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PRIME NONASSOCIATIVE RINGS WITH SKEW DERIVATIONS

CHEN-TE YEN

Abstract. Let R be a prime nonassociative ring, G the nucleus of R and s,t be automorphisms
of R. -

(I) Suppose that 4§ is an s-derivation of R such that sé = ds and X is an t-derivation of R. If
AS™ =0 and 6™ (R) C G, where n is a fixed positive integer, then A = 0 or 6371 = g,

(IT) Assume that & and XA are derivations of R. If there exists a fixed positive integer n such
that A"4 = 0, and §(R) C G or A™(R) C G, then 6% = 0 or 5”4 — @,

1. Introduction

Let R be a nonassociative ring. We adopt the usual notation for commutators and
associators: [z,y] = zy —yz and (z, y, z) = (zy)z —z(yz) for z,y, z € R. We shall denote
the nucleus of R by G. Thus G consists of all elements 7 in R such that (n,R,R) =
(R,n,R) = (R,R,n) = 0. Denote the group of all automorphsisms of R by Aut(R).
An additive mapping 6 from R into R is called a skew derivation or an s-derivation
if 6(zy) = d(z)y + s(z)d(y) for all T,y in R, where s € Aut(R). If s is the identity
automorphism of R then § is called a derivation of R. Let Der(R) be the Lie ring of
derivations of R. A ring R is called prime if the product of any two nonzero ideals of R
is nonzero.

Posner [3] proved that if R is a prime associative ring of characteristic not two with
derivations A and & then A6 € Der(R) implies A = 0 or § = 0. Jensen [2] partially
extended this result. Two of his results are as follows: If R is a prime associative ring
with derivations A, § and there exists a fixed positive integer n such that A\d™ = 0(A™d = 0)
then A = 0 or §*»~1 = 0 (62 = 0 or \12n—9 — 0). In this paper, we improve and generalize
these results to the prime nonassociative rings with skew derivations.

In every ring R we have the Teichmiiller identity

(w$7y:z) - (w’$y7z) + (w)ziyz) = (:J(IE,’I ’Z) + (w,m,y)z for all W, T,Y,z € R. (1)

Note that the associator (z,y,2) is linear in each argument. Thus using (1), we have
that G is an associative subring of R.
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2. Results

Our first main result is the following Theorem 1, which improves and generalizes
Jensen’s Theorem 1.

Theorem 1. [5] Let R be a prime nonassociative ring and let s,t € Aut(R). Suppose
that § is an s-derivation of R such that s6 = s and \ is an t-derivation of R. If \6™ =0
and 6™(R) C G, where n is a fized positive integer, then A = 0 or §37—1 = .

To prove Theorem 1 we need a Lemma. The proof of the Lemma is the same as that
of [4, lemma 1], except that the equation (4) of [4] is replaced by

5"(zy) = 3 di(s™ " (2))d*(y) € A.

=0

Lemma. Let A be subring of R. If 6"(R) C A then R§"1(R) C A. Proof of
Theorem 1.

Let ker(A) = {c € R: A(c) = 0}. Then ker(}) is the subring of constants of R under
A. The hypothesis Ad™ = 0 implies 6”(R) C ker()). By the Lemma, we get R6°"~1(R) C
ker (). Since 6"(R) C G and sé = ds, using [4, Theorem] we obtain that R is associative
or 0°*~1 = 0. Assume that §37—1 # 0. Then R is associative. Because of R&*"—1(R) C
ker(A) and Aé™ = 0, for all z,y,z in R we have

0= A(8°""1(y)) = A(2)6%" 1 (y) + t(z) A(831 (¥) = Az)8*" ()
and so A(zz)63"~1(y) = 0. The last two equalities imply

0= (A(2)z + t(2)A(z))s3"1 (y)
= M2)z6*" 1 (y) + t(z)A(z)8*"1(y)
= A2)ms" 1 (v).

By the primeness of R, this implies A(2) = 0 or 6**~1(y) = 0. In view of §37-1 # 0, we
obtain A(z) =0 for all z in R. Thus \ = 0, as desired.

Our second main result is the following Theorem 2, which improves and generalizes
Jensen’s Theorem 2.

Theorem 2. Let R be a prime nonassociative ring and let § and \ be derivations
of R. If there exists a fized positive integer n such that \"§ — 0, and 6(R) C G or
A™(R) C G, then 62 =0 or \6n—1 — .

Proof. The derivations of R form a Lie ring under commutation. Therefore [6,A] =

0A—Ad is a derivation, [6A — Ad, A = 6A% — 2A6\ + \25 is a derivation, and [§)% — 2)6) +
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A%8,A] = 6% — 3A0A2 + 3A26) — A3§ is also a derivation. Continuing we may conclude

that
2n—1

Z (2”2_‘ 1)(_1)z’)‘i5/\2n—1—z’

=0
is a derivation. The coefficients are not germane to the rest of the proof, so we suppress
them from here on out. Thus, using A\"§ = 0 we have that
SAPPTL L AGAI2 4L 4 Am15)R s o derivation of B (2)

Since §(R) C G or A*(R) C G, applying [4, Theorem ] we obtain that R is associative,
or 6 =0 or A3~1 = (. [f §2 = 0 or \3n-1 — 0, then we are done.

Suppose that 6% # 0 and A3"~! £ 0. Then R is associative. Because of A\"§ = 0, we
get (OA2"—1 £ \gAZn—1 4 ... A"T18A™)8 = 0. In view of 62 # 0, by (2) and Theorem 1
the last equality implies

GNP 4 AgAZn—2 4 ... + A"TL5A = 0. (3)
Premultiplying (3) by A»~! and applying A"™§ = 0, we obtain
XL -1 =i, (4)

Using (4) and premultiplying (3) by A™=2, it follows that An—2§)2n—1 1 y\n~1g)2n—2 _ 0.
Hence, we have 0 = (An—2§)\2n—1 4 A"716A%72) X and so by (4)

AP250%m = 0, (5)

As the proof of [2, Theorem 2], we obtain AP—3A2n+1 — yn—dgy2nt2 _ | _ oA3"-2 =
Combining (4) with (5) yields

A"2[6, A]A?1 =, (6)

Since A"§ = 0, we get A™[d,A] = 0. Thus, replacing § by [4, A] and comparing (4), (5)
and (6), and as the last proof we have

A"73([6, AL, ANt =, (7)
Continuing in this manner, we finally obtain

/1)\2”—120, where u = [[--- 0, A, Al -], A]. 8
08,23+, @
(n—1)'s A
Because of p is a derivation of R, by (8) and Theorem 1, we get p= 0 or X874 —
A@n=1)-1 — g [f y6n—4 _ 0, then we are done. Assume that p# = 0. Thus, as the
beginning of the proof, we may suppose that

v=0A"T A2 4 Al o (9)
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Using (9) repeatedly and A"6 = 0, we have 0 = \*—1y — APLExr=l B Xty =
A"26A™, ..., and finally we obtain

X%~ =, (10)

By Theorem 1 and § # 0, (10) implies A\67~4 = \3(2n-1)-1 _ 0, as desired.

Chung and Luh [1] showed that in a prime associative ring with characteristic 2, the
nilpotency of nilpotent derivation must be of the form 2% where k € N. Therefore, when
R is not 2-torsion free, the possible values for nilpotency in Theorem 1 and Theorem
2 are further limited. For example, if we assume in Theorem 1 or Theorem 2 that the
characteristic of R is 2, 6A*! = 0 and § # 0, or A1 = 0 and 62 # 0, then the nilpotency
of A must be 1, 2, 4, 8, 16, or 32.
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