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PRIME NONASSOCIATIVE RINGS WITH SKEW DERIVATIONS

CHEN-TE YEN

Abstract. Let Rbe a prime nonassociative ring, G the nucleus of R and s t b
of R. · , e automorphisms

(I) Suppose that c is an s-d·envation of R
>.en = 0 and c"'(R) C r such that so = cs and >. is an t-derivation of R. If

_ ,, where n is a fixed positive integer, then >. = o or c3n- l = o.
(II) Assume that c and >. are derivations of R. If there exists a fixed positive

that >."c = O, and c(R) 戶 G or >."(R) f G, then c2 = O or >.6n-4 = o. integer n such

1. Introduction

Let Rbe a nonassoc1ative ring. We adopt the usual notation for commutators and
associators: [x, y] = xy-yx and (x, y, z) (
the nucleus of R by G. Thus G

= xy)z-x(yz) for x,y,z ER. We shall denote
consists of all elements n in R

(R, n, R) = (R, R, n) = 0. Denote the
such that (n, R, R) =

group of all automorphsisms of R by Aut(R).
An additive mapping <5 from R into R
if o(xy) = <5(x)y + s(x)6(y) for all x·is called a skew derivation or an s-derivation

, y m R, where s E Aut(R). If·
automorphism of R then o· s 1s the identit

1s called a derivation of R.
y

derivations of R. A Let Der(R) be the Lie ring of
ring R is called prime if the product of any two nonzero ideals of R

1s nonzero.
Posner (3) proved that if R·IS a pnme assoc1at1ve rin

derivations ,\ and o then ,\o g of characteristic not two with
E Der(R) implies ,\ = 0 or <5

extended this result. Two of h" = 0. Jensen (2) partially
1s results are as follows: If R·

with derivations ,\ 1s a pnme associative
, 6 and th· · · ring

ere exists a fixed
then,\= 0 or 64n-l = O囝=0 or ,\l2n-9

pos1t1ve integer n such that ,\秤= O(,\n6 = 0)
= 0). In this

these results to th· paper, we improve and generalize
e pnme nonassoc1at·1ve rmgs with skew derivations.

In every ring R we have the Teichmiiller identity

(wx, Y, z) - (w, xy, z) + (w, x, yz) = w(x, y, z) + (w, x, y)z for all w, x, y, z ER. (1)

Note that tl1e associator (x)
that G· , Y, z is linear in each argument. Thus using (1), we have

1s an assoc1at1ve subring of R.
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2. Results

Our first main result is the following Theorem 1, which improves and generalizes
.Jensen's Theorem 1.

Theorem 1 [5] Let R be a prime·nonassoczatzve ring and lets, t E Aut R
that 8 is ans-derivation of R such that sJ = 8

(). Suppose
s and A is an t d- erzvatzon o

and 秤 (R) 仁 G, where n·
+R. If A.Jn = 0

zs a fixed positive integer, then ,\ = O or 83n-1 二 。．

To prove Theorem 1 we need a Lemma. The proof of the L
of (4 I emma 1s the same as that

, emma 1), except that the equation (4) of [4] is replaced by

n

秤 (xy) = I:叩s正 i(x))dn一\y) EA.
i=O

Lemma. Let A be subring of R. If 秤 (R)~A then R63正 1
Theorem 1. (R)~A. Proof of

Let ker(,,\) = {c ER: .-\(c) = O}. Then ker(.X) is the sub·
.-\. The hypothesis ,,\尸 ＝

rmg of constants of R under
0 implies 秤 (R) 巳 ker(.-\). By the L

ker (.-\). Since 护(R)
emma, we get R83n- l (R) C

~G and s8 = 8s, using [4 Th 一
or§3n-1 , eorem] we obtain that R is associative= 0. Assume that§3n-l f. 0. Then R·1s assoc1at1ve.
ker(,,\) and訒 =0, for all

Because of R83n-l R c（）
x,y,z m R we have -- ..

0 = .X(x83n-l(y)) = .-\(x)6足 l(y) + t(x).\(83n-I(y)) =庫）c53正 l(y)

and so .-\(zx)83n-1(y) = 0. The last two equalities imply

0 = (.-\(z)x + t(z).-\(x))83n-l(y)
= .-\(z)x83n-l(y) + t(z).-\(x)83n-I(y)
= .\(z)x8足 1 (y).

