1-aq)
M, a,B,7,k) = kBr(A)(1+ 28y —-B)°

It suffices to verify that M (), a, 8, k) is a decreasing function of k(k > 1), that is, that

M\ e,B,7,k+1) k(k + 2) -
M, a,B,7v,k) — (k+1D)A+k+2) =

which proves the result.

Remark. For A\=0,3=1, 7= 1and A =0, Theorem 7 and Corollary 5 above give
the corresponding results for %p(0,0,1,1) and £,(0,q, 8,7), respectively.
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