By the primeness of R, this implies ,,\(z) = o or J3n-I (y) = 0. In view of c53n- l :f O, we
obtain .\(z) = 0 for all z in R. Thus .\ = O, as desired.

Our second main result is the following Theorem 2, which·
Jensen's Theorem 2. improves and generalizes

Theorem 2. Let R be a prime nonassoczative
of R. If th

ring and let 8 and A be derivations
ere exists a fixed positive integer n such that ,\n8 - =

.-\n(R) 仁 G, then§2 == o or _x6n-4 = 0. 0, and 8(R)~G or

Proof. The derivations of R form a Lie ring under
8.\ ,,\§. d·[ commutation. Therefore 8 ,\
一 1s a envat1on 6,,\ t\6, t\] = 6,\2 一 2,\6,\ + ,\26 ［，］＝

， 一·一 is a derivation, and [J,X2 - 2.\J,X +
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汩 ，--\] =訒- 3>.6>.2 + 3>.26>. - 汩 ·1s also a derivation. C
that ontinuing we may conclude

2n-l
瓦 (2n~I)仁l)i,.\i(5,.\2n-1 一 2

i=O
1,

is a derivation. The coefficients are not germane to the rest of the proof
them from here on out. Th , so we suppress

us, using >.n6 = 0 we have that

6-X足 1 + ,XJ,X2n一 2 十 · · ·+ _xn-lJ_xn is a derivation of R. (2)

Since 8(R)~G or An(R) 戶 G, applying [4, Theorem J we obtain that R·
or 护= 0 or A3n一 1 = 0. If 82 = 0 or A3n-l , 1s associative，= 0, then we are done.

Suppose that 82 f. 0 and A3n-l f. O. Then R·
get (8A2n-l + AOA2n-l 1s associative. Because of Anb

十 ．．．十 A正 18An)8 = = 0, we
the last equality implies

0. In view of 82 f. 0, by (2) and Theorem 1

o..x2n-I + AOA2n-2 十 ···+..X正 1氐 =0.

Premultiplying (3) b ..X正 1y and applying 沖o = 0, we obtain

.,xn-I0.,x2n-l = Q.

(3)

(4)
Using (4) and prernultiplying (3) by ,.xn-2, it follows that ,.xn-215_x2n-1 +_xn-It5,.x2n一2
Hence, we have O = (,Xn-20,.x2n-1 + _xn-115_x2n一2 = 0.

) ..\ and so by (4)

,\n-26,\2n = O.
(5)

As the proof of [2, Theorem 2), we obtain An-3i5_x2n+1 = _xn-415_x2n+2
Combining (4) with (5) yields = ... = bA3n一2 = 0 .

..xn-2[6, ,\),\2n-l = O.
(6)

Since汩 =0, we get ,\n[b, ,\) = 0. Thus, replacing 6 by 6 ,\
and (6), and as the last proof we have [ , J and comparmg (4), (5)

An-3[[6, A], A]A2n-1 = 0.

Continuing in this manner, we finally obtain

µ,\2n-l = 0, whereµ= [[·.. [[6, ,\], ,\), .. ·], ,\).

(7)

(8)
(n-I)'s >.

Because of 11 is a derivation o
A3(2n-1)-1 f R, by- (8) and Theorem 1

= 0. If A6n-4 , we getµ= 0 or A6n-4
b . = 0, then we are done. Assume that
egmning of th µ= 0. Thus, as the

e proof, we may suppose that

ll == 6,\n-l + AOAn-2 十.. . + .X正 1b = 0. (9)
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Using (9) repeatedly and 汩 =0, we have O = ,\正IV = ,\正lJ,\r日
.\n一2c5_\n , 0 = .\n一 2v,\ =

, ... , and finally we obtain

c5_x2n-l = 0. (10)
Ily Theorem 1 and 6 f. O, (10) implies _x6n-4 = _x3(2n-1)-1 = 0, as desired.

Chung and Luh [1] showed that in a·pnme associative ring with 心: aractenstic 2 the
nilpotency of nilpotent d· ，envation must be of the form 2kR. , where k EN. Therefore, when

1s not 2-torsion free, the possible values for nilpotency in Theorem 1 and Theorem
2 are further limited. For example, if we assume in Th
h . eorem 1 or Theorem 2 that the
c aractenstic of R is 2, 8灼 =0 and 8 f= 0, or汩6
of A must be 1, 2, 4, 8, 16, or 32.

= 0 and 82 i= 0, then the nilpotency
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